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Abstract

Background: The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is
effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood) which are resistant to
other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the
underlying resistance mechanism(s) are poorly understood.

Results: Bioassays against eggs of a German (TV8) population of T. vaporariorum revealed a moderate level (21-fold) of
resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential
selection of TV8 rapidly generated a strain (TV8pyrsel) displaying a much higher resistance ratio (.4000-fold). The enzyme
inhibitor piperonyl butoxide (PBO) suppressed this increased resistance, indicating that it was primarily mediated via
metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as
candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s). Quantitative PCR
highlighted a single P450 gene (CYP4G61) that was highly over-expressed (81.7-fold) in TV8pyrsel.

Conclusion: Over-expression of a single cytochrome P450 gene (CYP4G61) has emerged as a strong candidate for causing
the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in
detoxifying pyriproxyfen.
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Introduction

Insecticide resistance in crop pests usually arises via one of two

types of mechanisms: either reduced binding of the insecticide to

its target through mutation of the target site (e.g. acetylcholines-

terase for organophosphates/carbamates, the voltage-gated sodi-

um channel for pyrethroids and the nicotinic acetylcholine

receptor for neonicotinoid insecticides) [1], or increased detoxifi-

cation or sequestration of insecticides [1,2] by enzymes such as

carboxylesterases (CEs) [3], glutathione-S-transferases (GSTs) [4]

and cytochrome P450-dependent monooxygenases [5].

Pyriproxyfen (2-[1-methyl-2-(4-phenoxyphenoxy)-ethoxy] pyri-

dine) is a juvenile hormone analogue (JHA) effective against some

arthropod pests including the greenhouse whitefly Trialeurodes

vaporariorum Westwood and the sweet potato whitefly, Bemisia tabaci

Gennadius (Hemiptera: Aleyrodidae). Pyriproxyfen is a potent

suppressor of embryogenesis and later development that competes

for juvenile hormone receptor binding sites and disrupts the

transition from one developmental stage to another [6–8]. The

mode of action of pyriproxyfen is not fully understood due to the

lack of a known signalling pathway and/or a receptor molecule.

However, the Methoprene-tolerant gene (Met) (also known as Resistance

to juvenile hormone) has been proposed as a possible candidate for the

juvenile hormone (JH) receptor as it has been shown to confer

resistance to toxic doses of JH when mutated [9,10].

Resistance to pyriproxyfen was first documented in B. tabaci

from Israel in 1998 [11,12] and early studies suggested that P450s

were not involved in the catabolism of pyriproxyfen [13].

However, more recent biochemical work on laboratory selected

strains from Arizona indicated that P450s and GSTs were

involved in pyriproxyfen detoxification [14]. To date, resistance

to this compound has not been described in T. vaporariorum, an

important virus vector and pest of protected vegetable and

ornamental crops in temperate regions of the world [15,16] that

has developed resistance to numerous other chemical classes

including pyrethroids and neonicotinoids [17–20].

The aim of the present study was to investigate potential

mechanisms of pyriproxyfen resistance in a laboratory selected
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strain of T. vaporariorum exhibiting over 4000-fold resistance to

pyriproxyfen. 454-based pyrosequencing has recently been used to

provide a substantial expressed sequence tag (EST) data-set

containing over 50,000 sequence contigs for T. vaporariorum [21].

We have used this as a reference transcriptome for cDNA

microarray design and then to identify candidate genes that are

associated with the resistance phenotype.

Results and Discussion

Bioassays
The UK strain TV3 and the German strain TV8 showed 5- and

21-fold resistance to pyriproxyfen, respectively (Table 1). Selection

of TV8 with pyriproxyfen increased resistance to 4,574-fold

compared to TV1 and 223-fold compared to the unselected TV8.

These findings provide the first confirmation of pyriproxyfen

resistance in T. vaporariorum. The response of TV8pyrsel after only

three generations of selection demonstrated a very potent

resistance to this insecticide. Interestingly, pyriproxyfen is not

registered for use in Germany. The moderate resistance found in

TV8 could be due to either cross-resistance between pyriproxyfen

and a different class of insecticides or transfer of whitefly infested

plant materials from regions were pyriproxyfen is used for whitefly

control. However, selection of TV8 with pyriproxyfen did not

result in enhanced resistance to other compounds belonging to

major insecticides classes used for whitefly control, such as

neonicotinoids, tetronic acid derivatives and pyrethroids

(Figure 1). This leads to the conclusion that the resistance

identified in this strain is due to European or global plant trade.

