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Detection of small particles, including viruses and particulate matter (PM), has been

attracting much attention in light of increasing need for environmental monitoring. Owing

to their high versatility, a nanomechanical sensor is one of the most promising sensors

which can be adapted to various monitoring systems. In this study, we present an

optimization strategy to efficiently detect small particles with nanomechanical sensors.

Adsorption of particles on the receptor layer of nanomechanical sensors and the resultant

signal are analyzed using finite element analysis (FEA). We investigate the effect of

structural parameters (e.g., adsorption position and embedded depth of a particle and

thickness of the receptor layer) and elastic properties of the receptor layer (e.g., Young’s

modulus and Poisson’s ratio) on the sensitivity. It is found that a membrane-type surface

stress sensors (MSS) has the potential for robust detection of small particles.

Keywords: nanomechanical sensors, cantilever sensors, membrane-type surface stress sensors (MSS), finite

element analysis (FEA), virus detection

INTRODUCTION

Nanomechanical sensors have been attracting great attention because of their versatility. For
example, they can detect diverse chemical species ranging from gaseous to biological molecules,
including volatile organic compounds (VOCs), DNA, and proteins (Barnes et al., 1994; Gimzewski
et al., 1994; Thundat et al., 1994; Buchapudi et al., 2011). Detection of bioorganisms such as viruses
and bacteria has also been reported (Buchapudi et al., 2011). Since the first demonstration of
nanomechanical sensing in 1994 (Gimzewski et al., 1994), cantilever-type sensors with optical read-
outs have been widely used. In 2011, a membrane-type surface stress sensor (MSS) was developed
and achieved both high sensitivity and small size by means of structural optimization with chip-
integrated piezoresistive read-out (Yoshikawa et al., 2011). This MSS platform also demonstrated
the detection of proteins using a simple dipping system that is compatible with a standard 96-well
plate for practical assays (Hosokawa et al., 2014).

Owing to these advantages, nanomechanical sensors are expected to be a key technology to
environmental monitoring systems. In addition to toxic chemical species in air, there is a great need
for detection of airborne particles including dust, particulate matter (PM), and viruses (Aliabadi
et al., 2011; Després et al., 2012; Nemmar et al., 2013; Kim et al., 2015). As nanomechanical sensors
can recognize such particles by detecting mechanical properties, it is important to understand the
mechanics of the nanomechanical sensing system: Adsorption of particles on the receptor layer and
the stress and deformation caused by adsorbed particles.
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In the present study, we investigate the nanomechanical
detection of particles using finite element analysis (FEA). We
focus on the two types of nanomechanical sensors; cantilever-
type sensors and MSS, and explore an optimized structure for
the efficient detection of particles through the mechanical stress
induced in the receptor layer. We also discuss the perspective on
virus detection using these nanomechanical sensors.

MATERIALS AND METHODS

Analytical solutions of nanomechanical sensing are available for
a simple cantilever model. For example, the deflection of the free-
end of a cantilever (1z) induced by isotropic internal strain in a
receptor layer (εf ) is given by the following equation (Yoshikawa,
2011):

1z=
3l2

(

tf + tc
)

(A+ 4) t2f +
(

A−1 + 4
)

t2c + 6tf tc
εf , (1)

A =
Efwf tf (1−νc)

Ecwctc
(

1−νf

) , (2)

where l is the length of a cantilever, and Ef (Ec), νf (νc), and tf (tc)
are the Young’s modulus, the Poisson’s ratio, and the thickness
of a receptor layer (a cantilever), and wc and wf are the width

FIGURE 1 | (A) Structure of the cantilever-type sensor. (B) Cross sectional

image of the cantilever at the dent. (C) Result of the FEA simulation for the

cantilever-type sensor. The distribution of displacement is plotted as a color

gradient.

of a cantilever and a receptor layer, respectively. If a cantilever
is covered with a very thin receptor layer (tc≫ tf and wc = wf ),
Equation (1) reduces to the following equation, which is known
as the Stoney’s equation (Stoney, 1909):

1z =
3 (1−νc) l

2

Ect2c
σsurf, (3)

where σ surf is the surface stress defined as σsurf = σf · tf ,

and σf = εf · Ef /
(

1− νf

)

. However, the application of these
models is limited to analytically simple problems. To investigate
more complex systems, FEA is an effective option, providing
numerical solutions. Since the adsorption of particles on a solid
receptor layer with three dimensional stress distribution is too
complicated to be analytically modeled, we employed FEA in the
present study.

