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Background. The lung is one of the most common metastatic sites of malignant tumors. Early detection of pulmonary metastatic
carcinoma can effectively reduce relative cancer mortality. Human metabolomics is a qualitative and quantitative study of low-
molecular metabolites in the body. By studying the plasm metabolomics of patients with pulmonary metastatic carcinoma or other
lung diseases, we can find the difference in plasm levels of low-molecular metabolites among them. These metabolites have the
potential to become biomarkers of lung metastases. Methods. Patients with pulmonary nodules admitted to our department from
February 1, 2019, to May 31, 2019, were collected. According to the postoperative pathological results, they were divided into three
groups: pulmonary metastatic carcinoma (PMC), benign pulmonary nodules (BPN), and primary lung cancer (PLC). Moreover,
healthy people who underwent physical examination were enrolled as the healthy population group (HPG) during the same
period. On the one hand, to study lung metastases screening in healthy people, PMC was compared with HPG. The multivariate
statistical analysis method was used to find the significant low-molecular metabolites between the two groups, and their dis-
criminating ability was verified by the ROC curve. On the other hand, from the perspective of differential diagnosis of lung
metastases, three groups with different pulmonary lesions (PMC, BPN, and PLC) were compared as a whole, and then the other
two groups were compared with PMC, respectively. The main low-molecular metabolites were selected, and their discriminating
ability was verified. Results. In terms of lung metastases screening for healthy people, four significant low-molecular metabolites
were found by comparison of PMC and HPG. They were O-arachidonoyl ethanolamine, adrenoyl ethanolamide, tricin 7-
diglucuronoside, and p-coumaroyl vitisin A. In terms of the differential diagnosis of pulmonary nodules, the significant low-
molecular metabolites selected by the comparison of the three groups as a whole were anabasine, octanoylcarnitine, 2-
methoxyestrone, retinol, decanoylcarnitine, calcitroic acid, glycogen, and austalide L. For the comparison of PMC and BPN,
L-tyrosine, indoleacrylic acid, and lysoPC (16:0) were selected, while L-octanoylcarnitine, retinol, and decanoylcarnitine were
selected for the comparison of PMC and PLC. Their AUCs of ROC are all greater than 0.80. It indicates that these substances have
a strong ability to differentiate between pulmonary metastatic carcinoma and other pulmonary nodule lesions. Conclusion.
Through the research of plasm metabolomics, it is possible to effectively detect the changes in some low-molecular metabolites
among primary lung cancer, pulmonary metastatic carcinoma, and benign pulmonary nodule patients and healthy people. These
significant metabolites have the potential to be biomarkers for screening and differential diagnosis of lung metastases.
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1. Introduction

Pulmonary metastatic carcinoma is one of the most com-
mon sites of distant metastasis in many advanced cancers.
Early detection, accurate diagnosis, and appropriate treat-
ment are the effective methods to reduce the mortality of
pulmonary metastases. At present, the main screening
method for pulmonary metastatic carcinoma is the chest
low-dose CT scan. Compared with chest X-rays, it has the
advantage of higher resolution and can find smaller sized
pulmonary nodules, which is conducive to early detection.
However, the CT scan also has a certain false positive rate, as
well as overdiagnosis, higher cost, stronger radiation, and
other shortcomings. Meanwhile, the differential diagnosis of
pulmonary nodules by chest CT is sometimes not satisfac-
tory. Different pathological types such as primary lung
cancer, pulmonary metastatic carcinoma, and benign pul-
monary nodules are often confused with each other in
clinical practice and cannot be clearly diagnosed. Tumor
markers commonly used for lung cancer include carci-
noembryonic antigen (CEA), cytokeratin 19 (Cyfra2l-1),
neuron-specific enolase (NSE), gastrin-releasing peptide
precursor (pro-GRP), and squamous cell carcinoma anti-
gens (SCAA). Nevertheless, they all have the disadvantage of
low sensitivity and specificity for lung metastases, resulting
in their limited role in clinical application.

Nowadays, blood tumor markers for lung cancer are the
focus point of many studies. Various kinds of blood sub-
stances have been used as researching subjects, such as cir-
culating tumor cells (CTC), circulating tumor DNA (ctDNA),
micro-RNA (miRNA), autoantibodies (AAbs), plasma pro-
teins, and low-molecular metabolites. Metabolomics is an
important complement to genomics, transcriptomics, and
proteomics. Metabolic change is located in the downstream of
DNA, RNA, and protein changes. Through qualitative and
quantitative studies on low-molecular metabolites, the
functional status and pathophysiological changes of the body
can be understood more directly and deeply. Metabolomics is
divided into targeted metabolomics and nontargeted
metabolomics generally. Nontargeted metabolomics is the
overall analysis of the metabolome to identify different me-
tabolites, which is used as a preliminary selection of bio-
markers. Targeted metabolomics applies a uniform standard
to quantify metabolites, which result is more accurate and
reliable than nontargeted metabolomics.

