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Abstract: While anti-TNFα has been established as an effective therapeutic approach for several
autoimmune diseases, results from clinical trials have uncovered heterogeneous patients’ response to
therapy. Here, we conducted a meta-analysis on the publicly available gene expression cDNA mi-
croarray datasets that examine the differential expression observed in response to anti-TNFα therapy
with psoriasis (PsO), inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Five disease-
specific meta-analyses and a single combined random-effects meta-analysis were performed through
the restricted maximum likelihood method. Gene Ontology and Reactome Pathways enrichment
analyses were conducted, while interactions between differentially expressed genes (DEGs) were
determined with the STRING database. Four IBD, three PsO and two RA datasets were identified and
included in our analyses through our search criteria. Disease-specific meta-analyses detected distinct
pro-inflammatory down-regulated DEGs for each disease, while pathway analyses identified common
inflammatory patterns involved in the pathogenesis of each disease. Combined meta-analyses further
revealed DEGs that participate in anti-inflammatory pathways, namely IL-10 signaling. Our analyses
provide the framework for a transcriptomic approach in response to anti-TNFα therapy in the above
diseases. Elucidation of the complex interactions involved in such multifactorial phenotypes could
identify key molecular targets implicated in the pathogenesis of IBD, PsO and RA.

Keywords: autoimmune; anti-TNFα; gene expression; meta-analysis; pharmacogenomics

1. Introduction

Autoimmune diseases consist of a large group of multifactorial, chronic inflammatory
diseases caused by the complex interaction between genetic and environmental factors [1],
leading to severe pathological symptoms that detriment a patient’s quality of life [2]. The
extended tissue damage and severe clinical outcomes of autoimmune diseases, accompa-
nied by high, direct and indirect annual costs to the health care system [3] emphasize the
necessity for an efficient therapy. The development of innovative treatments, and especially
protein-based drugs (biological agents), has emerged as a revolutionary method for treating
multiple autoimmune diseases that aims to control the overactive immune response and
alleviate the inflammatory signs [4].
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Increasing knowledge regarding the pathophysiology of specific chronic inflammatory
diseases and, specifically, inflammatory bowel disease (IBD) (consisting of Crohn’s disease
(CD) and ulcerative colitis (UC)), psoriasis (PsO) and rheumatoid arthritis (RA), has pro-
vided insights into the underlying mechanisms that maintain the inflammation, such as the
mechanisms promoted by Tumor Necrosis Factor Alpha (TNFα) [5]. Such inflammation
occurs in IBD, for example, due to the combination of several environmental risk factors
and genetic predisposition that are heavily associated with the dysbiosis of gut microbiota,
such as those promoted by the NOD2 gene which regulates the host’s immune response
through the recognition of bacterial derivatives [6]. The resulting inflammation in the gas-
trointestinal tract, caused mainly by TNFα and interleukin (IL) 6, leads to extensive damage
in the intestinal epithelium and endothelium, as well as alterations in the extracellular
matrix [7].

In the case of PsO, the activation of antigen-presenting immune cells by several epi-
dermal autoantigens produced by keratinocytes, induces the secretion of pro-inflammatory
cytokines, which directly stimulate T helper (Th) cells [8]. Consequently, Th cells enhance
keratinocyte hyperproliferation, mainly through the secretion of TNFα and IL17A, while
keratinocytes maintain the chronic inflammatory cycle through the production of multiple
chemokines [9].

In the framework of RA, the disease progression is divided into several distinct clinical
stages, determined by the interactions between genetic and environmental risk factors [10].
The well-studied TNFα signaling pathway in the synovial fibroblasts precipitates their
aggressive hyperplastic and invasive phenotype, causing major damage to the cartilage [11].

The anti-TNFα biological agents are considered an ideal therapeutic approach in the
above diseases, given the predominant role of TNFα in their pathogenesis. Five anti-TNFα
agents have been developed and are widely used as therapeutic agents, including infliximab
(IFX), adalimumab (ADA), etanercept (ETC), certolizumab-pegol (CEP) and golimumab
(GOL) [12,13]. Despite the efficacy of anti-TNFα agents, several clinical trials have shown
that 20–40% of patients do not respond to treatment (primary non-responders), while almost
half of the benefited patients will lose these clinical benefits within the first year of treatment
(secondary loss of response) [14]. This observation is attributed, among other factors, to the
patient’s genetic background [15]. Therefore, multiple studies have evaluated the patients’
response to anti-TNFα agents according to their genetic background, supporting the notion
of the genetic variation significance in their response to treatment [16–18]. This has been
confirmed through meta-analyses on large cohorts of patients suffering from PsO, IBD and
RA [19]. However, this approach is limited by the fact that is based on the analysis of selected
genetic loci, yielding data that could only partially attribute the clinical heterogeneity to
anti-TNFα therapy response.