FEA simulations were performed in COMSOL Multiphysics
5.1 R© with the Structural Mechanics module. Each structure
was meshed with 20,000∼60,000 elements, which give sufficient
resolution for the present simulations. We investigated the
deflection of a silicon cantilever with dimensions 500 × 100 ×

1µm as shown in Figure 1A. A fixed constraint was applied
on one end (fixed-end). The receptor layer with a thickness of
t µm is coated on the cantilever. A particle with a radius of
0.1µm is embedded in the receptor layer with a depth of h µm,
applying a constant pressure p Pa at the interface (Figure 1B).
To simulate such a situation, we set a dent on the receptor layer
with a boundary load of p Pa at the surface. The dent is located

FIGURE 2 | (A) Structure of the MSS. (B) Result of the FEA simulation for the

MSS. The distribution of relative resistance change is plotted as a color

gradient.
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at l µm from the fixed-end. We investigated the deflection;
the displacement of the free-end of the cantilever (Figure 1C).
In the case of MSS, the diameter and the thickness of the
membrane are set at 500 and 2.5µm, respectively, with a t-µm-
thick receptor layer on it (Figure 2A). The dent is also placed on
the receptor layer (default position is set at the center) to simulate
the adsorption of a particle. We investigated the change in the
relative resistance (1Rtot/Rtot) of a full Wheatstone bridge in an
MSS composed of four resistors embedded in the sensing beams,
R1–R4 (Figure 2B). The sensing signal, Vout is approximately
described as:

Vout =
VB

4

(

1R1

R1
−

1R2

R2
+

1R3

R3
−

1R4

R4

)

=
VB

4

(

1Rtot

Rtot

)

,

(4)
where VB is the bridge voltage, and1Ri is the change in the
resistance of Ri (Yoshikawa et al., 2011). A fixed constraint was
applied on the end of each beam.

RESULTS

Cantilever-Type Sensor
The dependence on the applied pressure, p, is investigated. It is
clear that the deflection of the cantilever is exactly proportional
to p over a wide range (Figure 3A). This result suggests that
the dependence of the deflection on the other parameters is

not affected by p. We confirmed this condition by investigating
the dependence on the other parameters while varying p.
Figures 3B,C show the dependence on l, showing a natural
consequence of simple mechanics: a particle adsorbed near the
end of the cantilever leads to a larger deflection. The depth of
the dent which corresponds to the embedded depth of a particle
strongly affects the deflection. Figure 3D shows the deflection as
a function of dent depth hwith a nonlinear relationship. Since the
data in Figure 3D can be fitted well with the quadratic function,
the deflection is found to be related with the projected area of the
dent s [s = π (2rh–h2), where r is a radius of a particle], rather
than the surface area of the dent S (S = 2πrh).

Figures 4A,B show the effects of Young’s modulus E and
Poisson’s ratio ν, respectively. It has been found that the
deflection is independent of ν, while E significantly affects the
deflection. The deflection exhibits little dependence on E below
108 Pa. However, a higher Young’s modulus yields a lower
deflectionwhen E is larger than 109 Pa. The thickness dependence
is summarized in Figure 4C. It clearly shows that the thickness
dependence is significantly affected by Young’s modulus. The
deflection decreases with increasing thickness, and it becomes
drastic with E > 107 Pa.

MSS
The effects of applied pressure p, position, and dent depth
h on 1Rtot/Rtot were investigated for MSS. Figure 5A depicts

FIGURE 3 | (A) Dependence of the deflection on the applied pressure (l = 450 µm, h = 0.1µm, t = 1 µm, E = 1× 109 Pa, ν = 0.4). (B) Dependence of the deflection

on the position of the dent (distance from the fixed end). (C) Dependence of the deflection on the position of the dent. The resultant cantilever deflection is plotted as a

color gradient (p = 1 × 105 Pa, h = 0.1µm, t = 1 µm, E = 1× 109 Pa, ν = 0.4). (D) Dependence of the deflection on the dent depth (p = 1 × 105 Pa, l = 450 µm,

t = 1 µm, E = 1 ×109 Pa, ν = 0.4). The plot is fitted with a quadratic function (red curve).
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1Rtot/Rtot as a function of p, showing a linear relationship over
a wide range. Same as a cantilever-type sensor, variation in p
is found not to affect the dependence on other parameters in
the case of MSS as well. Figure 5B shows the dependence on
the position of the dent. It has been found that a higher signal
can be obtained when a particle adsorbs near the center of the
membrane. An interesting feature of MSS is that it is more robust
in position of the dent compared to cantilever-type sensors. In
the case of cantilever-type sensors, a dent at l = 450 µm causes
∼60 times larger deflection than a dent at l = 50 µm. On the
other hand, the signal caused by a dent at the center of MSS is
not 10 times larger than the signal caused by a dent at 50µm
from the edge. This result indicates that MSS is more robust in
the adsorption position of a particle compared to cantilever-type
sensors. The dependence of 1Rtot/Rtot on a dent depth h is quite
similar to the case of cantilever-type sensors; a higher sensing
signal can be obtained for a deeper dent (Figure 5C).