Metabolomics has been widely used to study a variety of
diseases in the human body, including mental disorders [1],
type 2 diabetes mellitus [2], autoimmune diseases [3], and
malignant tumors [4]. Metabolomics research of cancer in
various organs has been reported [5-8] in recent years.
Previous metabolomics research on lung cancer has focused
on some certain areas, such as the difference between lung
cancer and healthy people [9, 10] or chronic obstructive
pulmonary disease (COPD) [11], the distinction among
pathological types or stages of lung cancer [12-14], the
monitoring of drug effects [15, 16], and the judgment of
cancer treatment prognosis [17]. These studies had some
shortcomings in common, such as the same kind of research
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subjects, incomplete research scope, and lack of verification
and repetitiveness. At present, lung metastatic cancer is an
area that lacks in-depth research.

The purpose of this study was to select some significant
low-molecular metabolites in plasm as potential biomarkers,
by the comparison of plasm samples from pulmonary
metastatic carcinoma, benign pulmonary nodules, primary
lung cancer, and healthy people. These selected metabolites
may play a vital role in clinical screening of lung metastases
and differential diagnosis of pulmonary nodules in the fu-
ture. A preprint has previously been published [18].

2. Materials and Methods

2.1. Participants. This study was approved by the Ethics
Committee of the National Cancer Center, Chinese Acad-
emy of Medical Sciences, and its number is 19/223-2007. The
flowchart of this study is shown in Figure 1. A total of 145
patients with pulmonary nodules admitted to our de-
partment from February 1, 2019, to May 31, 2019, were
collected, and 128 people were selected according to the
gender- and age-matching results. They were divided into
pulmonary metastatic carcinoma (PMC), benign pulmonary
nodules (BPN), and primary lung cancer (PLC) by post-
operative pathology. A total of 48 healthy people who un-
derwent physical examination during the same period were
enrolled as the healthy population group (HPG) in this
study. At last, there were 16 patients in PMC, 32 patients in
BPN, 80 patients in PLC, and 48 people in HPG. The general
characteristics of these subjects are shown in Table 1.

On the one hand, to study the role of low-molecular
metabolites in pulmonary metastases screening, we firstly
compared pulmonary metastatic carcinoma (PMC) with the
healthy population group (HPG), benign pulmonary nodule
(BPN), and primary lung cancer (PLC) as a whole and then
compared PMC with HPG solely. On the other hand, to
study the role of low-molecular metabolites in the differ-
ential diagnosis of lung metastases, we compared PMC,
BPN, and PLC on the whole and then compared PMC with
BPN and PLC, respectively.

2.2. Sample Collection and Preparation. To avoid the effects
of food and time on low-molecular metabolites, blood
samples of all subjects were taken under the fasting state in
the morning. The blood samples were immediately placed in
an EDTA anticoagulation tube and then centrifuged at 4°C,
3000g for 5 minutes. Then the plasm was taken and stored in
—-80°C. After thawing the plasm samples at 4°C, 50yl of
plasm was taken, and 950 ul of methanol/acetonitrile (2/3,
v/v) solution was added and then vortexed for 1 minute.
After standing at 4°C for 24 hours, the sample was centri-
fuged at 19,000g for 30 minutes. Then 50 ul of the super-
natant was taken, and 250 ul of dichloromethane and 500 ul
of ultrapure water were added and mixed. After vortexing
for 30 seconds, the sample was centrifuged at 1250g for
6 minutes. Then 75 ul of the supernatant was transferred to
a glass bottle and allowed to dry naturally at room
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FiGure 1: Flowchart of the study.
TaBLE 1: Comparison of general characteristics.
PMC BPN PLC HPG p Value
No 16 32 80 48
Age, y£SD 55.2+89 56.3+8.9 55.0+9.2 53.2+9.2 0.317
Sex, n (%) 0.587
Male 12 (75.0) 24 (75.0) 57 (71.3) 35 (72.9)
Female 4 (25.0) 8 (25.0) 23 (28.7) 13 (27.1)
Smoking history, n (%) 0.069
Yes 10 (62.5%) 14 (43.8) 33 (41.3) 19 (39.6)
No 6 (37.5%) 18 (56.2) 47 (58.7) 29 (60.4)
Comorbidity, n (%) 0.345
Yes 7 (43.8) 13 (40.6) 27 (33.8) 15 (31.3)
No 9 (56.2) 19 (59.4) 53 (66.2) 33 (68.2)
Tumor site, n (%)
LUL 4 (25.0) 4 (12.5) 21 (26.2)
LLL 3 (18.8) 6 (18.8) 12 (15.0)
RUL 7 (43.8) 5 (15.6) 23 (28.8)
RML 0 1(3.1) 4 (5.0)
RLL 1(6.2) 12 (37.5) 12 (15.0)
Two or more 1(6.2) 4 (12.5) 8 (10.0)
Pathology types, n (%)
Ad 13 (81.1) 65 (81.2)
sC 0 10 (12.4)
SCLC 0 2 (2.5)
Carcinoid 0 1(1.3)
Carcinosarcoma 0 1(1.3)
LCLC 0 1(1.3)
ACC 1(6.3) 0
Others 2 (12.6) 0




temperature. The dried sample was redissolved by adding
150 ul of 50% methanol solution.