During the last two decades, high-throughput technologies and -omics platforms
have been used to elucidate the complex interactions in multifactorial phenotypes [20],
assessing a wide variety of conditions. Transcriptomics focus on the quantification of gene
expression, either with the usage of cDNA microarrays, or with RNA-seq [21]. In this
context, gene expression profiling through cDNA microarrays has been implemented in the
investigation of the diverse response to anti-TNFα therapy in IBD [22–24], PsO [25–27] and
RA [28,29]. Nevertheless, the reported findings of such high-throughput experiments are
rarely consistent and reproducible, due to the variable analytical methodologies performed
and platforms used in each study. Additionally, the limited number of included patients
aggravates the existing heterogeneity [30,31].

In this study, we systematically screened all available cDNA microarray datasets
between responders and non-responders to anti-TNFα therapy, in patients with IBD, PsO
and RA, and conducted a random effects meta-analysis, aiming to identify unique and
shared genes and pathways that could be potentially related to the phenotypically complex
response to therapy.
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2. Materials and Methods
2.1. Identification of Eligible Datasets and Inclusion/Exclusion Criteria

A schematic overview of our research workflow is presented in Figure 1. We consid-
ered all original experimental datasets that examined changes in gene expression between
responders and non-responders to anti-TNFα therapy, in patients with IBD, PsO and RA.
We systematically screened publicly available datasets on Gene Expression Omnibus (GEO)
from inception on the 10 November 2020 [32]. Keywords and terms added in our search
strategy included “psoriasis”, “Crohn’s disease”, “ulcerative colitis”, “rheumatoid arthritis”
and similar search terms, filtering for “Homo sapiens”. The gene expression microarray
datasets used in our analyses were filtered to include adult human case-control studies on
anti-TNFα response in the diseases under study and to correspond to samples collected
from inflamed biopsies (either skin, intestinal mucosa or synovial, respectively). Datasets
were excluded if they referred to blood samples, assessed response to therapy using biolog-
ical indexes rather than clinical score indexes, and did not provide sufficient phenotypic
data about response to therapy for each patient, either through the data submitted in the
GEO platform files or through full-text mining.

Genes 2022, 13, x FOR PEER REVIEW 3 of 16 
 

 

shared genes and pathways that could be potentially related to the phenotypically 
complex response to therapy. 

2. Materials and Methods 
2.1. Identification of Eligible Datasets and Inclusion/Exclusion Criteria 

A schematic overview of our research workflow is presented in Figure 1. We 
considered all original experimental datasets that examined changes in gene expression 
between responders and non-responders to anti-TNFα therapy, in patients with IBD, PsO 
and RA. We systematically screened publicly available datasets on Gene Expression 
Omnibus (GEO) from inception on the 10 November 2020 [32]. Keywords and terms 
added in our search strategy included “psoriasis”, “Crohn’s disease”, “ulcerative colitis”, 
“rheumatoid arthritis” and similar search terms, filtering for “Homo sapiens”. The gene 
expression microarray datasets used in our analyses were filtered to include adult human 
case-control studies on anti-TNFα response in the diseases under study and to correspond 
to samples collected from inflamed biopsies (either skin, intestinal mucosa or synovial, 
respectively). Datasets were excluded if they referred to blood samples, assessed response 
to therapy using biological indexes rather than clinical score indexes, and did not provide 
sufficient phenotypic data about response to therapy for each patient, either through the 
data submitted in the GEO platform files or through full-text mining. 

 
Figure 1. Schematic overview of our study. 

2.2. Dataset Pre-Processing 
Each raw dataset was separately downloaded from GEO using GEOquery [33]. For 

raw datasets that did not contain the necessary phenotypic data (metadata), the latter were 

Datasets excluded (n=24)
• Blood datasets (n=12)
• Biological indexes (n=3)
• Absence of phenotypic data (n=9)

Records identified through database searching 
(n=954) and other sources (n=0)

(n=954)

Datasets assessed for eligibility
(n=35)

Studies included in qualitative synthesis
(n=9)

IBD (n=4)
79 Responders

72 non-Responders

PsO (n=3)
40 Responders

11 non-Responders

RA (n=2)
16 Responders

6 non-Responders

1998 DEGS
1259 downregulated

739 upregulated

694 DEGS
443 downregulated

251 upregulated

711 DEGS
400 downregulated

311 upregulated

Functional enrichment analysis
Identification of shared pathways & genes

Da
ta

se
t S

cr
ee

ni
ng

 &
 In

cl
us

io
n

M
et

a-
an

al
ys

is
In

di
vi

du
al

 a
na

ly
sis

En
ric

hm
en

t

436 DEGS
350 downregulated

86 upregulated

P ≤ 0.05
|log2(FC)| ≥ log2(1.25)

Consistent perturbation (75%)

Validation of the disease-specific 
enrichment results

Protein-Protein Interaction networks

P value ≤ 0.05
FDR≤ 0.05

Figure 1. Schematic overview of our study.

2.2. Dataset Pre-Processing

Each raw dataset was separately downloaded from GEO using GEOquery [33]. For
raw datasets that did not contain the necessary phenotypic data (metadata), the latter were
downloaded and integrated into the raw ExpressionSet via the corresponding processed
data. Probe expression values were quantile normalized, log2 transformed and annotated
with the R [34] Bioconductor v. 3.14 [35] annotate v. 1.72.0 package [36]. Multiple probesets
mapping to the same transcript were summarized and studied at a single gene level. Prior
to Differential Gene Expression Analysis (DGEA), samples that were not relevant to our
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analysis (e.g., non-lesional skin biopsies) were excluded. DGEA was performed with the
limma v. 3.50. 1 package [37], a well-established linear model for microarray statistical
analyses. The analysis was not adjusted for covariates and the clinical characteristics of
each patient due to the unavailability of individual level data in most datasets.