1Rtot/Rtot for various E and ν are plotted in Figure 6.
Figure 6A shows1Rtot/Rtot has little dependence on E below 109

Pa, while 1Rtot/Rtot decreases with E over 109 Pa. As shown in
Figure 6B, Poisson’s ratio does not significantly affect 1Rtot/Rtot
when E is below 109 Pa. However, a higher Poisson’s ratio results
in a lower 1Rtot/Rtot in the case of E > 109 Pa. The simulated
1Rtot/Rtot as a function of thickness is plotted in Figure 6C.
The behavior is similar to the case of cantilever-type sensors
(Figure 4C). The receptor layer with a soft material (E < 108

Pa) exhibits little dependence on thickness, while the signal
drastically decreases with thickness for a hard material (E >

108 Pa).

DISCUSSION

The presented results indicate that a thinner and softer receptor
layer will lead to a larger signal for the purpose of the
detection of particles. It is known that there is an optimum
thickness which yields maximum deflection in the cases of two
typical nanomechanical sensing systems: the 2D stress applied
homogeneously on the surface of a receptor layer, and the
isotropic internal strain induced in a receptor layer (Yoshikawa,
2011; Yoshikawa et al., 2014). In contrast to such systems, an
optimum thickness has not been found for any Young’s moduli
in the present simulation. This difference can be ascribed to
the lack of the lateral stress enhancement effect in the case of
particle adsorption. The effective stress induced on a sensing
body is enhanced with increasing thickness of a receptor layer
for the 2D stress or the isotropic internal strain because the
lateral component of the force is applied further away from the
neutral axis of the system. However, such effect for the present
simulation is marginal because an effective force in the lateral
direction is minute, hardly contributing to the deflection. Thus,
the stiffening effect caused by the increase in thickness and/or
Young’s modulus becomes dominant, resulting in a smaller signal
for thicker and stiffer receptor layer. The dependence on the
position is found to be consistent with simple mechanics; a larger
distance from a fixed-end provides a larger deflection in the cases
of both cantilever-type and MSS.

FIGURE 4 | Cantilever deflection as a function of (A) Young’s modulus,

and (B) Poisson’s ratio. (p = 1 × 105 Pa, l = 450 µm, h = 0.1 µm, t = 1

µm) (C) Dependence of the deflection on the thickness for different Young’s

modulus (p = 1 × 105 Pa, l = 450 µm, h = 0.1 µm).

Toward Virus Detection
Based on these results, here we discuss a strategy to efficiently
detect viruses with nanomechanical sensors. Several studies
reported virus detection using nanomechanical sensors. These
studies fall into two categories in terms of the operation
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FIGURE 5 | (A) Dependence of 1R/R on the applied pressure (the dent is at

the center, h = 0.1µm, t = 1 µm, E = 1× 109 Pa, ν = 0.4). (B) Dependence of

1R/R on the position of the dent. The resultant relative resistance change is

plotted as a color gradient (p = 1 × 105 Pa, h = 0.1µm, t = 1 µm, E =

1× 109 Pa, ν = 0.4). (C) Dependence of 1R/R on the dent depth (p = 1 × 105

Pa, the dent is at the center, t = 1 µm, E = 1× 109 Pa, ν = 0.4). The plot is

fitted with a quadratic function (red curve).

mode: dynamic mode and static mode. Nanomechanical sensors
operated in dynamic mode detect viruses by their mass (more
specifically, shifts in the resonant frequency; Johnson et al., 2006;
Braun et al., 2009; Cha et al., 2009; Capobianco et al., 2010) while
static mode operates based on the stress or strain (Gunter et al.,
2003; Sreepriya and Hai-Feng, 2006; Alodhayb et al., 2013; Xu
et al., 2014; Gorelkin et al., 2015; Kim et al., 2015). Thus, the FEA
simulation in the present study can be adapted to the detection of
viruses in static mode.