2.3. Instrumental Test. The plasma metabolites profiling was
performed on the platform of Quadrupole Time of Flight
tandem mass spectrometry. Mass spectrometer is an instrument
for substance separation and detection by measuring the mass-
to-charge ratio (m/z) of the tested sample ions. The samples were
first ionized, and then the mass spectra were obtained by
separating the ions according to different motion behavior of
different ions in the electric field. Finally, the qualitative and
quantitative results of the samples are obtained. For every 20
normal samples, a quality control (QC) sample was inserted to
ensure the quality of the experiment. The QC samples were
mixed from four different types of plasm samples. A total of 8
QC samples were tested in the whole experiment. In addition, 4
blank samples were tested. The blank samples can be used to
check the residues of the substance during the test. During the
data processing, the experimental samples and the blank samples
can be compared to select the unique or abundant low-
molecular metabolites with research value.

2.4. Data Processing and Annotation of Metabolites. The
original data of each sample were imported into the
DataAnalysis 4.4 software, and the time period of 0-0.4 min
when the main peak appeared in the detection process was
taken to obtain about 900 characteristic peaks with different
molecular weights between 50 and 1000 Da. The charac-
teristic peaks with absolute intensity less than 1000 were
removed, and then the deconvolution process was per-
formed to combine the isotopes of the same metabolite.
Finally, 180 features of different samples were obtained, and
then 155 representative features were selected for identifi-
cation of low-molecular metabolites. Different m/z values of
the features were entered into the Human Metabolome
Database (HMDB) to obtain the corresponding molecular
formula, and then the IsotopePattern software was used to
get the isotopic abundance of this molecular, which was
compared with the isotopic abundance of the corresponding
characteristic peaks displayed in the DataAnalysis 4.4
software. The names of the selected low-molecular metab-
olites can be determined by comprehensive judgments such
as the accordance degree of isotope abundance, the differ-
ence of molecular weight, the types of inducers, the gen-
eration mode, and the existence range of metabolites.
Human Metabolome Database (HMDB), PubChem, and
MassBank databases were searched to assist with metabolite
identification. Analyte mass accuracy (in the range of 0 to
10 ppm), retention time, isotope pattern, and tandem mass
spectrometry fragmentation pattern were used for final
determination of the selected metabolites.

A computer program was designed by Python language to
summarize the absolute intensity values of 155 low-molecular
metabolites in four groups of 176 samples. According to the
80% rule, the metabolites existing in at least 140 samples were
retained, and as a result, a total of 80 low-molecular metabolites
were obtained. Although some low-molecular metabolites were
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present in 80% or above of the samples, they still do not exist in
a minority of samples. The intensity value of the metabolite in
such samples was set to half of the lowest absolute intensity
value of the same metabolite in other samples.

2.5. Statistical Analysis. The data of each comparison group
were normalized by MetaboAnalyst 4.0, and preliminary
analysis was performed. Normalized data were imported into
the Simca 14.1 software for multivariate data statistical analysis,
including principal component analysis (PCA), partial least
squares discriminant analysis (PLS-DA), orthogonal partial
least squares discriminant analysis (OPLS-DA), etc. Before
performing multivariate data statistical analysis, all data were
log-transformed and Par (Pareto variance scaling)-formatted
to obtain more reliable and intuitive results. PCA can reflect the
overall metabolic difference among groups and the degree of
variability between samples within the same group. OPLS-DA
can filter signals that are irrelevant to the model classification
and obtain OPLS-DA models, so as to clarify the relevant low-
molecular metabolites with significant difference. The quality
of the model was tested by cross-validation, and the validity of
the model was judged by the R2X and Q2 (representing the
model’s interpretable variables and the predictability, re-
spectively). The validity of the model is further tested by

permutation experiments.

2.6. Biomarkers Selection. The difference of the comparison
between two groups was judged by indicators including
variable importance in projection (VIP), p value, and fold
change (FC). In order to select the proper biomarkers, we first
calculate the VIP value of metabolites that lead to the dif-
ference between two groups in the OPLS-DA model. It is
generally considered that metabolites with VIP >1 have
analytical significance. These low-molecular metabolites were
statistically compared by SPSS 19.0 software. Because the data
between groups did not conform to the normal distribution,
the nonparametric test was used (comparisons between two
groups were performed by the Mann-Whitney U test;
comparisons among three or four groups were performed by
the median test). Since there were more than one metabolites
with VIP >1 in each comparison, and the statistical difference
between the groups was tested more than once, the Bon-
ferroni method was used to correct the threshold of p value.
In each comparison between the groups, several most rep-
resentative low-molecular metabolites were selected as bio-
markers by the VIP and p value, and their diagnostic
sensitivity and specificity were judged by the ROC curve.

3. Results

3.1. Comparison of General Characteristics. After matching
of age and gender, a total of 176 people participated in the
study who are from four groups: pulmonary metastatic
carcinoma group (PMC, n = 16), benign pulmonary nodule
group (BPN, n=32), primary lung cancer group (PLC,
n=2380), and healthy population group (HPG, n=48). The
detailed clinicopathological characteristics of the patients
were in Table 1, including age, gender, smoking history,
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comorbidity, tumor site, and pathological types. There were
no significant differences in the comparison among these
groups (p > 0.05).