2.3. Disease-Specific and Combined Meta-Analyses

We applied the Random Effects Model (REM) approach through the restricted maxi-
mum likelihood method (RELM), implemented in the MetaVolcanoR v1.8.0 package [38],
where dataset-specific gene fold changes (FC) and their representative confidence intervals
(CIs) are summarized. We performed a total of six meta-analyses: three for each disease
(PsO, IBD, RA), two for Crohn’s disease and ulcerative colitis and a single combined meta-
analysis on all datasets. Genes derived from each meta-analysis were ranked according to
the TopConfects [39] approach, implemented in the MetaVolcanoR [39] package. The top 1%
of the most consistently perturbed genes in the included datasets were highlighted, while
maintaining a 5% False Discovery Rate (FDR). Genes considered differentially expressed
(DEGs) were those with p ≤ 0.05, |log2(FC)| ≥ log2(1.25) and perturbed in at least 75% of
the included datasets. Visualization of DEGs was performed with the EnhancedVolcano v.
1.12.0 R package [40].

2.4. Over-Representation Analysis

Over-representation analysis (ORA) was performed using Gene Ontology (GO) [41]
and Reactome Pathways [42] with the R clusterProfiler v. 4.2.2. package [43] for both
up- and down-regulated genes in all four performed meta-analyses using the default
parameters. Outputs of the GO ORA were further analyzed and reduced to single rep-
resentative terms to reduce the redundancy of the GO child terms. Pairwise similarities
were subsequently calculated for the biological processes (BPs) of each down-regulated
gene set through Wang’s method based on the topology of the GO directed acyclic graphs
(DAGs) [44]. To characterize the shared enriched functional profiles in our meta-analyses
and identify key shared genes between the three diseases under the same treatment, we
created gene clusters of up- and down-regulated genes from each disease and aggregated
the results into a single object [43]. For each enriched pathway, the p value was calculated
with the hypergeometric model and controlled for multiple comparisons with the Ben-
jamini & Hochberg method. Enriched pathways with an adjusted p ≤ 0.05 were regarded
as statistically significant.

2.5. Construction of Protein-Protein Interaction (PPI) Networks

To assess the interactions between the statistically significant up- and down-regulated
genes from the combined meta-analysis, as well as the shared genes and their respective
interactors identified through our ORA analyses, we incorporated the STRING v11.5
database [45] with a direct (physical) interaction score of 0.7 and visualized the derived
networks with Cytoscape v3.9 [46].

3. Results
3.1. Included Datasets

A total of nine microarray datasets were identified in the literature search based on
our prespecified criteria: four datasets referred to IBD [22–24], three to PsO [25–27] and
two to RA [28,29]. IBD datasets accumulated a total of 151 patients (79 responders/72
non-responders), PsO included 51 patients (40 responders/11 non-responders) whereas RA
datasets had 22 patients (16 responders/6 non-responders). Four experimental datasets
were performed using the Affymetrix Human Genome U133 Plus 2.0 Array (GPL570)
whereas the rest used various other platforms (Table 1). The clinical definition of response
to therapy was evenly assessed in the PsO and RA datasets; PsO datasets characterized
responders as those with a greater or equal than 75% improvement in the psoriasis area
and severity index (PASI75) score [25–27], while RA responders were assessed according
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to the European League Against Rheumatism (EULAR) criteria [28,29,47]. As far as IBD
was concerned, three datasets (GSE16879, GSE92415, GSE23597) assessed patients with
ulcerative colitis (UC) as responders to anti-TNFα therapy with the Mayo scores, where a
decrease of Mayo subscores of at least three points by 30%, with the exception of Arijs et al.
where a decrease in Mayo endoscopic subscores considered patients as responders [23].
Crohn’s disease (CD) patients were assessed as responders either through a decrease in the
Crohn’s Disease Endoscopic Index of Severity (CDEIS) of less than five (GSE52746 [22]), or
complete mucosal healing with a significant decrease in the histological score [48].

Table 1. Summary of the datasets included in our study.