Pre-treatment of TV8pyrsel with the enzyme inhibitor piper-

onyl butoxide (PBO) reduced resistance to the level found in the

pre-selected strain (TV8). There was no equivalent synergism of

pyriproxyfen by PBO in the susceptible strain TV1 (Table 1). This

result provided strong evidence that pyriproxyfen resistance in

TV8pyrsel is primarily due to enhanced detoxification by either

cytochrome P450 monooxygenases or CEs (both enzyme families

are inhibited by PBO). This hypothesis was investigated further

using microarrays and quantitative PCR.

Microarray and quantitative real-time PCR analyses
Microarray analysis identified 3,474 probes (5.5% of the probes

which corresponded to 3,227 unique contigs) as significantly

differentially transcribed between the pyriproxyfen selected strain

TV8pyrsel and the susceptible standard TV1 (Figure S1). These

genes along with Log2, calculated fold-change values and closest

BLAST hits are listed in Table S1. 1,865 probes (1,032

corresponding to genes with unknown function) had elevated

expression in TV8pyrsel and 1,609 (1,105 of unknown function)

were down-regulated relative to TV1. Of the 833 over-expressed

probes with a known function, 25 were identified as potential

candidates for causing insecticide resistance (Table 2). These

included probes corresponding to genes encoding cytochrome

Figure 1. Percentage mortality of diagnostic doses of imidacloprid (neonicotinoid), bifenthrin (pyrethroid), spiromesifen (tetronic
acid derivative) and pyriproxyfen in the selected strain TV8pyrsel and the unselected parental strain TV8. Different letters indicate
significant differences between strains based on a two-sample unpaired t-test.
doi:10.1371/journal.pone.0031077.g001

Table 1. Responses of Trialeurodes vaporariorum eggs to
pyriproxyfen and synergism effect of pyriproxyfen after pre-
treatment with PBO to the susceptible TV1 and the
pyriproxyfen selected strain TV8pyrsel.

Insecticide Strain
LC50 (mg L21)
(95% CL)* Slope RF

pyriproxyfen TV1 0.014 (0.012–0.016) a 2.05 (60.11) 1

pyriproxyfen+PBO TV1 0.010 (0.009–0.011) a 2.15 (60.10) 1

pyriproxyfen TV3 0.05 (0.04–0.06) b 1.21 (60.06) 5

pyriproxyfen TV8 0.29 (0.26–0.31) c 1.89 (60.08) 21

pyriproxyfen TV8PyrSel 63.9 (58.3–70.2) d 2.96 (60.13) 4574

pyriproxyfen+PBO TV8PyrSel 0.22 (0.18–0.27) c 1.94 (60.11) 21

Resistance factors (RFs) relative to TV1 are given for all the field strains.
*Different letters indicate significant difference between strains, based on
overlapping 95% CL of LC50 values.
doi:10.1371/journal.pone.0031077.t001
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P450s (19), CEs (3), GSTs (3), enzymes that have been implicated

in insecticide resistance in many arthropod species [3–5].

Twelve gene sequences (Table 2) encoding cytochrome P450s

(19 probes) were elevated in TV8pyrsel (2.08–7.53 fold). In six

cases duplicate probes (generated either for the same contig or for

allelic variant of the same contig) corresponding to the same P450

gene (CYP4G61 of the CYP4 family, CYP6DT6 and CYP6DP2 of

the CYP3, CYP18A1 of the CYP2, and the mitochondrial P450s

CYP314A1 and CYP353C1) were over-expressed in TV8pyrsel

(2.08–6 fold). In other insect pests, members of the CYP2, CYP3

and CYP4 microsomal P450 families are most commonly

implicated in the metabolism of synthetic insecticides [5].

Microsomal P450s have been implicated in pyriproxyfen resis-

tance in the house fly, Musca domestica L. (Diptera: Muscidae)

[22,23], the yellow fever mosquito, Aedes aegypti L. (Diptera:

Culicidae) [24] and the whitefly, B. tabaci [14]. In the house fly,

P450s were shown to metabolise pyriproxyfen into two major

metabolites; 49-OH-pyr and 50-OH-pyr [22]. In the TV8pyrsel

strain of T. vaporariorum, a total of seven genes belonging to the

CYP3 family, two to the CYP4 family, and one to the CYP2

family were over-expressed. In B. tabaci, it was shown that

pyriproxyfen treatment in a resistant strain induces expression of

the cytochrome P450 CYP9F2 gene [25]. However, no close

ortholog of this gene was over-expressed in T. vaporariorum.

