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An in‑silico method leads 
to recognition of hub genes 
and crucial pathways in survival 
of patients with breast cancer
Sepideh Dashti1, Mohammad Taheri2 & Soudeh Ghafouri‑Fard1*

Breast cancer is a highly heterogeneous disorder characterized by dysregulation of expression of 
numerous genes and cascades. In the current study, we aim to use a system biology strategy to 
identify key genes and signaling pathways in breast cancer. We have retrieved data of two microarray 
datasets (GSE65194 and GSE45827) from the NCBI Gene Expression Omnibus database. R package 
was used for identification of differentially expressed genes (DEGs), assessment of gene ontology and 
pathway enrichment evaluation. The DEGs were integrated to construct a protein–protein interaction 
network. Next, hub genes were recognized using the Cytoscape software and lncRNA–mRNA 
co‑expression analysis was performed to evaluate the potential roles of lncRNAs. Finally, the clinical 
importance of the obtained genes was assessed using Kaplan–Meier survival analysis. In the present 
study, 887 DEGs including 730 upregulated and 157 downregulated DEGs were detected between 
breast cancer and normal samples. By combining the results of functional analysis, MCODE, CytoNCA 
and CytoHubba 2 hub genes including MAD2L1 and CCNB1 were selected. We also identified 12 
lncRNAs with significant correlation with MAD2L1 and CCNB1 genes. According to The Kaplan–Meier 
plotter database MAD2L1, CCNA2, RAD51‑AS1 and LINC01089 have the most prediction potential 
among all candidate hub genes. Our study offers a framework for recognition of mRNA–lncRNA 
network in breast cancer and detection of important pathways that could be used as therapeutic 
targets in this kind of cancer.

Breast cancer is the second most frequent and the fifth cause of cancer-associated  mortality1. This type of cancer 
is associated with dysregulation of several genes (including both coding and non-coding ones) and signaling 
 pathways2. Breast cancer is a molecularly heterogeneous disorder which is classified to five subtypes including 
luminal A, luminal B, basal-like, HER2-enriched and normal-like. This classification is based on the presence/ 
abundance of estrogen receptor (ER), progesterone receptor (PR), HER2 and  Ki673,4. However, several recent 
studies have indicated significance of other genes and signaling pathways in determination of overall survival 
(OS) of  patients2,5. Among the recently appreciated genes in this regard are long non-coding RNAs (lncRNAs)6. 
These transcripts are involved in the regulation of fundamental cell survival pathways and have functional 
interactions with proteins and other non-coding RNAs that participate in the pathogenesis of breast  cancer7. 
Identification of such networks is an important step towards design of targeted therapies in breast cancer.

In the current study, we have retrieved data of two microarray datasets (GSE65194 and GSE45827) from 
the NCBI Gene Expression Omnibus database (GEO). R package was used for identification of differentially 
expressed genes (DEGs), assessment of gene ontology (GO) and pathway enrichment evaluation. The DEGs were 
integrated to construct a protein–protein interaction (PPI) network. Next, hub genes were recognized using the 
Cytoscape software and lncRNA–mRNA co-expression analysis was performed to evaluate the potential roles 
of lncRNAs.
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Methods
In this study, we used a system biology approach for data mining of two microarray datasets of normal and 
malignant breast tissue (GSE65194 and GSE45827). We aim to identify differentially expressed genes (DEGs) and 
lncRNAs and construct an mRNA–lncRNA network based on co-expression analysis. Figure 1 shows summary 
of the steps accomplished in bioinformatics strategy.

Gene expression profile data collection. Two gene expression profiles associated with breast cancer 
(GSE65194 and GSE45827) were obtained from the NCBI Gene Expression Omnibus database (GEO, https ://
www.ncbi.nlm.nih.gov/geo/). A chip-based platform GPL570 (HG-U133_Plus_2) Affymetrix Human Genome 
U133 Plus 2.0 Array was applied for both datasets. The GSE65194 included 130 breast cancer samples (41 Triple 
negative, 30 HER2 positive, 29 Luminal A, 30 Luminal B) and 11 normal breast tissue  samples8. Similarly, the 
GSE45827 contained 130 tumor tissue specimen (41 Triple negative, 30 HER2 positive, 29 Luminal A, 30 Lumi-
nal B) as well as 11 normal tissues  samples9.

Data preprocessing and DEGs identification. All raw data files were subjected to quantile normaliza-
tion and background correction using Robust Multichip Average (RMA)10. RMA is an effective tool in the affy 
Bioconductor package for both mRNA and lncRNA profiling  data11. Quality Control assessment was done with 
AgiMicroRna Bioconductor  Package12. We conducted a dimensional reduction analysis by performing Princi-
pal component analysis (PCA)13 with the purpose of finding similarities between each group of samples using 
ggplot2 package of R  software14. The linear models for microarray data (LIMMA) R  package15 in Bioconductor 
(https ://www.bioco nduct or.org/)16 were used to perform differential expression gene analysis (DEGA) between 
breast cancer and normal breast samples. The Student’s t-test was applied and DEGs with false discovery rate 
(FDR) < 0.01 and a |log2FC (fold change)|> 2 were screened.