GSE Series
Accession
Number

Array Platform Biopsy Clinical
Assessment Patients (R/NR) Treatment

Inflammatory Bowel Disease

GSE52746 [22] GPL17996 Intestinal Mucosa CDEIS 12 (7/5) ADA, IFX

GSE16879 [23] GPL570 Intestinal Mucosa
Mayo scores/
Endoscopic

healing
60 (27/33) IFX

GSE92415 GPL13158 Intestinal Mucosa Mayo scores 50 (29/21) GOL
GSE23597 [24] GPL570 Intestinal Mucosa Mayo scores 29 (16/13) IFX

Psoriasis

GSE106992 [25] GPL570 Skin PASI 21 (19/2) ETA

GSE11903 [26] GPL571 Skin PASI 15 (11/4) ETA, ADA

GSE85034 [27] GPL10558 Skin PASI 15 (10/5) ETA, ADA

Rheumatoid Arthritis

GSE140036 [28] GPL8234 Synovial EULAR 11 (8/3) ADA, IFX, ETA

GSE15602 [29] GPL570 Synovial EULAR 11 (8/3) ADA

Abbreviations: PASI, Psoriasis Area Severity Index; ETA, Etanercept; ADA, Adalimumab; EULAR, European
League Against Rheumatism; IFX, Infliximab; CDEIS, Crohn’s Disease Endoscopic Index of Severity; GOL,
Golimumab.

3.2. Differentially Expressed Genes in the Disease-Specific Meta-Analyses

Our primary goal was to identify the differentially expressed gene signatures of the
anti-TNFα response to therapy in the three diseases under study, as well as identify shared
genes and pathways. The IBD meta-analysis revealed a total of 1998 genes, where 1258 were
down-regulated and 739 were up-regulated (Supplementary Figure S1a). Similarly, meta-
analysis of the three PsO datasets resulted in 694 DEGs, 443 down-regulated genes and
251 up-regulated genes (Supplementary Figure S1b). In the RA meta-analysis, 711 DEGs
were detected including 400 down-regulated and 311 up-regulated genes (Supplementary
Figure S1c). The top five up- and down-regulated genes in all meta-analyses are shown in
Table 2 according to the TopConfects [39] approach implemented in the MetaVolcanoR [38].

The complete list of up- and down-regulated genes is provided in Supplementary
Table S1. Eight genes were consistently down-regulated in all three disease-specific meta-
analyses, including CCAAT/enhancer binding protein delta (CEBPD) and Ficolin 1 (FCN1),
whilst the up-regulation pattern of three genes gave the same disease-specific response to
anti-TNFα therapy (Supplementary Table S1).

The CD meta-analysis yielded a total of 1798 differentially expressed genes (DEGs),
where 757 were up-regulated and 1041 were down-regulated. On the other hand, the
UC meta-analysis gave us a total of 2297 DEGs, out of which 880 were up- regulated
and 1417 were down-regulated (Supplementary Figure S5). A total of 1066 DEGs were
shared between the UC and CD meta-analyses, with 685 being down- regulated and 381
being up-regulated. A full list of our DEGs, concerning both meta-analyses, is provided in
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Supplementary Table S1, while functional enrichment of the CD and UC DEGs is provided
in our Supplementary File S1 and Supplementary Figures S6–S8.

Table 2. Top five DEGs for each meta-analysis conducted in our study, as derived from the TopConfects
[39] approach.

Disease Symbol log2(FC) p Value Disease Symbol log2(FC) p Value

Down-regulated Up-regulated

IBD

PROK2 −2.36027 2.93 × 10−20

IBD

PCK1 2.129965 1.13 × 10−10

CHI3L1 −2.78866 2.05 × 10−12 HMGCS2 1.998756 2.42 × 10−11

FCGR3B −2.54556 7.94 × 10−12 GUCA2B 1.778594 1.07 × 10−12

S100A12 −1.94699 6.70 × 10−16 GUCA1B 1.683352 3.74 × 10−13

FPR1 −1.80196 7.42 × 10−17 TRPM6 1.657438 1.36 × 10−12

Psoriasis

PRDM1 −0.62185 7.66 × 10−7

Psoriasis

PHF1 0.501467 4.43 × 10−7

ABHD17C −0.54337 5.58 × 10−6 C1orf115 0.646972 1.61 × 10−6

SERPINB13 −0.8009 8.94 × 10−6 DEPP1 0.720268 1.87 × 10−5

THBD −0.51355 6.97 × 10−6 MIR7114 0.48793 1.45 × 10−5

DNAJB6 −0.39466 4.72 × 10−6 ASMTL 0.420074 2.19 × 10−5

RA

C1QTNF6 −1.14956 6.59 × 10−7

RA

AK1 1.206349 2.48 × 10−6

FMO1 −1.93396 4.47 × 10−6 NAV1 0.68339 2.54 × 10−7

IL2RA −1.16699 3.35 × 10−6 PLAC9 0.886543 2.40 × 10−6

IL12RB2 −0.50277 7.88 × 10−8 SOX8 1.324758 1.90 × 10−5

SIGLEC7 −0.56548 1.73 × 10−6 GPSM2 0.908652 2.87 × 10−5

Combined

S100A9 −1.7893 1.88 × 10−10

Combined

ZNF91 0.670157 1.13 × 10−13

GNA15 −0.64899 6.11 × 10−14 TRIM2 0.518893 2.70 × 10−12

NOD2 −0.63377 1.29 × 10−13 NR3C2 0.515162 1.80 × 10−11

PRDM1 −0.60289 5.49 × 10−12 TCEA3 0.549032 6.47 × 10−09

LYN −0.54475 2.33 × 10−13 PHYH 0.410147 2.68 × 10−10

3.3. Functional Enrichment Analysis of the Disease-Specific DEGs

The over-representation analysis (ORA) was performed on each disease-specific DEG
set to identify the associated biological pathways and processes. ORA was initially based
on the Reactome pathways database [41] and subsequently compared to the gene ontology
terms [40].