The primary source of pulmonary metastatic carcinoma
were rectal cancer (n=7), colon cancer (n=4), lower limb
osteosarcoma (n=1), nasal cancer (n=1), breast cancer
(n=2), and liver cancer (n=1). Postoperative pathological
types in the benign pulmonary nodule group included
lymphadenopathy (n=11), tuberculous granulomatosis
(n=4), sclerosing alveolar cell tumor (n=2), organizing
pneumonia (n=5), hamartoma (n=3), leiomyoma (n =2),
solitary fibroma (n=1), fungal infection (n=1), atypical
adenomatous hyperplasia (n=2), and epithelioid heman-
gioendothelioma (n=1).

3.2. Lung Metastases Screening. Firstly, we compare the four
groups as a whole and obtain the overall difference among
them. Then pulmonary metastatic carcinoma was compared
with the health population group. The differences in plasm
metabolic profiles between them were analyzed, and the low-
molecular metabolites that cause these differences were
selected.

3.2.1. Overall Comparison of the Four Groups. The raw data
of each sample in the four groups were imported into the
DataAnalysis 4.4 software to obtain the corresponding peak
spectrum. The typical peak spectra of samples from the four
groups are shown in Figure 2. The information of the low-
molecular metabolites contained in each sample was listed.
After a series of procedures including absolute intensity
values filtrating, deconvolution, and comprehensive iden-
tification, 78 low-molecular metabolites were identified at
last. The other two metabolites could not be interpreted. The
identified low-molecular metabolites involved a variety of
material types, including amino acids, vitamins, sugars,
choline, organic acids, triglycerides, cholesterol, and other
substances.

The data of four groups were normalized by Metab-
oAnalyst 4.0. The normalized data were imported into the
Simca 14.1 software for multivariate data statistical analysis.
As shown in Figure 3, the spatial distribution of all samples
in different groups had a clear trend of dispersion. However,
the distribution of the samples in the same group had a trend
of aggregation, which indicated that the levels of low-
molecular metabolites in different groups were obviously
different overall. After calculating the VIP values of all
metabolites that cause the difference of distribution in each
group, it was found that there were 28 low-molecular me-
tabolites with VIP >1. The intensity values of these me-
tabolites were calculated in the nonparametric tests by the
SPSS 19.0 software. A total of 22 metabolites were less than
the p value corrected by the Bonferroni method. According
to the VIP value and p value, five low-molecular metabolites
were selected, including decanoylcarnitine, gluta-
mylphenylalanine, lysophosphatidyl glycerol (18:1), CMP-
N-glycoloylneuraminate, and meloside L. The intensity
values of these five metabolites in each group can be in-
tuitively reflected by box plots, as shown in Figure 4. The

intensity values of each low-molecular metabolite were
compared among the four groups. After nonparametric
tests, the p values obtained were all less than 0.001, in-
dicating that the level of the five metabolites in the four
groups was significantly different.

3.2.2. Comparison of the Healthy Group and the Pulmonary
Metastases. The pulmonary metastatic carcinoma (PMC)
was compared with HPG solely. After multivariate data
statistical analysis, the score scatter plot of this comparison
was obtained, as shown in Figure 5. The clear separation of
the two groups can be seen. After the nonparametric tests,
there were 29 low-molecular metabolites with VIP >1 and
p<0.001. The major low-molecular metabolites were se-
lected according to the fold change, VIP value, and p value in
each comparison, as shown in Table 2. The fold change is the
ratio of the absolute intensity values of the metabolites in the
comparison between pulmonary metastases and healthy
groups. The value of greater than one indicates a higher level
of the low-molecular metabolite in the corresponding pul-
monary nodule group than the healthy group.

The major low-molecular metabolites that caused dif-
ference between PMC and HPG were o-arachidonoyl eth-
anolamine,  adrenoyl  ethanolamide,  tricin  7-
diglucuronoside, and p-coumaroyl vitisin A. In order to
test the ability of these metabolites to discriminate between
the healthy people and the pulmonary metastatic carcinoma,
these major low-molecular metabolites were drawn into
ROC curves according to the comparison, as shown in
Figure 6. The area under the curve (AUC) of every low-
molecular metabolite was greater than 0.9, indicating that
these low-molecular metabolites all have a high discrimi-
nating ability. The critical point of each ROC curve and the
sensitivity and specificity corresponding to the critical point
are shown in Table 3. According to the calculation method of
the Yoden index, Yoden index = sensitivity + specificity — 1,
the Yoden index of these four substances were 0.875, 0.813,
0.813, and 0.854, respectively. The higher the Yoden index,
the better the screening effect.

3.3. Differential Diagnosis of Pulmonary Metastases.
According to the pathology, the common pulmonary
nodules were mainly divided into three types: primary lung
cancer, benign pulmonary nodules, and pulmonary meta-
static carcinoma. To help determine the nature of lung
nodules before surgery, the three types of pulmonary
nodules were compared by the means of plasm
metabolomics.