Functional enrichment analysis. To identify the role of DEGs in breast cancer, KEGG Pathway and GO 
function enrichment analysis in 3 functional ontologies namely biological process (BP), cellular component 
(CC) and molecular function (MF) were performed using the DAVID system (https ://david .ncifc rf.gov/). The 
adjusted P < 0.05 was considered as statistically  significant17.

PPI network construction, cluster analysis and key gene identification. To predict interactive 
relationships among common DEGs encoding proteins, we constructed a PPI network using online STRING 
database (https ://strin g-db.org/)18. The minimum interaction score > 0.4 was required to construct the PPI net-
work. Cytoscape software version 3.7.1 (https ://www.cytos cape.org/) was applied to visualize the PPI networks 
and analyze the hub  genes19. We used Molecular COmplex DEtection (MCODE) algorithm (version 1.5.1) to 

Figure 1.  Study design flowchart.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.bioconductor.org/
https://david.ncifcrf.gov/
https://string-db.org/
https://www.cytoscape.org/
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find PPI subnetwork and the highly interconnected clusters within the PPI network. MCODE is a Cytoscape 
plug-in in which we set maximum depth = 100, node score = 0.2, and K-core = 2 as threshold  parameters20. Cyto-
Hubba (version 1.6)21 and CytoNCA (version 2.1.6)22 are two other plug-in in which provide multiple algorithms 
to detect hub genes in the network. In addition, identified key genes were selected for additional expression anal-
ysis on 1104 cancer and 113 normal samples from the TCGA project in The Encyclopedia of RNA Interactomes 
(ENCORI) database (https ://starb ase.sysu.edu.cn/panCa ncer.php). Pearson correlation coefficient was assessed 
between hub genes. The correlation coefficients were also checked on TCGA dataset by using Gene Expression 
Profiling Interactive Analysis (GEPIA) database (https ://gepia .cance r-pku.cn/).

Prediction of lncRNAs function. LncRNA–mRNA co-expression analysis was performed to evaluate the 
potential roles of lncRNAs. The full list of lncRNA genes with approved HUGO Gene Nomenclature Commit-
tee (HGNC) symbols was downloaded from (https ://www.genen ames.org/)23. The list of lncRNA gene names 
was compared to our dataset gene symbols and overlapped genes were chosen. Then, differentially expressed 
lncRNAs were selected according to (|logFC|) > 0.5 and the adjusted P value < 0.01 cutoff criteria. The reason for 
application of easier selection criteria was the lower expression level of lncRNAs compared with mRNAs. Then, 
the Pearson correlation coefficient was calculated between the differentially expressed lncRNA and 2 key pro-
tein-coding genes that were obtained from the previous steps based on functional annotation and co-expression 
analysis (MAD2L1 and CCNA2) in our dataset. LncRNAs with correlation coefficients higher than 0.6 or lower 
than − 0.6 were chosen as the lncRNAs that co-expressed with MAD2L1 and CCNA2. In order to uncovering 
the importance of these candidate genes in different molecular subtypes of breast cancer, the expression of these 
genes was also examined in four breast cancer subtypes, including luminal A, luminal B, basal-like and HER2-
enriched.

Survival analysis. Survival analysis was carried out on these candidate hub genes to check out their effects 
on breast cancer survival. Recurrence free survival (RFS) analysis and overall survival (OS) analysis were per-
formed based on expression data from 6234 breast cancer patients by Kaplan Meier plotter (kmplot.com/) that 
can evaluate the effect of gene expression on survival in 21 cancer  types24. We split patients by Mean. In other 
words, the groups were divided with low expression level and high expression level based on Mean in the sur-
vival analysis. The hazard ratio was calculated for both RFS and OS and the P value was determined applying 
log-rank tests.