Three sequences encoding CEs (contigs 5401, 11569 and 4777),

all of them belonging to clade A [21] were identified as being over-

expressed in the resistant strain (Table 2). The level of expression

of these sequences was moderate (2.53–3.26-fold) and the proteins

these genes encode are therefore unlikely to be playing a

significant role in resistance to pyriproxyfen. Three sequences

encoding GSTs (contigs 7168, 11236 and 263) were elevated in the

resistant strain (Table 2). Of these contig 7168 belongs to the delta

class, members of which have been shown to be associated with

insecticide resistance. However, this sequence was elevated by only

2.49-fold in the resistant strain.

Of the 504 probes with a known function that were down-

regulated in TV8pyrsel, only two detoxification genes were identified

(Table S1; Table 2). These included one contig (42539) encoding a

cytochrome P450 (CYP306A1) with a negative fold change of 22.74

(0.36-fold) and a single sequence encoding a CE (belonging to clade

A) with a fold change of 22.79 (0.36-fold). These genes were selected

to validate the microarray data by quantitative PCR.

Table 2. Selected metabolic genes identified by microarray as differentially transcribed between the pyriproxyfen resistant
Trialeurodes vaporariorum strain TV8pyrsel and the susceptible TV1.

Contig number Family/gene name1 Probe Name Fold change Log2 Hit accession

8639 P450 CYP6DT4 CUST_4671_PI425265390 7.53 2.91 ACT68012

31414 P450 CYP6DS1 CUST_4667_PI425265390 6.58 2.72 ACT68012

5194 P450 CYP6CM4 CUST_4669_PI425265390 6.40 2.68 ACD84797

4648 P450 CYP4G61 CUST_1785_PI425308678 6.00 2.59 XP_001944205

21292 P450 CYP4G61 CUST_7415_PI425265390 5.59 2.48 XP_001944205

13018 P450 CYP18A1 CUST_4064_PI425308678 5.36 2.42 XP_002427451

13018 P450 CYP18A1 CUST_6265_PI425265390 5.29 2.40 XP_002427451

41451 P450 CYP6DT6 CUST_50026_PI425265390 5.16 2.37 ACT68012

41451 P450 CYP6DT6 CUST_3539_PI425308678 5.04 2.33 ACT68012

16136 P450 CYP314A1 CUST_5821_PI425308678 5.05 2.34 XP_001948607

16136 P450 CYP314A1 CUST_10486_PI425265390 4.98 2.32 XP_001948607

5866 P450 CYP4G60 CUST_7412_PI425265390 4.25 2.09 XP_001944205

9000 P450 CYP6DT7 CUST_49998_PI425265390 3.91 1.97 CAZ65617

45973 P450 CYP6DT5 CUST_4692_PI425265390 3.17 1.67 ACT68012

50476 P450 CYP6DP2 CUST_50025_PI425265390 2.53 1.34 CAH65682

41100 P450 CYP6DP2 CUST_4690_PI425265390 2.48 1.31 CAH65682

50476 P450 CYP6DP2 CUST_3538_PI425308678 2.44 1.29 CAH65682

4672 P450 CYP353C1 CUST_2054_PI425308678 2.11 1.08 EFA01331

4672 P450 CYP353C1 CUST_49588_PI425265390 2.08 1.06 EFA01331

5401 CE clade A CUST_51868_PI425265390 3.26 1.71 ABV45410

11569 CE clade A CUST_15720_PI425265390 2.98 1.58 XP_001663733

4777 CE clade A CUST_51886_PI425265390 2.53 1.34 XP_392698

11236 microsomal gst CUST_54255_PI425265390 4.05 2.02 XP_002428068

263 microsomal gst CUST_54254_PI425265390 2.02 1.01 XP_002428068

7168 delta gst CUST_13266_PI425265390 2.49 1.32 EFA01955

17998 CE clade A CUST_52068_PI425265390 22.79 21.48 EFA06762

42539 P450 CYP306A1 CUST_7409_PI425265390 22.74 21.46 XP_001600763

The family/gene names of known genes, as well as accession of the top blast hits are given [21].
1Cytochrome P450 names were given by Dr. David Nelson [39].
doi:10.1371/journal.pone.0031077.t002
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Real-time quantitative PCR was used to validate the microarray