3.3.1. Overall Comparison of the Three Groups. First the
PMC, BPN, and PLC were compared as a whole. After the
OPLS-DA analysis, the score scatter plots of the three groups
were obtained, as shown in Figure 7. The distribution among
the groups was dispersive, and the distribution within the
same group was concentrated, indicating that the levels of
low-molecular metabolites in the three groups were dif-
ferent. The validity of the model was further tested by the
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FIGURE 2: From top to bottom are the typical peak spectra of samples from PMC, BPN, PLC, and HPG, respectively. The X-axis represents
the m/z value, which can be understood as the molecular weight of the substance; different m/z values represent the relevant low-molecular
metabolites; the Y-axis represents the absolute intensity value of the substance contained in the sample. Comparing the four groups visually,
it can be seen that most of the low-molecular metabolites are present in the four groups, but the absolute intensity values are different in
various samples. There are some low-molecular metabolites that are unique to a certain sample or not present in a certain sample. The main
reason is that the absolute intensity value is extremely low, causing the peak height too low to be identified in the figure.
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FIGURE 3: Three-dimensional graphic is obtained after statistical
analysis of multivariate variables in four groups. It can be seen that
the spatial distribution of samples in different groups have a clear
trend of dispersion. The spatial distribution of samples in the same
group has a trend of aggregation, indicating that the level of low-
molecular metabolites in different groups is apparently different.

permutation test. The number of tests was set to 200. The test
result showed that the validity was good (Figure 8). VIP and
p values of low-molecular metabolites were calculated in the
overall comparison of the three groups, and there were 27
metabolites with VIP value >1 and p value <0.001 (Figure 9).
The major low-molecular metabolites were selected based on
VIP and p values: anabasine, octanoylcarnitine, 2-
methoxyestrone, retinol, decanoylcarnitine, calcitroic acid,
glycogen, and austalide L. The metabolic pathways involved
include lipid metabolism (glycerol phospholipid meta-
bolism, linoleic acid metabolism, a-linolenic acid meta-
bolism, arachidonic acid metabolism, and steroid hormone
synthesis), amino acid metabolism (glycine, serine, and
threonine metabolism), and so on.

3.3.2. Comparison of the Lung Metastases and the Other
Pulmonary Nodule Groups. The PMC were compared with
BNP and PLC, respectively. In the first place, PMC and BPN
were compared. Tyrosine, indoleacrylic acid, and lysoPC
(16 : 0) were selected. Their ROC curves and box plots were
shown in Figure 10. The metabolic pathways involved in
these metabolites are amino acid synthesis and metabolism
(phenylalanine, tyrosine, and tryptophan), lipid synthesis
and metabolism (glycerol phospholipids and steroids),
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respectively. It can be seen that there is obvious difference in the distribution of the four groups, and the difference in the distribution
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TaBLE 2: The main metabolites in the comparisons of the pulmonary metastases with the other pulmonary nodule groups.

Fold

p

AUC of

Critical

Metabolites change VIP Value ROC point Sensitivity Specificity
PMC vs. Tyrosir.le . 1.67 1.39 8.26E-5 0.852 1.71 0.938 0.719
BPN Indoleacrylic acid 1.76 1.40 3.57E-5 0.869 3.89 0.938 0.844
LysoPC (16:0) 2.43 1.95 1.68E-4 0.836 0.53 0.938 0.687
PMC vs. Octanoylcarnitine 0.25 1.65 2.71E-9 0.973 6.51 0.888 0.938
PLC Retinol 0.08 2.25 8.53E-10 0.988 0.99 1.000 0.938
Decanoylcarnitine 0.21 1.81 9.39E-9 0.956 3.01 0.875 1.000
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TaBLE 3: The main metabolites in the comparison of the pulmonary metastases with the healthy group.
. Fold p AUC of Critical e o
Metabolites change VIP V?ge ROC point Sensitivity ~ Specificity
O-arachidonoyl 812 162  Ll147 0945 1.30 0.875 1.000
ethanolamine

PMCvs. HPG Adrenoyl ethanolamide 7.56 1.54 2.86-7 0.931 43.77 0.813 1.000
Tricin 7-diglucuronoside 5.45 1.46 4.82-8 0.958 5.64 0.813 1.000
p-Coumaroyl vitisin A 6.03 1.51 3.39-8 0.964 2.13 0.875 0.979

aminoacyl biosynthesis, ubiquinone, and other terpene
quinone biosynthesis, etc. In the second place, the PMC was
compared with PLC. The score scatter plot after OPLS-DA
analysis was shown in Figure 8, and the difference between
the two groups was obvious. We calculated the VIP values of
the low-molecular metabolites that cause the difference.
There were 18 metabolites with VIP value >1 and p value
<0.001. The main low-molecular metabolites selected were
octanoylcarnitine, retinol, and decanoylcarnitine. As shown
in Figure 11, the difference of the three metabolites between
the two groups can be seen directly in the box plot. ROC
curves were drawn for these metabolites, and the areas under
the curve (AUCs of ROC) of the three metabolites were
0.973, 0.988, and 0.956, respectively. The critical points for
obtaining the best sensitivity and specificity were 6.51, 0.99,
and 3.01, accordingly. Detailed information was shown in
Table 2.