Results
DEGs screening. Before performing differentially expressed gene analysis (DEGA), background correc-
tion and normalization were done and we removed batch effect. We used AgiMicroRna Bioconductor Package 
for Quality Control assessment. Degradation plots which indicate the quality of RNA hybridization along the 
probe sets was drawn and the RNA quality was good. Furthermore, box plots for gene expression data were cre-
ated to assess the distribution of data after normalization. In the box plots the different arrays had the similar 
median expression level. This result indicated correction was performed properly. Additionally, a PCA plot was 
drawn to illustrate the spatial distribution of the samples before and after batch effect correction (Supplementary 
Figure  S1a). Principal components analysis (PCA)  provides information about the structure of the analyzed 
dataset. It can be used to find similarities between samples. We found two samples from the normal group which 
is spatially far from other normal samples. As a consequence, we removed these two samples. Furthermore, a 
heatmap was drawn to illustrate the correlation between samples using Pheatmap package of R 3.6.1  software25 
(Supplementary Figure S1b). After correction, removing the batch effects and performing data normalization, 
887 DEGs including 730 upregulated and 157 downregulated DEGs were screened between breast cancer and 
normal samples from GSE65194 and GSE45827 according to |logFC|> 2 and FDR < 0.01 as cut-off criteria. The 
list of upregulated and downregulated DEGs are indicated in Supplementary Tables S1 and S2, respectively. Fig-
ure 2a is a Venn diagram which illustrates the overlap between 2 datasets. Moreover, to visualize the overall gene 
expression levels of the DEGs, a Volcano plot was created with log2 FC score and log10 P values in R software 
(Fig. 2b).

KEGG and GO enrichment analysis. To further examine the role of common DEGs in breast cancer, 
we performed GO and KEGG pathway enrichment  analysis26,27. We found 10 dysregulated pathways based on 
the adjusted P < 0.05. Up-regulated DEGs were enriched in six pathways including ‘Cell cycle’, ‘Oocyte meiosis’ 
and ‘Focal adhesion’. Down-regulated DEGs were enriched in five pathways including ‘Peroxisome-proliferator-
activated receptors (PPAR) signaling pathway’, ‘Metabolism of xenobiotics by cytochrome P450’, ‘Adipocytokine 
signaling pathway’ and ‘Cytokine-cytokine receptor interaction’ pathways (Fig.  3a). The results for each GO 
functional analysis are presented in Fig. 3b–d. The genes enriched in KEGG pathway and GO enrichment analy-
sis have shown in Supplementary Tables S3–S6.

PPI network construction and module analysis. The interactive information among DEGs and the 
PPI network was obtained using the STRING online database. Among the total of common DEGs, 887 DEGs 
(730 up-regulated and 157 down-regulated) were filtered into the PPI network with 887 nodes and 10,398 edges, 
at a combined score > 0.4. Finally, Genes with a combined score > 0.9 were selected as key DEGs to be imported 
into Cytoscape. The Cytoscape software was applied to evaluate the interactive relationships between the candi-
date proteins. Afterward, two clusters consist of 65 nodes and 23 nodes were screened with a cut-off k-score = 12 
depend on the MCODE scoring system (Supplementary Figure S2). The CytoNCA and the CytoHubba are two 
Cytoscape plug-in for centrality analysis and give us some insight into the most influential nodes or edges in a 

https://starbase.sysu.edu.cn/panCancer.php
https://gepia.cancer-pku.cn/
https://www.genenames.org/
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network. We ran CytoHubba application and extracted data from four calculations methods (EPC, MCC, MNC, 
and Stress). The top 100 nodes ranked by these four methods were selected (Supplementary Table S7). Moreover, 
four algorithms from CytoNCA application (Degree, Eigenvector, Betweenness, and Closeness) were employed 
and the top 100 nodes based upon these four approaches were obtained (Supplementary Table S7). Besides, a 
Venn diagram was created to identify the significant hub genes that are similar between all groups. The result of 
Venn diagram is mentioned in Supplementary Table S8. Eventually, through overlapping analysis, we identified 
a list of 26 key genes most of them belonged to MCODE cluster 1 (Supplementary Table S8). Since highly inter-
connected proteins in a network accumulate in a cluster, we chose only 20 genes from our list that belonged to 
cluster 1 (Table 1). All the selection steps are illustrated in Fig. 4a.

Key genes functional annotation and co‑expression analysis. GO enrichment and KEGG pathway 
analysis on these 20 genes indicated that four pathways were enriched, including cell cycle, progesterone-medi-
ated oocyte maturation, oocyte meiosis, and p53 signaling pathway. CCNA2, CDK1, MAD2L1, and CCNB1 