results by examining the expression profile of nine selected P450

genes (8 over-expressed and 1 down-regulated in the resistant

strain), one CE that was found to be down-regulated in TV8pyrsel

and finally two housekeeping genes (EF1a and para). For each

housekeeping gene, data were normalised using the other as a

reference. In most cases, the over- or under-transcription of the

genes was confirmed (Table 3), although expression ratios

obtained from RT-PCR were frequently different from those

generated by microarray. Discrepancies in the data obtained from

microarray experiments using the Agilent array platform and real-

time quantitative RT-PCR have been described previously [26–

28] and our results again highlight the importance of RT-PCR

validation of array results.

Of the candidate genes encoding detoxification enzymes

examined by RT-PCR only a single P450 gene (CYP4G61) was

found to be highly over-expressed in TV8pyrsel displaying an

81.7-fold increase in transcription. The significantly lower

expression level obtained from the microarray data for this gene

may be partially explained by the well-known underestimation of

expression ratios by microarrays compared with RT-PCR [29].

The expression of the CYP4G61 gene in the original unselected

field strain TV8 was also examined by RT-PCR (Table 3). The

expression ratio of this gene in this strain compared to TV1 was

1.41-fold (0.66–2.16) indicating that the enhanced expression of

this gene in the highly resistant strain TV8pyrsel is a result of

sequential selection with pyriproxyfen. q-PCR using a second

primer pair (cyp4g61-f’, cyp4g61-r’) confirmed these findings with

the expression ratio of the unselected TV8 being 1.52-fold (1.39–

1.65) and that of TV8pyrsel being 94.1 (93.8–94.4).

Members of the CYP4G cytochrome P450 subfamily have been

shown to be involved in insecticide detoxification in other insect

species. Examples are CYP4G8 and CYP4G19 which are involved

in pyrethroid detoxification in the cotton bollworm, Helicoverpa

armigera Hübner (Lepidoptera: Noctuidae) [30] and the German

cockroach, Blattella germanica Linnaeus (Blattodea: Blattellidae) [31]

respectively. Two other genes of this family are known to be

induced after treatments with insecticides; CYP4G36, induced by

imidacloprid in A. aegypti [32] and CYP4G2, induced by permethrin

in M. domestica [33]. The CYP4G61 in T. vaporariorum shares 66%

amino acid identity with CYP4G8 (AAD33077), 60% with

CYP4G36 (EAT44585), 56% with CYP4G19 (AAO20251), 48%

with CYP4G2 (ABV48808).

CYP4G61 copy number
It has been recently shown that the enhanced transcription of a

cytochrome P450 gene (CYP6CY3) in a resistant clone of peach

potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae) is due

to structural amplification of the gene [28]. Quantitative PCR was

used to determine CYP4G61 gene copy number using genomic

DNA from individual adult male whiteflies (haploids) as template.

Data were normalised using two genes; para (present in a single

copy in insects as revealed by several genome sequencing projects

[34]) and EF1a (present in two copies in Hymenoptera and

Diptera, but in a single copy in most other insect species [35]). The

mean cycle threshold values of three biological replicates in

quantitative PCR of the CYP4G61, EF1a and para genes were

essentially the same in all strains (for TV1 CTs of 27.5, 27.6 and

27.7 respectively, for TV8 27.3, 27.5 and 27.7, and for TV8pyrsel

27.1, 27.5 and 27.5) indicating that haploid T. vaporariorum males

carry a single copy of the CYP4G61 gene. Neither the field strain

TV8 or the pyriproxyfen selected TV8pyrsel showed any

significant fold increase compared to TV1. TV8 showed a fold

change of 1.08 (0.56–1.60) and 1.14 (0.86–1.42) compared to the

TV1 using EF1a or para to normalise respectively. Similarly,

TV8pyrsel showed a fold increase of 1.25 (0.35–2.14) and 1.19

(0.67–1.71) compared to the TV1. These results indicate that the

increased expression of the CYP4G61 gene likely arises through

mutation of cis-acting promoter sequences and/or trans-acting

regulatory loci [36] rather than gene amplification.