4, Discussion

According to the previous study [19], gender and age may
cause changes in plasm metabolic profiles. To avoid such
influence of these factors, from 145 patients with pulmonary

nodules admitted to our hospital and 55 healthy people in
the medical center, only 128 patients and 48 healthy vol-
unteers were selected as research subjects according to the
gender- and age-matching principle. In previous metab-
olomics studies on the lung, it was common to compare
primary lung cancer with healthy people [20]. A small
number of literatures had reported benign pulmonary
nodules or chronic obstructive pulmonary disease compared
with primary lung cancer [21, 22]. However, there were rare
reports on pulmonary metastatic carcinoma until now, no
matter what sources of the pulmonary samples, such as lung
tissue, sputum, bronchial lavage fluid, etc. This study firstly
reported the plasma metabolites characteristics of lung
metastases and summarized the difference of among three
common pulmonary nodules and healthy people.

The sixteen people in the pulmonary metastatic cancer
group in this study had a wide range of primary carcinoma
sources, including colorectal cancer, liver cancer, breast
cancer, nasal cancer, and lower extremity osteosarcoma.
Therefore, the score scatter plot after OPLS-DA analysis
showed that most points were aggregated, but there were
several points that were relatively discrete, as shown in
Figure 5. Pathological types of the 32 samples from the
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F1GURE 7: The score scatter plots of the overall comparison of the three pulmonary nodule groups and the pairwise comparisons are shown.
It can be seen intuitively that the differences among the three groups are obvious. The number 1, 2, and 3 in the figures represent PMC, BPN,

and PLC, respectively.
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FIGURE 8: Permutation test of the three pulmonary nodule groups.
The number of tests is 200; the X-axis represents the correlation
between the random group Y and the original group Y, and the Y-
axis represents the scores of R2 and Q2. The rightmost is the real
value, and the left is the simulated value. The Q2 value of all the blue
on the left is lower than the original point on the right, the R2 value
of all the green on the left is lower than the original point on the
right, and the intercept of the regression line of Q2 is <0.05.

benign pulmonary nodule group included lymphadenitis,
tuberculous granuloma, sclerosing alveolar cell tumor, or-
ganizing pneumonia, hamartoma, leiomyoma, solitary fi-
broid, fungal infection, atypical adenomatous hyperplasia,
and epithelioid hemangioendothelioma. As a result, the
points of its score scatter plot were more discrete, but when
compared with other groups, it mainly showed obvious
aggregation (Figure 5). For the score scatter plots of the
primary lung cancer group and the healthy person group,
except for several points, the most were clustered together,
indicating that these samples had better consistency and the
results were more reliable.

Through the statistical analysis of the multivariate data of
the Simca 14.1 software, the OPLS-DA models obtained in
the comparisons among the groups were shown in Figures 5
and 7, and their characteristic parameters were shown in
Table 4. R2X and R2Y represent the percentage of the X and
Y matrix information that the model can interpret, re-
spectively, and Q2 represents the predictive ability of the
model obtained through cross-validation calculation. A
good model generally includes several conditions: R2Y is
always greater than Q2; the higher the values of R2 and Q2,
the better; the difference between R2Y and Q2 is not too big,
preferably less than 0.3; R2X is above 0.5. According to
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VIP Predictive Values after OPLS-DA Analysis of the Three Groups
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FIGURE 9: After OPLS-DA analysis, the predicted values of all low-molecular metabolites are calculated in the overall comparison of the
three pulmonary nodule groups. The larger the VIP value is, the greater the role of identifying the difference among groups is.

Table 4, the OPLS-DA model of each comparison among
groups was a good model that met the conditions.
Screening for lung metastases relies on a chest low-dose
CT scan and tumor markers in the present, but a CT scan
may show false-positive results. Tumor markers for lung
cancer such as CEA, Cyfra2l-1, NSE, and pro-GRP, due to
their low sensitivity and specificity, have limited clinical
application value. In order to find biomarkers with high
sensitivity and specificity, we took plasm low-molecular
metabolites as the research subject, comparing pulmonary
metastatic cancer with the primary lung cancer, pulmonary
benign nodule, and healthy people as a whole. Five major
low-molecular metabolites were selected, namely dec-
anoylcarnitine, y-glutamylphenylalanine, lysophosphatidyl
glycerol (18:1), CMP-N-glycoloylneuraminate, and melo-
side L. From the box plots in Figure 4, it can be seen in-
tuitively that decanoylcarnitine had the highest level in
healthy people among the four groups. However, the other
four metabolites in healthy people had the lowest level.
Decanoylcarnitine is a type of organic compound containing
fatty acids and belongs to endogenous lipids. The change in
the metabolic level of decanoylcarnitine occurs in many
kinds of diseases, including ulcerative colitis, Crohn’s dis-
ease, colorectal cancer, etc. [23, 24]. In our study, the plasm
level of decanoylcarnitine decreased in three pulmonary
nodule groups, which may be related to its increased de-
mand and catabolic enhancement in the body with pul-
monary nodule lesions. Klupczynska et al. [25] reported that
patients with NSCLC had elevated carnitine levels and de-
creased amylcarnitine and propylcarnitine levels. Ni et al.
[26] reported that the concentration of acylcarnitine in the
plasm of lung cancer patients was significantly different from
that of healthy people. Lim et al. [12] found that acylcarnitine
was one of the main low-molecular metabolites that caused

the difference in the metabolomics of lung tissues from
various pathological types of lung cancer.