Figure 2.  (a) A Venn diagram of 887 overlapping DEGs in GSE65194 and GSE45827. (b) Volcano plot 
of significant DEGs with |logFC|> 2. (c) Volcano plot of significant differentially expressed lncRNA with 
|logFC|> 0.5.
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Figure 3.  KEGG and GO enrichment analysis. (a) KEGG pathways (based on KEGG PATHWAY  database26,27). 
(b) GO for DEGs, Biological process. (c) GO for DEGs, Cellular component. (d) GO for DEGs, Molecular 
function.
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were significantly enriched in some biological aspects such as cell cycle, mitosis, nuclear division, M phase, cell 
cycle and progesterone-mediated oocyte maturation pathways. In particular, by checking the expression data of 
1104 cancer and 113 normal samples from the TCGA project in ENCORI database, we found that these four 
genes showed strong expression in the breast cancer specimens as compared to their expression in normal breast 
tissue ( Including : MAD2L1, Fold change: 4.28, Adjusted P value: 1.4e−70; CCNA2, Fold change: 6.88, Adjusted 
P value: 3.2e−91; CCNB1, Fold change: 5.63, Adjusted P value: 1.8e−111; CDK1, Fold change: 8.54, Adjusted P 
value: 5.3e−121). Additionally, we calculated the Pearson correlation for these 20 candidate genes and found a 
strong and significant correlation between them (Supplementary Table S9, Fig. 4b). Interestingly, CCNA2 and 
MAD2L1 which are two important genes in the cell cycle pathway and some crucial biological processes related 
to cell division, were highly correlated genes with a correlation coefficient higher than 0.9 in our analysis. Fur-
thermore, these two genes correlation in TCGA dataset in the GEPIA database was consistent with our analysis.

Identification of differentially expressed lncRNAs and co‑expression analysis. After download-
ing the list of lncRNA genes from HGNC database, lncRNAs genes symbols were extracted from the GSE65194 
and GSE45827. A total of 334 lncRNA probes were identified in these two datasets by using this approach. 

Figure 3.  (continued)
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Finally, 159 lncRNAs probe ID with |logFC|> 0.5 and adjusted P value < 0.01 among 20 normal samples and 258 
breast tissue samples were picked out (Fig. 2c). Among these lncRNAs, 77 lncRNAs were up-regulated (Sup-
plementary Table S10) and 80 lncRNAs were down-regulated (Supplementary Table S11) in breast cancer. We 
calculated Pearson correlation coefficient between differentially expressed lncRNAs and MAD2L1 and CCNA2 
based on their expression value. LncRNA with Pearson correlation coefficient ≥ 0.6 or ≤  − 0.6 were selected as 
key lncRNA which co-expressed with MAD2L1 and CCNA2. Totally, 12 lncRNAs meet this criterion (Table 2). 
Additionally, Table 3 indicates the expression of these genes in four breast cancer subtypes. Our selected genes 
appear to be more important in more aggressive sub-types (basal-like and HER-enriched). However, deregula-
tion of CARMN, PRINS and MEG3 may be crucial in all subtypes of breast cancer.

Survival analysis of candidate hub genes. Associations between expression of candidate hub genes and 
RFS and OS of the breast cancer patients were evaluated using KM method to estimate the prognostic impor-
tance of the hub genes in our study. The results indicated that low expression of MAD2L1, CCNA2 and NCK1-
DT lead to higher RFS rate than high expression. Inversely, high expressions of MEG3, RAD51-AS1, PRINS, 
LINC01089, LINC02256, FUT8-AS1, LINC01279, CARMN, EPB41L4A-AS1, EIF3J-DT and TNFRSF14-AS1 
result in a significantly longer RFS time among patients with breast cancer. The results showed that MAD2L1, 
CCNA2, RAD51-AS1 and LINC01089 have the most prediction potential based on RFS among all candidate 
hub genes. Besides, hazard ratio was also calculated for OS. High expression of MAD2L1, CCNA2 and FUT8-
AS1 lead to lower OS rate than low expression. On the other hand, low expressions of LINC01279, RAD51-AS1 
and CARMN were correlated with significantly worse OS in breast cancer patients. Other candidate hub genes 
expressions were not significantly relevant to OS (Table 4).

Discussion
In the present study, we used a bioinformatics strategy to identify key genes and signaling pathways in breast 
cancer pathogenesis with a focus on the role of lncRNAs and their interactions with protein-coding genes. Such 
interactions can be assessed using experimental approaches which are costly and laborious. Bioinformatics 
methods for such purpose fall into two groups: strategies that use sequence, structural data and physicochemical 
features, and methods that are based on network construction. The latter can provide the inherent characteristics 
of topological configuration of associated biological networks which is often disregarded by the former  strategies6. 
In the present work, we used GPL570 which is a good platform to evaluate the expression level of lncRNAs in 
 tumorigenesis11,28. We identified 730 upregulated and 157 downregulated DEGs between breast cancer and nor-
mal samples. Up-regulated DEGs were enriched in ‘Cell cycle’, ‘Oocyte meiosis’ and ‘Focal adhesion’. A previous 
bioinformatics study using topological characteristics of genes in breast cancer has identified these pathways 
as hub  subnetworks29. The role of these pathways has been acknowledged in the pathogenesis of another hor-
mone related cancer namely prostate  cancer30. We also detected down-regulated DEGs were enriched in ‘PPAR 
signaling pathway’, ‘Metabolism of xenobiotics by cytochrome P450′, ‘Adipocytokine signaling pathway’ and 

Table 1.  Key differentially expressed genes acquired by centrality analysis. logFC, log2 fold change; adj.P.
Val, adjusted P value; EPC, Edge Percolated Component; MCC, Maximal Clique Centrality; MNC, Maximum 
Neighborhood Component.