CYP4G61 cDNA characterization
Two allelic variant contig sequences representing the CYP4G61

gene were identified in the InsectaCentral database (http://

Table 3. Fold change in expression of selected metabolic enzymes (P450s and a carboxylesterase (CE)), EF1a, and para in the
pyriproxyfen resistant Trialeurodes vaporariorum strain TV8pyrsel (compared to the standard susceptible strain TV1) determined by
quantitative PCR and microarray technology.

Gene name contig number Fold change - microarray Fold change compared to TV1 - q pcr (95% CL)

TV8 TV8pyrsel

CYP6DT4 8639 7.53 1.19 (0.96–1.42) 1.20 (1.07–1.33)

CYP6DS1 31414 6.58 1.45 (1.43–1.46) 1.29 (0.98–1.59)

CYP6CM4 5194 6.40 0.99 (0.97–1.02) 1.15 (0.97–1.33)

CYP4G61 21292, 4648 5.59–6.00 1.42 (0.69–2.15) 81.7 (81.6–81.9)

CYP4G60 5866 4.25 1.24 (0.91–1.57) 1.14 (0.98–1.30)

CYP18A1 13018 5.29–5.36 1.09 (0.90–1.29) 2.54 (2.29–2.78)

CYP6DT6 41451 5.04–5.16 1.13 (0.98–1.28) 1.43 (1.32–1.55)

CYP6DT7 9000 3.91 1.59 (0.86–2.32) 1.12 (1.09–1.14)

CYP6DT5 45973 3.17 1.54 (1.13–1.95) 1.15 (0.93–1.37)

CE Tv17998 17998 0.36 0.51 (0.33–0.69) 0.75 (0.68–0.81)

CYP306A1 42539 0.36 0.31 (0.12–0.51) 0.44 (0.13–0.74)

EF1a1 1983 0.93–1.17 0.81 (0.53–1.08) 0.94 (0.32–1.56)

para1 21272, 22691, 37637 1.04–1.58 1.24 (0.98–1.50) 1.06 (0.44–1.68)

1For each housekeeping gene, data were normalised using the other one as a reference.
doi:10.1371/journal.pone.0031077.t003
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insectacentral.org) and manually curated [21]. These were contig

21292 (partial sequence, assembled by 28 454-reads) and contig4648

(full length sequence, assembled by 106 454-reads). These contigs

were assembled from reads from two cDNA libraries, one for the

susceptible strain TV1 and the other for a neonicotinoid resistant

strain. These libraries were tagged prior to sequencing using

molecular markers [21]. An initial analysis of these assemblies (after

reassembling them from the related ESTs) revealed the presence of

10 silent single nucleotide polymorphisms (SNPs) at nucleotide

positions 126, 435, 774, 867, 966, 1146, 1329, 1356, 1620 and 1653

(Figure S2). There were only two substitutions, which cause an

amino acid change; one was a G/C at amino acid position 282 that

causes an amino acid substitution of a glycine to an alanine (G/A)

and an A/T at position 395 that causes an amino acid substitution of

a serine to cysteine (S/C) (Figure S2). The complete mRNA includes

a 59 UTR of 164 bp and a 39 UTR of 270 bp.

The cDNA contains a 1689 bp open reading frame (Figure 2)

encoding 563 amino acid residues, with a calculated molecular

Figure 2. Complete cDNA sequence of the CYP4G61 gene of Trialeurodes vaporariorum for the strains TV1 and TV8pyrsel. Conserved
domains common to cytochrome P450s are highlighted in grey. These are the helix C motif, the helix I motif, the helix K motif, the PERF motif and the
heme-binding ‘‘signature’’ motif. 59 and 39 UTR sequences are representing with light blue text. The polyadenylation signal, AATAAA is underlined.
Sites of SNPs are colour marked: green for silent or UTR SNPs and yellow for amino-acid substitutions. Marked in boxes are the N-terminal
transmembrane anchor (red-line box) and the SRS 1–6 (black-line box).
doi:10.1371/journal.pone.0031077.g002
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mass of 64,449 kDa and a predicted isoelectric point of 8.65. The

encoded protein contains conserved domains common in

cytochrome P450s, such as the helix C motif (WxxxR; position

141), helix I (oxygen binding) motif ([A/G]Gx[E/D]T[T/S];

position 363), the helix K motif (ExxRxxP; position 421), the

PERF motif (PxxFxP[E/D]RF; position 472) and the heme-

binding ‘‘signature’’ motif (PFxxGxxxCxG; position 495). The

polyadenylation signal AATAAA is located 73 nucleotides

downstream of the 39 end coding region.