The major low-molecular metabolites between pulmo-
nary metastatic carcinoma and healthy people were o-
arachidonoyl ethanolamine, adrenoyl ethanolamide, tricin
7-diglucuronoside, and p-coumaroyl vitisin A. These four
metabolites had the potential to be biomarkers for metastatic
screening. From the FC values in Table 3, it can be found that
the level of these four metabolites in PMC were much higher
than that in HPG, and their contents in PMC were all more
than five times that of HPG. Therefore, when these four
substances were found to be significantly elevated in plasma
samples from the screening population, it was suggested that
attention should be paid to the possible presence of lung
metastases. For such high-risk populations, further exami-
nations, such as PET/CT, should be undertaken.

O-arachidonoyl ethanolamine is the first endogenous
cannabinoid isolated and acts on the same receptor as tet-
rahydrocannabinol. Adrenoyl ethanolamide is a class of lipid
compounds that naturally occur in animal and plant
membranes and is a component of membrane-bound
phospholipids. The area under the ROC curve of o-
arachidonoyl ethanolamine and adrenoyl ethanolamide
were 0.945 and 0.931, respectively, indicating that they can
both distinguish lung metastatic cancer from healthy people.
Tricin 7-diglucuronoside and p-coumaroyl vitisin A were
also the major low-molecular metabolites between pulmo-
nary metastatic carcinoma and healthy people. Tricin 7-
diglucuronoside is a kind of organic compound called fla-
vonoid. P-coumaroyl vitisin A belongs to a class of organic
compound called coumarate. These aromatic compounds
contain ester derivatives of coumaric acid. The AUC of ROC
curves of these two metabolites were all greater than 0.95.
The sensitivity and specificity of p-coumaroyl vitisin A for
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FiGure 10: ROC curves and box plots of three major low-molecular metabolites in the comparison between PMC and BPN.

pulmonary metastatic cancer and healthy people were 0.875
and 0.979. However, the sensitivity and specificity of tricin 7-
diglucuronoside were 0.813 and 1.000. It showed that these
metabolites both had a strong diagnostic ability to distin-
guish pulmonary metastatic carcinoma from healthy people.

The common types of pulmonary nodules in clinical
practice mainly include primary lung cancer, benign pul-
monary nodule, and pulmonary metastatic carcinoma.
Sometimes, the nature of pulmonary nodules cannot be
accurately determined by chest CT and existing biomarkers,
even with PET/CT examination. The exact nature of the
nodule can only be determined by invasive methods such as
puncture biopsy or surgical resection. In this study, these
three common types of pulmonary nodules were taken as the
research subject. First, an overall comparison was per-
formed. It was found that there were significant differences
in plasm metabolomics among them. The main low-
molecular metabolites that caused the difference were
anabasine, octanoylcarnitine, 2-methoxyestrone, retinol,
decanoylcarnitine, calcitroic acid, glycogen, and austalide L.

In terms of differential diagnosis, pulmonary metastases
were compared with two most common kinds of lung
nodules, primary lung cancer (PLC) and benign pulmonary
nodule (BPN). Tyrosine, indoleacrylic acid, and lysoPC (16:
0) were selected from the comparison of PMC and BPN.
Meanwhile,  octanoylcarnitine, retinol, and  dec-
anoylcarnitine were discovered from PMC and PLC. These
six metabolites could be used as biomarkers for differential
diagnosis of pulmonary metastasis with other lung nodules.
From the FC value of Table 2, we can see that the level of the
first three metabolites in PMC was higher than that of BPN,
indicating that when the three substances in plasma samples
were higher, the nature of nodules is more inclined to lung
metastasis, rather than benign pulmonary nodules. The
levels of the latter three metabolites in PMC were much
lower than those in PLC, suggesting that when plasma
concentrations of these three substances decreased signifi-
cantly, nodules were more likely to be lung metastases than
primary lung cancer. Combining these results with the
medical history and imaging findings, it would be easier to
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Figure 11: ROC curves and box plots of three major low-molecular metabolites in the comparison between PMC and PLC.

TABLE 4: Feature parameters of comparisons among groups based
on the OPLS-DA model.

Four or PMC vs. Thr . PMC vs. PMC vs.
our groups o5 G ee groups BPN PLC
R2X 0.540 0.638 0.533 0.654 0.531
R2Y 0.624 0.983 0.704 0.956 0.976
Q2 0.598 0.939 0.625 0.787 0.949

make an accurate diagnosis of the nature of the pulmonary
nodule.