Gene logFC adj.P.Val

MCODE Centrality analysis by CytoNCA Centrality analysis by CytoHubba

MCODE Score Betweenness Closeness Degree Eigenvector EPC MCC MNC Stress

CDK1 3.729327 3.03E−28 46.020339 6576.003525 0.551637 131 0.1437205 55.3 9.22E+13 158 356,658

CCNB1 3.115417 1.59E−27 46.020339 3303.18478 0.534146 116 0.1417335 55.9 9.22E+13 133 213,424

CCNA2 2.219921 2.57E−14 46.020339 2534.615585 0.52019 105 0.1342352 53.4 9.22E+13 122 163,390

CDC20 2.756389 1.63E−14 46.020339 2758.724299 0.496036 103 0.1345755 51.8 9.22E+13 116 116,042

MAD2L1 3.346366 4.29E−26 46.020339 1131.260005 0.48079 94 0.1333797 52.9 9.22E+13 110 72,556

KIF11 3.207367 4.39E−28 46.020339 1464.21417 0.487751 92 0.1298102 50.4 9.22E+13 104 95,940

CENPA 2.75168 8.64E−15 47.094949 1704.200531 0.481319 92 0.1282006 50.3 9.22E+13 100 74,860

PCNA 2.453675 1.03E−37 43.857039 2862.973827 0.489385 92 0.1150848 47.9 9.22E+13 106 108,266

EZH2 2.942149 1.48E−27 42.305272 3357.588136 0.511085 91 0.1046336 47.1 9.22E+13 112 243,314

KIF23 2.687969 7.39E−20 46.020339 1657.240201 0.493799 89 0.1254939 49 9.22E+13 97 99,424

TOP2A 4.595822 5.72E−29 46.020339 1122.678983 0.493243 88 0.1293264 51.4 9.22E+13 104 94,808

UBE2C 3.062068 1.20E−22 46.020339 1455.353604 0.466951 88 0.1219277 48.8 9.22E+13 101 67,434

BIRC5 2.792394 5.43E−15 46.020339 1678.399139 0.493799 88 0.1287475 48.9 9.22E+13 99 108,288

KIF2C 2.389307 1.51E−15 46.94026 1182.010234 0.487751 88 0.1259678 48 9.22E+13 97 85,072

RRM2 4.481084 1.30E−31 46.020339 1745.829126 0.497727 86 0.1228496 50.9 9.22E+13 101 110,592

RACGAP1 2.400852 1.87E−23 46.020339 1361.211732 0.493799 86 0.1225891 49.8 9.22E+13 94 93,686

KIF4A 2.206078 2.43E−13 46.94026 1008.406749 0.478689 80 0.1192849 46 9.22E+13 88 65,850

KPNA2 3.428273 1.09E−42 46.880102 961.5679185 0.47454 78 0.111362 46.1 9.22E+13 86 91,340

TYMS 2.878076 1.89E−21 47.774118 1340.60442 0.473514 76 0.1156782 48.1 9.22E+13 92 99,082

RRM1 2.268661 2.13E−25 40.445411 1145.682149 0.45768 69 0.0981711 43.2 9.22E+13 80 69,510
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Figure 4.  (a) A Venn diagram of 26 overlapping genes between different calculation methods of Cytohubba 
and CytoNCA. (b) Heatmap correlation plot for 20 candidate genes (depicted using Pheatmap package of R 
 software25).
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‘Cytokine-cytokine receptor interaction’ pathways. PPARs are nuclear hormone receptors which participate in 
modulation of different aspects of tumorigenesis such as cell proliferation, survival and  apoptosis31. Xenobiotic 
metabolizing enzymes are also involved in the tumorigenesis and response of cancer patients to therapeutic 
options. Integration of expression data of these genes with eQTL data and allele frequency data from the 1000 
Genomes project has shown considerable inter-population differences in the related pathways which might 
influence cancer prognosis and response to  treatment32. Adipocytokines can also influence cell proliferation 
and survival, and malignant phenotypes of breast cancer cells through regulation several cellular and molecular 
pathways thus aggravating survival of  patients33. Cytokine signaling has important functions in formation, pro-
liferation, and migration of breast cancer, thus modulating invasiveness, angiogenesis and metastatic potential 
of these  cells34.