A total of 122 Reactome pathways were enriched for the down-regulated IBD genes
with numerous immune-related terms, some of which include interleukin (IL) pathways
(e.g., ‘interleukin-4 and interleukin-13 signaling’ (39/108 genes) and ‘interleukin-10 signal-
ing’ (25/47 genes)), ‘neutrophil degranulation’ (93/480 genes) as well as G-protein coupled
receptor (GPCR) pathways with ‘G alpha (i) signaling events’ (53/318 genes) and ‘class A/1
(rhodopsin-like receptor)’ (57/335 genes), for instance (Figure 2a). Far less Reactome terms
were over-represented concerning the up-regulated IBD genes, reaching a total of 16 distinct
pathways. These terms referred to the ‘metabolic pathways of fatty acids’ (21/177 genes),
‘citric acid cycle (TCA cycle)’ (6/22 genes) as well as ‘biological oxidation’ (24/222 genes)
and ‘mitochondrial beta-oxidation of saturated fatty acids’ (5/11 genes) (Supplementary
Table S2). By conducting the Gene Ontology ORA, we identified more than 1000 distinct
biological process (BP) terms concerning the down-regulated IBD genes, which were sub-
sequently reduced to 492 non-redundant BPs, 64 molecular function (MF) and 35 cellular
component (CC) terms (Supplementary Table S3). Semantic similarity analysis confirmed
the significant immunological background of the response to anti-TNFα therapy in patients
with IBD, through the identification of leukocyte-associated terms and adaptive immunity,
characterizing a distinct pattern of cell responses to molecules of bacterial origin (Figure 3a).
Up-regulated IBD genes were significantly enriched for 232 BP, 12 MF and 28 CC terms,
while 110 BP terms remained after the reduction to single representative terms. Metabolic
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processes such as pathways included in the biosynthesis of carbohydrates, breakdown of
organic acids and lipids were identified through the ORA (Supplementary Table S3).
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Enriched Reactome pathways (n = 35) in down-regulated PsO genes revealed a dis-
tinct functional enrichment comprising pathways associated with keratinocytes, such
as the ‘formation of the cornified envelope’ (21/130 genes) and ‘keratinization’ (21/214
genes), in conjunction with numerous cell cycle and mitosis-related pathways, namely
‘mitotic metaphase and anaphase’ (21/237 genes), ‘mitotic G1 phase and G1/S transition’
(14/149 genes) and ‘regulation of mitotic cell cycle’ (10/88 genes). Additionally, PsO
down-regulated genes were enriched with immune signaling pathways, namely ‘interferon
alpha/beta’ (13/70 genes) and ‘interleukin-mediated signaling’ (25/462 genes; Figure 2b).
Consistent with the functional analysis performed in IBD, pathways associated with the up-
regulated PsO genes were significantly less (n = 15) and mainly related to proteoglycans due
to the presence of CSPG4, GPC2, GPC6, BGN and HSPG2 genes (Supplementary Table S2).
GO ORA on the down-regulated PsO genes revealed a total of 257 BP, 16 MF and 39 CC GO
terms, reduced to 107 BP, 10 MF and 16 CC terms when considering the overlapping child
GO terms (Supplementary Table S3). The semantic similarity analysis of the GO BP terms
of the down-regulated PsO genes further highlighted the importance of the cell cycle and
mitosis, in the skin biopsies derived from the PsO responders, in the response to anti-TNFα
therapy; terms including chromosome segregation and nuclear division were abundant,
along with skin-related terms (e.g., keratinization and skin developmen t), whilst immune-
related pathways mainly referred to interferon signaling and response to viral infection,
as shown in Figure 3b. On the other hand, the 13, non-redundant BP terms associated
with the up-regulated PsO genes were significantly enriched for the development and
differentiation of muscle and connective tissue (Supplementary Table S3). Notably, BP
terms referring to the morphogenesis of the epithelial tissue as well as the regulation of
epithelial cell proliferation and migration were not statistically enriched.

Similarly, the ORA of down-regulated RA genes detected multiple cell-cycle-associated
pathways including ‘cell cycle checkpoints’ (28/294 genes), ‘DNA replication’ (16/128
genes) and ‘G1/S transition’ (14/131 genes), while immune-related pathways such as ‘neu-
trophil degranulation’ (36/480 genes), ‘interleukin-4 and interleukin-13 signaling’ (14/126
genes) and ‘signaling by interleukins’ (29/462 genes) were significantly enriched (Figure 2c).
The up-regulated RA genes, however, were not significantly over-represented for any Reac-
tome pathway (Supplementary Table S2). Considering the GO over-representation analysis
on the RA DEGs, 296 BP, 7 MF and 51 CC terms were statistically enriched; non-redundant
GO terms were consequently reduced to 107 BP, 7 MF and 17 CC terms (Supplementary
Table S3). Out of the 107 non-redundant BP terms, semantic similarity analysis revealed,
comparably to the Reactome pathways ORA, numerous cell cycle and nuclear division
processes, including distinct immune terms such as the regulation of cytokine production
and response to interleukin-1 (Figure 3c). Contrary to the Reactome ORA, GO analysis
showed 24 BP, 3 MF and 5 CC terms concerning the up-regulated RA genes which were
reduced to 20 BP, 2 MF and 5 CC representative terms. The 20 BP terms were mostly
associated with metabolic processes of retinol and terpenoid, in addition to the positive
regulation and activation of protein kinase B (PKB) activity (Supplementary Table S3).

