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dynamic susceptibility contrast
perfusion-weighted imaging in
gliomas
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Radiomics has potential for reflecting the differences in glioma perfusion heterogeneity between
arterial spin labeling (ASL) and dynamic susceptibility contrast (DSC) imaging. The aim of this study
was to compare radiomic features of ASL and DSC imaging-derived parameters (cerebral blood flow,
CBF) and assess radiomics-based classification models for low-grade gliomas (LGGs) and high-grade
gliomas (HGGs) using their parameters. The ASL-CBF and DSC-relative CBF of 46 glioma patients

were normalized (ASL-nCBF and DSC-nrCBF) for data analysis. For each map, 91 radiomic features
were extracted from the tumor volume. Seventy-five radiomic features were significantly different

(P < 0.00055) between ASL-nCBF and DSC-nrCBF. Positive correlations were observed in 75 radiomic
features between ASL-nCBF and DSC-nrCBF. Even though ASL imaging underestimated CBF compared
with DSCimaging, there were significant correlations (P < 0.00055) in the first-order-based mean,
median, 90" percentile, and maximum. Texture analysis showed that ASL-nCBF and DSC-nrCBF
characterized similar perfusion patterns, while ASL-nCBF could evaluate perfusion heterogeneity
better. The areas under the curve of the ASL-nCBF and DSC-nrCBF radiomics-based classification
models for gliomas were 0.888 and 0.962, respectively. Radiomics in ASL and DSC imaging is useful for
characterizing glioma perfusion patterns quantitatively and for classifying LGGs and HGGs.

Angiogenesis, the formation of new blood vessels for tumor growth, plays a key role in gliomas’. Gliomas rely on
angiogenesis to maintain an adequate blood supply for the delivery of nutrients and oxygen, thereby consisting
of a complex and heterogeneous vasculature!?. Therefore, high-grade gliomas (HGGs) are characterized by het-
erogeneous and relatively higher perfusion compared with low-grade gliomas (LGGs)?. These characteristics are
critical elements in the determination of preoperative grade, treatment strategy, and prognosis of gliomas.
Magnetic resonance (MR) perfusion-weighted imaging can provide information about tumor vascularity.
Cerebral blood flow (CBF) and cerebral blood volume (CBV) are representative perfusion parameters that can be
measured by MR perfusion-weighted imaging. Dynamic susceptibility contrast (DSC) imaging is an established
MR perfusion-weighted imaging*. DSC imaging requires a bolus injection of a gadolinium-based (exogenous)
contrast agent. A deconvolution method is used for the quantification analysis of relative CBF (rCBF) and mean
transit time (MTT)* Relative CBV (rCBV) is related to rCBF and MTT via the equation MTT =rCBV/rCBE,
and can be estimated from the area of the time—concentration curve in tissue*. DSC imaging-derived parameters
(rCBF and rCBV) are known to correlate with histological findings of glioma angiogenesis®® and glioma grade’=".
On the other hand, arterial spin labeling (ASL) imaging, which is another MR perfusion-weighted imaging,
does not require an exogenous contrast agent!®. ASL imaging allows absolute quantification of CBF by using
magnetically labeled arterial blood water as an endogenous tracer'®. Some studies have compared ASL with DSC
imaging in brain tumors''~'*. These studies concluded that ASL imaging can be an alternative method to DSC
imaging for evaluating brain tumors. The usefulness of ASL imaging for differentiation between LGGs and HGGs
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Potentially eligible glioma patients (n = 54)
(i) Pathologically proven gliomas
(i) Acquisition of pseudo-continuous ASL and DSC imaging
before any treatment/biopsy

Excluded patients (n = 8)
(i) Inadequate quality of MR images (n = 4)
(i) WHO grade | gliomas (n = 3)
(iii) Pilomyxoid astrocytoma (n = 1)

A

Enrolled glioma patients (n = 46) |

Low-grade gliomas (n = 15) High-grade gliomas (n = 31)
(i) WHO grade Il gliomas (n = 15) (i) WHO grade llI gliomas (n = 4)
(ii) WHO grade IV gliomas (n = 27)