Previous studies revealed that the force caused by a virus
attached to a cell is on the order of 10 pN (Lee et al., 2006;
Sieben et al., 2012; Tsai et al., 2015). Assuming that a virus

FIGURE 6 | 1R/R as a function of (A) Young’s modulus, and (B)

Poisson’s ratio (p = 1 × 105 Pa, the dent is at the center, h = 0.1 µm,

t = 1 µm). (C) Dependence of 1R/R on the thickness for different Young’s

modulus (p = 1 × 105 Pa, the dent is at the center, h = 0.1µm).

of 0.1µm in radius is embedded 0.1µm deep into a cell, the
pressure applied to the interface is estimated to be ∼103 Pa. In
the present simulations, the applied pressure p is set at 1 × 105

Pa (Figures 3B–D, 4, 5B,C, 6), which is two orders of magnitude
higher than the pressure caused by a virus. As the deflection
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and relative resistance changes of a cantilever-type sensor and
MSS, respectively, are proportional to the applied pressure p, it
is expected that the deflection/relative resistance change increases
linearly with the number of adsorbed viruses on the receptor layer
if the adsorbed positions of viruses are effectively regarded as
constant. Accordingly, the presented simulations, in which p is
set at 1 × 105 Pa, are comparable to a system where a hundred
of viruses are attached to a specific position on the receptor layer.
Considering that the typical detection limits for cantilever-type
sensors andMSS are estimated as∼1 nm and∼10−6, respectively
(Yoshikawa et al., 2011, 2012), a detectable signal can be obtained
when ∼102 of viruses adsorb near the free-end of a cantilever
or the center of MSS with a receptor layer having optimal
properties (t = 1 µm, h = 0.1µm, E < 108 Pa). To compare
with typical nanomechanical sensing based on isotropic internal
strain or surface stress, we also evaluated the corresponding
detectable sensing signals. We performed FEA simulations on
both a cantilever and an MSS which are coated with poly (methyl
methacrylate; PMMA); a commonly used polymer as a receptor
material, which has the Young’s modulus and the Poisson’s
ratio of 3 × 109 Pa and 0.4, respectively. The thickness was
set at their optimum values: 2.5 and 8.0µm for the cantilever
and the MSS, respectively (Yoshikawa, 2011; Yoshikawa et al.,
2014). The minimum isotropic internal strain or surface stress
which induces detectable signals (e.g., 1 nm deflection for the
cantilever and 10−6 relative resistance change for the MSS)
has been estimated as 10−9 ∼ 10−8 or 10−5 ∼ 10−4 N/m,
respectively.

In terms of the receptor material, it has been confirmed that
higher sensing signals can be obtained by using a material with
low Young’s modulus (<109 Pa). This is a favorable condition
for practical applications becausemost biological materials which
can interact with viruses have a low Young’s modulus. For
example, the Young’s moduli of proteins and cells which are
typically used for viral cultures are 104 ∼ 109 Pa and ∼104

Pa, respectively. Another advantage of using soft materials is
that signals are less affected by thickness, leading to higher
reproducibility for virus detection. It should be noted that the
force caused by the viruses may not be fully transmitted to the
cantilever or MSS membrane in an actual measurement system if
the receptor layer is thick and soft. Since viscoelastic properties
are not taken into account in the present simulations, signals
can be reduced as a result of stress relaxation within a receptor
layer.

As living cells are the only media where viruses can be
cultivated, there is a possibility that living cells are used as

receptor materials. It is expected that selectivity will be enhanced
depending on the cell types only if cells are stably maintained
on nanomechanical sensors. However, the noise caused by cell
migration is one of the biggest experimental issues. Bischofs et al.
measured the surface stress induced by an endothelial cell and
estimated it to be ∼2mN/m (Bischofs et al., 2009). Our FEA
simulations showed that a surface stress of 2 mN/m leads to a
sensing signal comparable to adsorption of ∼102 viruses on a
receptor layer. Thus, the cellular force should give rise to a non-
negligible background noise. It is estimated that at least 102 ∼ 103

of viruses are needed to obtain a detectable sensing signal when
living cells are used as receptor materials.

Finally, let us compare the practical aspects between a
cantilever and MSS. While the sensitivity of a cantilever
sensor with an optical read-out is comparable to that of an
MSS, a cantilever sensor requires a bulky instrumentation. In
contrast, a compact measurement system can be realized with
an MSS because of the chip-integrated piezoresistive electric
sensing. Furthermore, MSS exhibits higher robustness to the
adsorption position and in homogeneous coating (Loizeau et al.,
2015). Thus, MSS seems to be a more favorable option for
practical applications such as mobile environmental monitoring
systems, point-of-care-testing (POCT) and primary screening for
infectious diseases, etc. Although the sensitivity of MSS is not
as high as that of enzyme-linked immunosorbent assay (ELISA),
which can detect ∼101 of viruses (Pineda et al., 2009), MSS is
a promising candidate for a portable real-time virus detection
device based on its simple detection mechanism and the easier
experimental protocols.
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