Our in silico analyses revealed that CCNA2, CDK1, MAD2L1 and CCNB1 were significantly enriched in 
several biological pathways. These four genes showed strong expression in breast cancer samples as compared to 
their expression in normal breast tissue. Notably, these four genes have been among the top dysregulated genes 
in small cell lung cancer as revealed by GO, KEGG analysis and construction of PPI  network35. Such similar-
ity between these two different types of cancers implies fundamental role of these genes in the carcinogenesis 
process and potentiates them as therapeutic targets. MAD2L1 form a complex with the APC/C and CDC20 and 
subsequently stimulate the M-A checkpoint to halt the transition of cell at this stage in the presence of anomalous 
segregation of chromatin. Yet, over-expression of E2F1 in atypical cells affects the formation of the mentioned 
complex leading to cell cycle transition even in the presence of abnormal  chromosomes36. CDK1/cyclin B is a 
maturation-promoting  factor37 and the checkpoint for G2/M  transition38,39, so it is expected to be involved in 

Table 2.  Key lncRNAs which co-expressed with MAD2L1 and CCNA2. 

Symbol

MA2L1 CCNA2

Pearson correlation P value Pearson correlation P value

MEG3 − 0.68 < 2.2e−16 − 0.73 < 2.2e−16

LINC01279 − 0.66 < 2.2e−16 − 0.68 < 2.2e−16

EIF3J-DT − 0.64 < 2.2e−16 − 0.68 < 2.2e−16

LINC01089 − 0.64 < 2.2e−16 − 0.67 < 2.2e−16

RAD51-AS1 − 0.64 < 2.2e−16 − 0.63 < 2.2e−16

TNFRSF14-AS1 − 0.61 < 2.2e−16 − 0.63 < 2.2e−16

LINC02256 − 0.60 < 2.2e−16 − 0.62 < 2.2e−16

PRINS − 0.60 < 2.2e−16 − 0.62 < 2.2e−16

EPB41L4A-AS1 − 0.60 < 2.2e−16 − 0.62 < 2.2e−16

CARMN − 0.60 < 2.2e−16 − 0.60 < 2.2e−16

FUT8-AS1 − 0.60 < 2.2e−16 − 0.60 < 2.2e−16

NCK1-DT 0.65 < 2.2e−16 0.66 < 2.2e−16

CCNA2 0.93 < 2.2e−16 1 < 2.2e−16

MAD2L1 1 < 2.2e−16 0.936209 < 2.2e−16

Table 3.  Relative expression of our candidate genes in different molecular subtypes of breast cancer and 
healthy breast tissue in GSE65194 and GSE45827.  logFC, log2 fold change; adj.P.Val, adjusted P value.