Variations in the coding sequence of CYP4G61 in two strains of

T. vaporariorum (TV1 and TV8pyrsel; Figure S3) were investigated

by either an analysis of the reassembled sequence for the strain

TV1 (for which there was excellent sequence coverage) or by

direct nucleotide sequencing for TV8pyrsel. In TV1, nine

polymorphic sites were identified (nucleotide positions 126, 435,

774, 845, 867, 966, 1146, 1356, 1620), but only one change (C/G)

at amino acid position 282 results in an amino acid substitution of

an alanine to a glycine (A/G) (Figure 2). Only one polymorphism

(C/T) for this strain appeared to occur in a conserved protein

motif (helix C), but this was a synonymous substitution. For

TV8pyrsel the coding sequence was much more conserved than

TV1, probably as a result of selection, and only two silent

polymorphisms in nucleotide positions 126 and 774 were

identified. After comparing the consensus cDNA sequence of

TV1 and TV8pyrsel, four synonymous SNPs at positions 145

(CGC/CGT), 289 (ATT/ATC), 322 (GTT/GTC), and 382

(CGG/CGA) and one non-synonymous SNP at position 282

(GCT/GGT) conferring an alanine to glycine (A/G) substitution

were observed. Interestingly, the latter appeared to be at the

beginning of the SRS 3. Finally, a single SNP (A/G) was found in

the 59UTR of the CYP4G61 (Figure 2).

Conclusions
Based on the results of this study, CYP4G61 emerges as the

strongest candidate for further investigation into its role in

conferring potent resistance to pyriproxyfen in T. vaporariorum. In

particular, functional characterisation of this P450 to confirm its

ability to detoxify pyriproxyfen is now required.

Materials and Methods

Insect strains
Three strains of T. vaporariorum including an insecticide susceptible

reference strain (TV1) were used in this study (Table 4). All were

reared at Rothamsted Research without exposure to insecticides on

French bean plants, Phaseolus vulgaris L., cv. ‘‘Canadian Wonder’’

(Fabaceae), under a 16 h photoperiod at 24uC.

Insecticides and bioassays
Pyriproxyfen 0.5 G was obtained as a commercial formulation

(SumilarvH; Sumitomo Chemical Corporation) and diluted to the

required concentrations in distilled water containing 0.1 g L21 of

the non-ionic wetter AgralH (Syngenta). Technical piperonyl

butoxide (PBO) (PCP ‘Ultra’) was provided by Dr. Graham

Moores (Rothamsted Research).

The responses of strains TV1 (susceptible standard strain), TV3

and TV8 to pyriproxyfen were determined using a leaf-dip bioassay

method modified to measure egg-hatch suppression. Leaves on

intact bean plants were cut into rectangles of approximately

40 mm650 mm. These plants were placed in cages with at least

200 adult whiteflies for 24 h to obtain a synchronised cohort of eggs,

after which the adults were removed. Egg infested leaves were

dipped for 15 seconds in the required concentration of insecticide or

into 0.1 g L21 AgralH as a control. Treated plants were maintained

at 24uC and mortality was scored after 11 days by counting un-

hatched eggs and live nymphs. Concentration-mortality relation-

ships were fitted by probit analysis, using the software GenStat 12th

edition (VSN International Ltd, Hertfordshire, UK). Resistance

factors were calculated by dividing LC50 values for field strains by

that for the susceptible standard (TV1). Lack of overlap of 95%

confidence limits on fitted LC50 values denoted significant

differences in response. For the synergism bioassays, whitefly eggs

were initially dipped into a 0.1% PBO solution in acetone followed

5 h later by insecticide as described above.

Insects of TV8 were selected for resistance by treating eggs for

three successive generations with 3 mg L21, 5 mg L21, and

10 mg L21 pyriproxyfen, respectively, to generate a selected

strain denoted TV8PyrSel. In order to investigate for patterns of

cross-resistance, the pyriproxyfen selected and the unselected

parental strain were tested with diagnostic doses of the

neonicotinoid imidacloprid 200 g L21 SL (ConfidorH; Bayer

CropScience), the pyrethroid bifenthrin 100 g L21 EC (GyroH,

CERTIS) and the tetronic acid derivative spiromesifen 240 g L21

SC (OberonH; Bayer CropScience).