Figure 1. Flow diagram for glioma patient selection. ASL, arterial spin labeling; DSC, dynamic susceptibility
contrast; MR, magnetic resonance; WHO, World Health Organization.

has also been reported!®!8. Thus, ASL imaging is establishing itself as a non-invasive perfusion measurement
without a contrast agent and X-ray exposure, making it valuable for renal failure'® and pediatric patients.
Radiomics can describe tumor phenotypic characteristics using various quantitative features based on his-
togram and texture in medical images®?2. Recently, several studies have reported that radiomic features in MR
imaging reflect tumor heterogeneity and have potential for predicting glioma grading®?*. We assumed that radi-
omics has the potential for quantitative assessment of glioma perfusion heterogeneity in ASL and DSC imaging.
However, because ASL and DSC imaging are based on different techniques, it is unclear whether they exhibit
similar perfusion patterns (e.g., heterogeneity) or how their perfusion patterns differ. In order to use ASL imaging
as an alternative to DSC imaging, it is necessary to investigate this issue. Therefore, the purpose of this study was
to compare radiomic features of ASL and DSC imaging in gliomas. Additionally, we constructed radiomics-based
classification models for glioma grading using ASL and DSC imaging and assessed their diagnostic performance.

Results

Glioma patients. Figure 1 shows the flow diagram for glioma patient selection in this study. Among the 46
gliomas enrolled, 15 gliomas were LGGs (World Health Organization (WHO) grade II; 11 males and 4 females;
mean age, 41.5 £ 12.6 years), and 31 gliomas were HGGs (WHO grade III/IV; 25 males and 6 females; mean age,
57.7+16.7 years). All LGGs were WHO grade II (diffuse astrocytoma = 11, oligodendroglioma = 4). The HGGs
included were WHO grade III (anaplastic astrocytoma = 3, anaplastic oligodendroglioma = 1) and IV (glioblas-
toma = 26, diffuse midline glioma = 1).

Comparisons of radiomic features between ASL and DSC imaging. All 91 radiomic features
(Supplementary Table S1) in all gliomas were compared between ASL-normalized CBF (ASL-nCBF) and
DSC-normalized rCBF (DSC-nrCBF) using the paired t-test or Wilcoxon signed-rank test as appropriate.
Figure 2 shows the heatmap of the 75 radiomic features that were significantly different (P < 0.00055). As shown
in Fig. 2 and Supplementary Table S2, 15 out of the 18 first-order-based features (83.3%), including the mini-
mum (ASL-nCBF, 0.49 4 0.31; DSC-nrCBE, 0.13 +0.26), 90t percentile (ASL-nCBE, 3.15+ 1.51; DSC-nrCBF,
5.64 +4.75), and maximum (ASL-nCBFE, 5.30 4 2.83; DSC-nrCBF, 24.41 £ 21.77), had significant differences
(P <0.00055) between ASL-nCBF and DSC-nrCBE Sixty out of the 73 texture features (82.2%), including fea-
tures from all 5 texture classes, had significant differences (P < 0.00055) between ASL-nCBF and DSC-nrCBE. The
mean and standard deviation of all radiomic features and statistical results are shown in Supplementary Table S2.

Correlations of radiomic features between ASL and DSC imaging. Figure 3 shows the heatmap of
Pearson’s product-moment correlation coefficients (r) or Spearman’s rank-order correlation coefficients (p) of
all radiomic features between ASL-nCBF and DSC-nrCBF in all gliomas. Significant correlations (P < 0.00055)
were observed in 14 first-order-based features (14/18, 77.8%) and 61 texture features (61/73, 83.6%). The detailed
results of the correlation analysis can be found in Supplementary Table S3.