L-octanoylcarnitine is the physiological active form of
octanoylcarnitine. Octanoylcarnitine can be detected in the
middle-chain acyl-CoA dehydrogenase deficiency. Some
studies had found that the metabolic level of octa-
noylcarnitine in the blood of patients with obesity and in-
flammatory bowel disease had been significantly changed
[23, 27]. Retinol is also one of the main plasm low-molecular
metabolites for differentiating pulmonary metastatic cancer
from primary lung cancer. Its plasm content in patients with
primary lung cancer is significantly higher than that of
pulmonary metastatic cancer. Pamungkas et al. [28] re-
ported the same conclusion with our study. Retinol (vitamin

A) is a yellow fat-soluble antioxidant vitamin, which belongs
to the family of retinoids. Taken in the form of precursors by
the human body, retinol and its derivatives play a crucial role
in the reproductive process, immune response, bone growth,
epithelial growth and differentiation, and the metabolic
function of the retina.

Tyrosine, indoleacrylic, acid and lysoPC (16 : 0) were the
main low-molecular metabolites that caused the difference
between pulmonary metastatic carcinoma and benign pul-
monary nodules. The areas under the ROC curve of these
metabolites were 0.852, 0.869, and 0.836, respectively,
showing a good ability of differential diagnosis. Tyrosine is
an essential amino acid that can cross the blood-brain
barrier and a precursor of the neurotransmitters such as
dopamine, norepinephrine, and epinephrine. This study
found that the level of tyrosine in the plasm of patients with
pulmonary metastatic carcinoma was approximately
1.7 times that of pulmonary benign nodule. Its sensitivity
and specificity were 0.938 and 0.719, respectively. Klupc-
zynska et al. [25] found that the concentration of tyrosine in
the plasm of early non-small-cell lung cancer was signifi-
cantly different from that of normal people, but this could
not distinguish squamous cell carcinoma and
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adenocarcinoma. Hu et al. [29] conducted a metabolomics
study of patients with advanced non-small-cell lung cancer
who underwent microwave ablation and found that the
plasm tyrosine content before treatment was significantly
higher than that in the healthy control group, and after
microwave ablation treatment, the level of tyrosine had
dropped significantly.

Lysophosphatidylcholine (lysoPC or LPC) is present in
a small amount in most tissues and is formed by the hy-
drolysis of phosphatidylcholine by the phospholipase A2. In
this study, the plasm level of lysoPC (16:0) in patients with
pulmonary metastatic carcinoma was significantly higher
than that of benign pulmonary nodule, and its sensitivity
and specificity were 0.938 and 0.687, showing its potential to
the biomarker to distinguish them. Klupczynska et al. [15]
carried out a metabolomic study on plasm samples from
patients with stage I non-small-cell lung cancer and the
noncancer control group and found that phospholipids
containing choline were potential biomarkers for lung
cancer. Besides, a model of seven metabolites composed of
two fatty acid derivatives, four hemolytic phosphatidyl-
choline, and sphingolipids was established. Finally, they
found that the metabolite with the strongest discrimination
ability was lysoPC26:0 and lysoPC26:1. Yang et al. [30]
reported a metabolomic research on malignant pleural ef-
tusion of advanced lung cancer and found that 25 ether
lipids, including phosphatidylcholine (PC), lysophosphati-
dylcholine (LPC), and phosphatidylthanolamine (PE), were
significantly downregulated in malignant pleural fluid,
showing a good diagnostic potential. Ros-Mazurczyk et al.
[31] found that the levels of lysoPC (18:2), lysoPC (18:1),
and lysoPC (18:0) in patients with early-stage lung cancer
were lower than those in healthy people.

5. Conclusions

From the perspective of clinical practice, this study aimed to
find new potential biomarkers to improve lung metastases
screening and differential diagnosis. Using the metab-
olomics method, we comprehensively studied the level
change of low-molecular metabolites in plasm of pulmonary
nodule lesion and healthy population. In particular, samples
of pulmonary metastatic carcinoma were included in the
research for the first time, and plasm metabolomics char-
acteristics of pulmonary metastatic carcinoma were studied
in depth. However, there are still some shortcomings in this
study: First, the sample size of each group is small. Because
metabolomics is the terminal stage of various biological
changes, it is susceptible to various factors. The larger the
sample size, the more reliable the results will be. Second, this
research applies nontargeted metabolomics, so the low-
molecular metabolites discovered can be further studied
and identified by targeted metabolomics. Finally, although
this study is based on clinical needs, the current research
results are at the stage of basic research, and it is necessary to
find a suitable way for clinical transformation to have greater
significance.

Through this metabolomics study on plasm samples
from pulmonary metastatic carcinoma, benign pulmonary
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nodule, primary lung cancer, and healthy people, it was
found that the levels of some low-molecular metabolites
were significantly different among the four groups. These
major metabolites showed a good sensitivity and specificity,
and they have the potential to become the biomarkers for the
screening and differential diagnosis of lung metastases. This
study laid a foundation for further research and clinical
translation.
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