Microarray design
A SurePrint G3 (8660 k) expression array was designed using

Agilent’s eArray platform. The base composition and the best

probe methodologies were selected to design sense orientation 60-

mer probes with a 39 bias. The recently published T. vaporariorum

EST assembly (54,751 contigs) [21] was used as the reference

transcriptome. 60-mer probes were designed for all 54,751

assembled contigs, including contigs encoding detoxification

enzymes (P450s, GSTs and CEs). Additional probe groups for

15 plant genes of Phaseolus vulgaris Linnaeus (Fabales: Fabaceae) for

negative controls and a default set of Agilent controls were also

included. The array was filled to capacity using alternate 60-mer

probes for a selection of the T. vaporariorum contigs that returned a

blast result in the nr database [21]. The final slide layout consists

of 8 arrays of 62,976 elements. This array design can be made

available (and ordered) by third parties on request through a

shared work space set up on eArray. Table S2 provides

information about probes and corresponding contigs, as well as

a description of the top BLAST hit in the NCBI nr database for

each contig (note that only descriptions of contigs with a BLAST

result are shown in this file).

This microarray was used to compare gene expression in the

highly selected pyriproxyfen resistance strain TV8PyrSel with the

susceptible standard strain TV1. Total RNA was extracted from

four pools of approximately 500 whitefly eggs, using the Isolate

RNA Mini Kit (Bioline) according to the manufacturer’s protocol.

830 ng of each total RNA was used to generate labelled cRNA,

which was hybridized to arrays and these were washed and

scanned as described in Agilent’s Quick Amp Labelling Protocol

(Version 6.5). The microarray experiment consisted of four

biological replicates and for each of these, two hybridisations

Table 4. Trialeurodes vaporariorum strains, origins, year of
collection and host.

Strain Country of origin Year of collection Original host

TV1 UK 1971 French bean

TV3 UK 2008 Ornamentals

TV8 Germany 2008 Ornamentals

doi:10.1371/journal.pone.0031077.t004
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were done in which the Cy3 and Cy5 labels were swapped

between samples for a total of eight hybridisations between

resistant and susceptible strains.

Microarrays were scanned with an Agilent G2505C

US10020348 scanner, and fluorescent intensities of individual

spots were obtained using the Agilent Feature Extraction software

with default Agilent parameters. Data normalization, filtering, dye

flipping and statistical analysis were performed using the Gene-

Spring GX suit. For statistical analysis, a t-test against zero using

the Benjamini-Hochberg false discovery rate (FDR) method for

multiple testing corrections was used to detect significantly

differentially expressed genes. Genes meeting a p value cut-off of

0.01 and showing a transcription ratio .2 fold in either direction

were considered to be differentially transcribed between the two

strains. All microarray data were MIAME compliant and they

were submitted to the Gene Expression Omnibus (GEO) database

with accession number GSE31316.

Quantitative RT–PCR
Quantitative RT-PCR was used to validate microarray data by

examining the expression profile of 14 genes (primarily ones

encoding P450s) chosen on the basis of their likelihood as candidates

for causing resistance. Primers were designed to amplify a fragment

of 90–150 bp in size and are listed in Table S3. Total RNA was

prepared as described before and four micrograms was used for

cDNA synthesis using Superscript III and random hexamers

(Invitrogen) according to the manufacturer’s instructions. PCR

reactions (20 ml) contained 4 ml of cDNA (10 ng), 10 ml of SensiMix

SYBR Kit (Bioline), and 0.25 mM of each primer. Samples were

run on a Rotor-Gene 6000 (Corbett Research) using the

temperature cycling conditions of: 10 minutes at 95uC followed

by 40 cycles of 95uC for 15 s, 57uC for 15 s and 72uC for 20 s. A

final melt-curve step was included post-PCR (ramping from 72uC–

95uC by 1uC every 5 s) to confirm the absence of any non-specific

amplification. The efficiency of PCR for each primer pair was

assessed using a serial dilution of 100 ng to 0.01 ng of cDNA. Each

qRT-PCR experiment consisted of three independent biological

replicates with three technical replicates for each. Data were

analysed according to the DDCT method [37], using the geometric

mean of two selected housekeeping genes (para which encodes the

voltage gated sodium channel, and EF1a which encodes the

elongation factor 1-alpha) for normalisation according to the

strategy described previously [38].