Comparison of the three disease-specific down-regulated genes in the ORA in the
Reactome pathways database, unveiled two common pathways; Neutrophil degranulation
and signaling by interleukins, with CEBPD and FCN1 being present in all disease-specific
DEGs (Supplementary Table S2).

3.4. Differentially Expressed Genes in the Combined Meta-Analyses

Due to the disease-specific patterns noticed in the three above sub-analyses, we
conducted a random effects meta-analysis on all nine datasets. A total of 2022 genes showed
a consistent gene expression pattern throughout the nine included datasets (Supplementary
Figure S2d). Out of those, 350 were found to be down-regulated and 86 up-regulated. The
top ten up- and down-regulated DEGs are shown in Table 2, the order of which is derived
from the TopConfects approach [39], while the full list of the consistently perturbated
genes is provided in Supplementary Table S1. As expected, genes that were differentially
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expressed in all three disease-specific meta-analyses also maintained this pattern in the
combined meta-analysis (Supplementary Table S1).

3.5. Functional Enrichment in the Combined Meta-Analysis

Forty-nine Reactome pathways were significantly enriched concerning the 350 down-
regulated genes in the combined meta-analysis. Most of the enriched pathways referred to
immune-related signaling events and antigen-presenting pathways, such as ‘interleukin-10
signaling’ (22/47 genes), ‘interferon alpha/beta signaling’ (12/108 genes) and multiple
toll-like receptor (TLR) signaling cascades. Out of the 49 statistically enriched pathways,
seven were not present in the disease-specific meta-analyses, even though they exhibited
a low gene counts ratio. Out of those, six were immune-related, including ‘interleukin-6
signaling’ (3/11 genes) and ‘FcεRI-mediated Ca2+ mobilization’ (5/33 genes), while ‘regu-
lated necrosis’ (7/57 genes) was also significantly enriched (Figure 2d). On the other hand,
the up-regulated genes were not enriched for any Reactome pathway terms (Supplemen-
tary Table S2). Furthermore, the GO ORA identified 898 BP, 55 MF and 36 CC terms that
were significantly enriched concerning the down-regulated genes, which were afterwards
reduced to 256 BP, 27 MF and 20 CC ontology terms. Semantic similarity analysis on the
non-redundant 256 BP terms showed numerous immune-related processes, such as the
chemotactic migration of leukocytes, cytokine-meditated events, as well as regulation of
the immune response through biotic stimuli (Figure 3d). In addition, 78 BP terms were
enriched in up-regulated genes from the combined meta-analysis, while MF and CC terms
did not give results. More than half of the BP terms were maintained as single represen-
tative terms; multiple cell differentiation processes were discovered, including stem and
fat cell differentiation, whilst, as noted in every disease-specific meta-analysis, metabolic
pathways were also present with steroid, fatty acid and nucleotide metabolic processes, for
instance (Supplementary Table S3).

3.6. Protein–Protein Interaction Network

Protein–protein interaction (PPi) networks were incorporated to elucidate the com-
plex interactions taking place in the response to anti-TNFα therapy in the diseases under
study, as well as to characterize specific patterns of the deregulated genes. DEGs of the
combined meta-analysis derived a PPi network consisting of more than 400 nodes with
a PPi enrichment p < 10−16. Out of those, 114 genes were noticed to be interconnected
inside our network (Figure 4). Three shared down-regulated genes were found inside
the sub-networks of our PPi; GNA15, CEBPD and TRIP13. TRIP13 interacts with CDC20
with a score of 0.961, both participating in the spindle assembly checkpoint. Further-
more, CEBPD and GNA15 were identified inside our largest sub-network, as derived from
our PPi analysis. CEBPD is a transcription factor that forms a heterodimer with CEBPB
(PPi score = 0.991), which further regulates the transcription of IL-6, a key proinflammatory
cytokine overexpressed in multiple autoimmune diseases. On the other hand, GNA15 is
involved in G-protein signaling events, as seen through our enrichment analyses (Supple-
mentary Table S2), which is further explained through its interactions with various proteins
including chemotactic factors (FPR1, CXCL8) and the preproendothelin-1 (EDN1), with an
interaction score >0.9 in all cases.
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4. Discussion

In this study, we considered microarray datasets that assessed the differential gene
expression observed between responders and non-responders in autoimmune diseases
with anti-TNFα as their main pharmacotherapy. Four datasets studying IBD [22–24],
three associated with PsO [25–27] and two with RA [28,29] were included, with samples
derived from the respective inflamed tissue. Multiple methodologies have been suggested
for microarray meta-analyses aiming to assess both technical and biological heterogeneity
between the datasets under study [49]. Out of those, we incorporated a random effects meta-
analysis approach through the restricted maximum likelihood method (RELM), aiming to
identify shared and unique genes and pathways that are differentially expressed by the
complex response to therapy phenotype.