Symbol

Basal-like HER2-enriched Luminal A Luminal B

logFC adj.P.Val logFC adj.P.Val logFC adj.P.Val logFC adj.P.Val

MAD2L1 4.4 3.02E−61 3.57 6.58E−44 1.709 3.53E−13 3.297 4.45E−37

CCNA2 3.91 9.31E−50 2.78 1.50E−28 0.644 0.00823 1.986 1.09E−15

RAD51-AS1 − 1.6 1.47E−33 − 1.6 1.57E−30 − 0.9 6.18E−12 − 1.27 5.54E−21

LINC01089 − 1 2.44E−18 − 0.8 6.34E−11 − 0.32 0.00964 − 0.71 5.79E−09

EIF3J-DT − 0.9 1.02E−13 − 0.8 1.66E−10 − 0.04 0.77445 − 0.46 0.00031

LINC02256 − 0.9 1.13E−21 − 0.9 3.56E−22 − 0.44 3.20E−06 − 0.57 1.22E−09

TNFRSF14-AS1 − 0.8 8.62E−26 − 0.8 6.44E−25 − 0.34 6.84E−06 − 0.5 7.35E−11

CARMN − 3.2 6.13E−22 − 3 4.42E−18 − 1.91 4.53E−08 − 2.41 5.23E−12

EPB41L4A-AS1 − 1.6 1.78E−20 − 1.3 2.99E−13 − 0.7 0.0002 − 1.24 3.19E−11

LINC01279 − 2.1 2.58E−08 − 0.9 0.022916 0.484 0.27445 − 0.66 0.10494

MEG3 − 2.8 7.98E−40 − 2.1 2.33E−25 − 1.55 5.77E−14 − 1.91 8.24E−20

FUT8-AS1 − 0.8 2.61E−31 − 0.8 7.15E−26 − 0.49 5.63E−11 − 0.55 1.80E−13

PRINS − 1.2 4.18E−44 − 1.2 2.64E−38 − 0.92 4.31E−24 − 1.09 1.10E−31

NCK1-DT 1.58 1.22E−22 0.94 4.64E−09 0.625 0.00022 0.897 8.21E−08
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the process of cell cycle regulation and tumorigenesis. We also identified 12 lncRNAs with significant correlation 
with MAD2L1 and CCNB1 genes. As expected from KEGG analysis, KM analysis indicated that low expression 
of MAD2L1, CCNA2 and NCK1-DT lead to higher RFS rate than high expression. Inversely, high expressions 
of MEG3, RAD51-AS1, PRINS, LINC01089, LINC02256, FUT8-AS1, LINC01279, CARMN, EPB41L4A-AS1, 
EIF3J-DT and TNFRSF14-AS1 result in a significantly longer RFS time among patients with breast cancer. 
Additionally, hazard ratio was also calculated for OS. High expression of MAD2L1, CCNA2 and FUT8-AS1 and 
low expressions of LINC01279, RAD51-AS1 and CARMN were correlated with significantly worse OS in breast 
cancer patients, while Other candidate hub genes expression were not significantly relevant to OS.

According to previous studies MEG3 is down-regulated in breast cancer  tissues40–42. Recently, Zhang et al. 
showed MEG3 ability in promoting breast cancer growth and induction of apoptosis by activating ER stress, 
NF-κB and p53 pathways in breast cancer cell  line43. RAD51-AS1, also known as TODRA is transcribed from 
upstream of RAD51 in a divergent manner. Gazy et al. identified a conserved E2F1 binding site in the promoter 
region of RAD51-AS1 and considered this lncRNA as a target gene of E2F1 in breast cancer. RAD51-AS1 nega-
tively regulates RAD51 expression and higher expression of RAD51-AS1 has been associated with a less aggres-
sive tumor  phenotype44. PRINS (Psoriasis susceptibility-related RNA Gene Induced by Stress) is a stress induced 
lncRNA which regulates  apoptosis45,46. Min Yu et al. considered PRINS as a HIF-1α dependent lncRNA due to 
its significant over-expression in hypoxic conditions in renal tubular  cells47. Moreover, increased levels of PRINS 
have been observed in colorectal adenocarcinoma cells. This lncRNA interacts with trefoil factor 3 (TFF3), AKT/
PI3K signaling pathway and miR-491-5p48. PRINS levels were down-regulated in MCF-7 and MDA-MB-231 cell 
lines following exposure to the apoptotic and anti-proliferative agent  CCT13769049. LINC01089 (also known as 
LncRNA Inhibiting Metastasis; LIMT) is an EGF regulated lncRNA which is down-regulated in breast cancer 
tissues and cell lines, especially in aggressive subtypes of breast  cancer50. Yuan et al. have reported a significant 
correlation between low expression of LINC01089 and lymph node metastasis and poor prognosis of breast 
cancer. LINC01089 is modulates breast tumorigenesis by inhibiting β-catenin transcription and consequently 
blocking Wnt/β-catenin  signaling51. LINC02256 (ENSG00000261064) is a validated novel long intergenic non-
protein coding RNA with 2 transcripts which is located on 15q13.3. Based on GTEx (Release v6) results, it has 
ubiquitous expression in breast and other tissues. Potential contribution of this lncRNA in breast cancer should 
be evaluated in future studies. FUT8‐AS1 was up-regulated in endometrioid endometrial cancer patients in 
association with poor  survival52. According to another TCGA data mining study on glioblastoma, FUT8-AS1 
over-expression has been associated with poor patients  outcomes53. LINC01279 was significantly upregulated in 
patients with endometriosis. Based on Liu et al. study, there is a strong association between this lncRNA and 
cell cycle-dependent kinase-14 and CXC motif chemokine ligand-12. Hence, LINC01279 might contribute in 
the pathogenesis of  endometriosis54. In another bioinformatics analysis of differential gene expression in breast 
cancer LINC01279 was significantly down-regulated55. However, further studies should be done to elucidate its 
function in breast cancer. CARMN (also known as MiR143HG) is recognized as a tumor suppressor in bladder 
cancer. Xie et al. observed down-regulation of CARMN in bladder cancer tissues compared with normal tissues. 
Moreover, there was an association between CARMN over-expression and a high survival rate in bladder cancer 
patients. CARMN/miR‐1275/AXIN2 axis takes part in bladder tumorigenesis by interacting with the Wnt/β‐
catenin  pathway56. Furthermore, there is an association between down-regulation of CARMN and poor survival 
in endometrial  carcinoma57. CARMN was significantly down-regulated in hepatocellular carcinoma (HCC) tis-
sues and cells. Over-expression of CARMN was associated with good prognosis. Generally, this gene contributes 
to development and progression of HCC by blocking the MAPK and Wnt signaling  pathways58. EPB41L4A-AS1 

Table 4.  Recurrence free survival (RFS) and overall survival (OS) of candidate hub genes. HR, hazard 
ratio; CI, confidence interval; RFS, recurrence free survival; OS, overall survival. A multivariate analysis was 
performed for MKI67, ESR1, and HER2 (ERBB2).