Determination of P450 gene copy number by
quantitative PCR

Quantitative PCR was used to determine CYP4G61 gene copy

number as described above but using genomic DNA (from strains

TV1, TV8 and TV8pyrsel) as the template. For this, DNA from

individual adult haploid male whiteflies was extracted using

DNAZOLH (Invitrogen) at one tenth scale of the manufacturer’s

protocol and using RNase A to remove contaminating RNA. The

DNA was then diluted to 2.5 ng/ml and 4 ml used in RT-PCR as

detailed above. Data were analysed according to the DDCT

method [37] and normalised independently using two housekeep-

ing genes, para (present in a single copy in insects as revealed by

several genome sequencing projects [34]), and elongation factor 1-

alpha (present in two copies in Hymenoptera and Diptera but in a

single copy in most other insects [35]).

Amplification of full length cDNA from CYP4G61
To verify the assembly, the full length coding sequence of

CYP4G61 was amplified by nested PCR using primers cyp4g61-f1

and cyp4g61-r1 in a primary PCR reaction, followed by cyp4g61-f2

and cyp4g61-r2 in a secondary reaction. Sequencing was performed

using primers cyp4g61-f2, cyp4g61-f3, cyp4g61-f4, cyp4g61-f5 and

cyp4g61-r2, cyp4g61-r3, cyp4g61-r4, cyp4g61-r5 (Table S3). PCR

reactions (20 ml) contained 4 ml of cDNA (10 ng), 12.5 ml Dream-

TaqH Green DNA Polymerase (Fermentas), 15 pmol of each primer,

and RNase free water. The cycling conditions were 95uC for 2 min,

followed by 30 cycles of 95uC for 30 s, 50uC for 30 s and 72uC for

4 min with a final extension of 72uC for 5 min. PCR fragments were

purified using the WizardH SV Gel and PCR Clean-up System

(Promega) according to the manufacturer’s protocol and sent to

Eurofins MWG (Germany) for direct sequencing.

Sequence analysis
Molecular mass and isoelectric point were predicted by

Compute pI/Mw tool (http://us.expasy.org/tools/pi_tool.html).

The N-terminal transmembrane anchor of the CYP4G61 protein

was predicted by the TNHMM Server v.1.0 (http://www.cbs.dtu.

dk/services/TMHMM/). DNA and predicted protein sequences

were assembled, analysed, and aligned using the Vector NTI

Advance 10 package (Invitrogen). The full length sequence of the

CYP4G61 gene in this study was identified and manually curated in

the recent 454-based transcriptome study of T. vaporariorum and it

was named by David Nelson (Department of Molecular Science,

University of Tennessee, Memphis) in accordance with the P450

nomenclature committee convention [21,39]. Substrate recogni-

tion sites (SRS) were predicted by aligning the CYP4G61 protein

with other P450 proteins where SRS positions were known [40].

Supporting Information

Figure S1 Volcano plot for the Trialeurodes vaporar-
iorum microarray. Genes meeting a p value cut-off of 0.01 and

showing a transcription ratio .2 fold in either direction were

considered to be differentially transcribed between the two strains

and here are represented by dark dots.

(TIF)

Figure S2 Amino acid alignment of two translated
contigs (4648 and 21292) that they are coding for the
full length CYP4G61 gene. Silent SNPs are marked in yellow

coloured boxes and amino acid substitutions in green boxes.

(TIF)

Figure S3 CYP4G61 nucleotide sequences for the strains
TV1 (assembled from 454 reads for this strain) and
TV8pyrsel (identified by direct cDNA sequencing of this
strain).

(TXT)

Table S1 Genes identified by microarray analysis as significantly

differentially transcribed between the pyriproxyfen resistant strain

TV8pyrsel and the susceptible TV1. Here, the full list of these

genes, along with probe name, p-value, fold-change and log2 fold-

change, as well as a description based on the closest BLAST hit are

detailed.

(XLS)

Table S2 Probe IDs, corresponding contigs and closest BLAST

hits in the NCBI nr database for each unique contig. (Note that

only the contigs that returned a BLAST result are shown).

(XLS)

Table S3 Sequences of primers used in this study. Primer

sequences are listed along with the purpose for which they were

designed.

(XLS)
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