Our disease-specific meta-analyses detected almost 2000 deregulated genes in the
IBD datasets, while the number of differentially expressed genes (DEGs) in PsO and RA
were less than half. Such a vast disparity between the observed DEGs in each disease-
specific meta-analysis, compared to IBD, partially lies in the clinical subtypes of the latter,
Crohn’s disease (CD) and ulcerative colitis (UC). Although CD and UC display a signifi-
cant genetic risk loci overlap [50], as well as a similar stabilizing but, nevertheless, high
prevalence in westernized societies [51], the distinct histological localization and inflam-
matory manifestation throughout the gastrointestinal epithelium underlie pathological
differences between both diseases, which are reflected in the transcriptome profiling of
therapy response. Nevertheless, the same vast differences were observed during our CD
and UC separate meta-analyses (Supplementary File S1). This could be further attributed
to the dissimilarities noticed in the responders/non-responders (R/NR) ratio included
in each disease-specific meta-analysis. Specifically, the R/NR ratio in the IBD datasets
was close to equal (79/72), a trend further maintained in the CD (27/21) and UC (52/51)
datasets, unlike the PsO (40/11) and RA (22/6) meta-analyses. Furthermore, residual
heterogeneity of the p values of the statistically significant IBD genes were a lot smaller
(Supplementary Figure S2) in comparison with the PsO and RA heterogeneity p values
(Supplementary Figure S2). Similar density plots were derived from the heterogeneity
of the p values of the combined meta-analysis (Supplementary Figure S3), as well as for
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CD and UC (Supplementary Figure S4). Although the combined meta-analysis was ex-
pected to yield such a high heterogeneity due to the clinical and, therefore, transcriptomic
discrepancies between the included datasets, the heterogeneity present in our IBD, CD
and UC meta-analyses warrants consideration for further in-depth studies. Eleven genes
(eight down-regulated and three up-regulated) showed a consistent deregulated expression
pattern in all disease-specific analyses (Supplementary Table S1). Strikingly, six out of eight
down-regulated genes participate in the regulation of cell cycle, mitotic and G protein
signaling pathways; the immune-related genes consisted of CCAAT/enhancer binding
protein delta (CEBPD) and Ficolin 1 (FCN1), as seen through our over-representation (ORA)
analyses (Supplementary Table S2). Both genes participate in the two shared pathways be-
tween the disease-specific analyses, signaling by interleukins and neutrophil degranulation,
respectively. CEBPD is a transcription factor involved in multiple cellular signaling events,
including cell proliferation and proinflammatory pathways [52]. Specifically, CEPBD’s
transcription is mediated from the NF-kB pathway [53] and forms stable heterodimers
with CEBPB which promote the transcription of IL6 [54]. However, several studies have
assessed the role of CEBPD in the inflammation occurring in each disease under study with
contradictory findings [55–59]. For example, CEBPD-deficient-collagen-induced arthritis
mouse models had a lower RA activity compared to the wild type [56], whilst knockout of
CEBPD in dextran-sulfate sodium (DSS)-induced colitis mice resulted in a higher suscepti-
bility to the disease [57]. These results suggest that CEBPD could display a tissue-specific
interaction network that could either aggravate or reduce the inflammation. In contrast,
FCN1 is part of the ficolin protein family with an extracellular pattern-recognition receptor
functionality which activates the lectin complement pathway [60]. Our results concerning
the down-regulation of FCN1 during the response to anti-TNFα therapy are consistent with
previous studies assessing the activity of the lectin pathway in responders with IBD [61],
while -omics profiling of biopsies derived from patients with Crohn’s disease (CD) and ul-
cerative colitis (UC) showed a significant up-regulation of FCN1 [62,63]. In addition, FCN1
inhibition alleviated the symptoms of multiple autoimmune diseases in mouse models,
including collagen-induced RA mice, further suggesting its crucial role in the development
of inflammation [64].

To identify shared pathways and gene expression perturbation among our three
diseases under study, we conducted a combined meta-analysis on each separate dataset.
Our results, based on our predefined criteria, displayed about a four-times greater number
of down-regulated genes (350) compared to the number of up-regulated genes (86), which
could be addressed in the elimination of the disease-specific DEGs, as noticed through
our over-representation analyses (Figures 2d and 3d). The 11 genes that were found to
exhibit the same deregulation patterns in the three disease-specific meta-analyses were also
unveiled to be differentially expressed in the combined meta-analysis. Interestingly, only
three proteins encoded by these 11 genes were found in our physical PPi network presented
in Figure 4. This could be attributed to the inherent properties of the PPi networks that
enable them to only capture part of the functional aspect of canonical or deregulated gene
expression. Since some of the 11 genes are encoding for transcription factors, it is expected
that a gene regulatory network (GRN) approach would be highly beneficial for unveiling
the importance of these genes in explaining the under-study of disease phenotypes, as well
as reinforcing our understanding about the common or different biological frameworks
between IBD, PsO and RA. Analyses based on GRNs have multiple advantages that stem
from the multilayered functional nature of incorporated regulators and targets [65]. Nodes
can represent protein-coding or non-coding genes (microRNAs, long non-coding RNAs,
etc.), transcription factors and RNA binding proteins among others. The complexity of
biological systems is captured by node-connecting edges in GRNs that conceptualize the
spectrum of regulatory relationships between nodes (activation, repression, modulation,
etc.,). Thus, GRN-based approaches can also assist in capturing the importance of genes
with limited expression variance between different biological conditions, hiding behind
the statistical frontline of DGE analyses. However, building robust GRN inference models
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typically requires the combination of datasets from multiple types of experiments, which
was a key limiting factor in this study.