Gene name Multivariate analysis for RFS Univariate analysis for RFS Multivariate analysis for OS Univariate analysis for OS

Probe ID Symbole HR CI logrank P HR CI logrank P HR CI logrank P HR CI logrank P

210794_s_at MEG3 0.8 0.71–0.89 0.0001 0.73 0.65–0.81 1.30e−08 0.93 0.74–1.17 0.5396 0.82 0.66–1.02 0.0713

227061_at LINC01279 0.74 0.63–0.87 0.0003 0.69 0.59–0.81 4.2e−06 0.73 0.53–1.01 0.0553 0.72 0.53–0.99 0.0391

235124_at EIF3J-DT 0.57 0.48–0.68 0 0.5 0.42–0.58  < 1e−16 0.76 0.54–1.07 0.1189 0.62 0.45–0.85 0.0029

226369_at LINC01089 0.5 0.42–0.58 0 0.46 0.39–0.54  < 1e−16 0.84 0.6–1.17 0.2993 0.72 0.53–0.99 0.0433

1560081_at RAD51-AS1 0.45 0.38–0.53 0 0.41 0.35–0.49  < 1e−16 0.7 0.5–0.99 0.0427 0.61 0.45–0.84 0.0023

232190_x_at TNFRSF14-AS1 0.63 0.54–0.74 0 0.58 0.5–0.68 1.4e−11 0.86 0.62–1.18 0.3494 0.76 0.55–1.04 0.0868

234423_x_at LINC02256 0.63 0.53–0.74 0 0.58 0.49–0.68 5.2e−12 1.26 0.91–1.75 0.1708 1.06 0.78–1.46 0.6976

216051_x_at PRINS 0.7 0.63–0.78 0 0.69 0.62–0.77 2.4e−11 0.91 0.73–1.13 0.3928 0.86 0.69–1.06 0.1658

225698_at EPB41L4A-AS1 0.77 0.65–0.91 0.0023 0.65 0.55–0.76 3.3e−08 0.91 0.65–1.28 0.5966 0.75 0.55–1.03 0.0781

1558828_s_at CARMN 0.62 0.53–0.73 0 0.59 0.51–0.69 5.3e−11 0.61 0.44–0.84 0.0028 0.56 0.41–0.77 0.0003

242889_x_at FUT8-AS1 0.8 0.68–0.93 0.0046 0.75 0.64–0.88 0.00028 1.74 1.25–2.43 0.0011 1.54 1.11–2.12 0.0083

228799_at NCK1-DT 1.06 0.91–1.25 0.4498 1.18 1.01–1.38 0.035 0.95 0.68–1.32 0.751 1.09 0.8–1.49 0.5982

203418_at CCNA2 1.24 1.09–1.42 0.0011 1.84 1.64–2.05  < 1e−16 1.36 1.05–1.77 0.0193 1.55 1.25–1.93 5.0e−05

203362_s_at MAD2L1 1.66 1.47–1.87 0 1.86 1.67–2.08  < 1e−16 1.8 1.42–2.28 0 2.02 1.62–2.51 1.8e−10
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(also known as TIGA1) is a p53-regulated gene. EPB41L4A-AS1 was down-regulated in many human cancers 
in correlation with poor prognosis. EPB41L4A-AS1 acts as a repressor of the Warburg effect and is involved in 
cancer metabolic  reprogramming59. In a recent study in early stage breast cancer, significant down-regulation 
of EPB41L4A-AS1 was observed in tumor  tissues60. EIF3J-DT is a novel lncRNA with no publication reporting 
its biological function in breast cancer up to now. Based on one study in HCC, EIF3J-DT might have potential 
prognostic  value61. In addition, EIF3J-DT regulates multi-drug resistance by interacting with autophagy in gastric 
 cancer62. Based on He et al. study, TNFRSF14-AS1 might have a prognostic value in breast cancer but this result 
needs to further  confirmation63. Based on the available literature, the identified lncRNAs in the current study 
has putative roles in the pathogenesis of breast cancer and other types of cancer.

Taken together, in the present study, we intended to introduce a precise method to discover and prioritize the 
most probable candidate genes involved in breast cancer. Gene expression analysis in different molecular subtypes 
indicated the importance of our chosen genes in more aggressive subtypes. On the other hand, CARMN, PRINS 
and MEG3 probably have an important role in pathogenesis of all subtypes of breast cancer. We also added several 
evidences from literature regarding the role of candidate genes in the pathogenesis of cancer. Although this study 
provides some impressive evidence for future differential expression studies in breast cancer, the limitation of 
this study is lack of experimental evaluation of the candidate genes. our in silico method identified a number of 
hub genes and related lncRNAs which are possibly involved in the pathogenesis of breast cancer and patients’ 
prognosis, so can be used as therapeutic targets or biomarkers for this malignancy.
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