Such limiting factors are also inherent in the microarray technology; microarrays are
based on fluorescence intensities to quantify gene expression through the hybridization of
anti-sense probes to specifically target sequences. Hence, microarray technique could be
characterized as a biased approach in the quantification of a sample’s transcriptome, thus
restricting the identification of the above regulatory elements that are implicated in such
multifactorial phenotypes. Inconsistencies noticed between the number of DEGs in each
disease-specific meta-analysis is further magnified from the discrepancy of the number of
patients included in each meta-analysis, where the number of patients with IBD is three-fold
and seven-fold higher than patients with PsO and RA, respectively. Notably, our systematic
search identified two RA datasets where gene expression was assessed through synovial
biopsies, while eight datasets were based on peripheral blood samples. Notwithstanding
the importance of whole blood gene expression analyses, the invasive procedure of synovial
biopsies would be able to identify the disease-specific deregulated genes and pathways
that are involved in the arthritic inflammation [66]. Furthermore, the heterogeneity of
each specific dataset, due to the different experimental procedures performed, alongside
the systematic differences present in every high-throughput experiment, introduces batch
effects, impairing the analytical procedures conducted in a meta-analysis. Nevertheless, our
late-stage integration approach is able to eliminate, to a significant extent, such batch effects
without removing the between-samples biological heterogeneity through the objective
meta-analysis of the summary statistics of each separate dataset. Additionally, biological
heterogeneity is not exclusively due to the response to therapy; the incorporation of clinical
variables that are associated with the clinical outcome, as well as the quality and amount of
the isolated RNA, is crucial in understanding the divergence of such complex phenotypes.

Despite the limitations present in every meta-analysis of high-throughput experiments,
our analyses provide a framework for the objective distinguishing of deregulated genes and
pathways during the response to anti-TNFα therapy. Due to the high cost of the performed
experiments, a late-stage integration of transcriptomic datasets from smaller cohorts is
able to further enhance the statistical power of expression signatures. In this way, our
results could further serve as an important resource for the clarification of the implicated
molecular and immune mechanisms in the response to treatment and, at the same time, pro-
viding a systematic appraisal of the expression of potential biomarkers. Clinical variation
concerning the response to therapy is still poorly characterized; transcriptomic changes,
caused by the interactions of genetic and environmental factors, are able to elucidate the
actual mechanisms that lead to the differentiation of responsiveness, thus enabling the
identification of unique and shared biomarkers between the three diseases under study.

5. Conclusions

In conclusion, the prediction of a patient’s response to biological treatments requires
the identification of essential biological pathways and regulatory factors that are implicated
in the immune and histological background of each disease. The difficult task of unraveling
the complex interactions implicated in the response to anti-TNFα therapy in patients
with PsO, IBD, and RA, as well as distinguishing gene clusters and pathways that are
altered by this heterogeneous phenotype, could be aided by meta-analysis of such gene
expression data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050776/s1, Supplementary File S1: Crohn’s disease and
Ulcerative Colitis meta-analyses; Supplementary Figure S1: Volcano Plots of Differentially Expressed
Genes in IBD, PsO, RA and Combined meta-analysis; Supplementary Figure S2: Density plot of
the Heterogeneity P values as derived from our disease-specific meta-analyses; Supplementary
Figure S3: Density plot of the Heterogeneity P values as derived from our combined meta-analysis;
Supplementary Figure S4: Density plot of the Heterogeneity P values as derived from our Crohn’s
disease and Ulcerative colitis meta-analyses; Supplementary Figure S5: Volcano Plots of Differentially
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Expressed Genes in CD and UC; Supplementary Figure S6: Comparison of the enriched Reactome
pathways for the down-regulated Crohn’s disease and Ulcerative Colitis genes; Supplementary Figure
S7: Semantic similarity analysis of the simplified Biological Processes considering the down-regulated
genes in Crohn’s disease; Supplementary Figure S8: Semantic similarity analysis of the simplified
Biological Processes considering the down-regulated genes in Ulcerative Colitis; Supplementary
Table S1: Differentially expressed genes across all our meta-analyses; Supplementary Table S2: List of
all enriched Reactome pathways terms across all our meta-analyses; Supplementary Table S3: List of
all enriched Gene Ontology terms across all our meta-analyses.
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