Radiomics-based classification models for LGGs and HGGs. Logistic regression models were con-
structed using the radiomic features selected by least absolute shrinkage and selection operator (LASSO) and
Eq. (3) in the Materials and methods section, as follows:
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Figure 2. Heatmap of radiomic features for comparing between ASL-nCBF and DSC-nrCBE. All the 75
radiomic features shown in the heatmap were found to be significantly different (P < 0.00055) between ASL-
nCBF and DSC-nrCBE. Rows correspond to patients, and columns correspond to Z-score normalized radiomic
features. The heatmap is grouped by perfusion map, glioma grade, and radiomic feature class. ASL-nCBF,
arterial spin labeling normalized cerebral blood flow; DSC-nrCBFE dynamic susceptibility contrast normalized
relative cerebral blood flow; WHO, World Health Organization; GLCM, gray-level co-occurrence matrix;
GLDM, gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone
matrix; NGTDM, neighboring gray-tone difference matrix.

logit(p)ast—ncgr = 1.53 — 2.67 x GLCM inverse variance

logit(p) psc_mrcpr = 213 X 1071 — 1.08 x 107> x GLDM gray—level non—uniformity

—1.14 x 107* x GLRLM gray—level non—uniformity

—1.37 x 10" x GLSZM gray—level non—uniformity normalized
+ 5.18 x GLSZM size—zone non—uniformity normalized

— 1.59 x 10" x GLSZM small area low gray—level emphasis

—1.26 x 107" x GLDM dependence variance
— 1.77 x first—order minimum

—7.90 x 107 x first—order kurtosis
—2.49 x 1072 x GLRLM run variance
+7.12 x 107! x GLSZM zone entropy

(1)

)

where GLCM, GLDM, GLRLM, and GLSZM are the gray-level co-occurrence matrix, gray-level dependence
matrix, gray-level run-length matrix, and gray-level size-zone matrix, respectively.
According to the receiver operating characteristic (ROC) analysis (Fig. 4 and Table 1), the DSC-nrCBF model
(AUC, 0.962; sensitivity, 89.3%; specificity, 92.9%) showed better diagnostic performance for differentiating
HGGs from LGGs than the ASL-nCBF model (AUC, 0.888; sensitivity, 85.7%; specificity, 85.7%). However, no
significant differences (P = 0.133) were found between the areas under the curve (AUCs) of the models.
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Figure 3. Heatmap of correlation coefficients between ASL-nCBF and DSC-nrCBF radiomic features. Brown
and blue colors represent positive and negative correlations, respectively. The correlation coefficients are
arranged in order from the highest significant correlation in the upper left corner, and the corresponding
features are shown in the x- and y-axes. Significant correlations (P < 0.00055) were observed in the top 75
radiomic features. ASL-nCBE, arterial spin labeling normalized cerebral blood flow; DSC-nrCBE, dynamic
susceptibility contrast normalized relative cerebral blood flow; GLCM, gray-level co-occurrence matrix; GLDM,
gray-level dependence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size-zone matrix;
NGTDM, neighboring gray-tone difference matrix.

The performance of the radiomics-based classification models was further evaluated using the test set (n = 4).
Both the ASL-nCBF and DSC-nrCBF models correctly predicted the class (LGG or HGG) of all patients included
in the test set (Tables 2 and 3). Furthermore, the cut-off values determined from the ROC analysis could also
correctly differentiate the LGG and HGG patients.

Discussion

This study compared 91 radiomic features in gliomas between ASL-nCBF and DSC-nrCBE To our knowledge,
this is the first study focusing on the comparison between ASL- and DSC-derived perfusion parameters in gli-
omas using radiomics. Compared with DSC imaging, ASL imaging underestimates CBF and better character-
izes perfusion heterogeneity. However, there are a great number of radiomic features with positive correlations
between ASL-nCBF and DSC-nrCBE Moreover, the radiomics-based classification models showed high diagnos-
tic performance for differentiating between LGGs and HGGs.
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Figure 4. Receiver operating characteristic curves for the radiomics-based classification models for low- and
high-grade gliomas. The red and blue solid lines represent the curves of the ASL-nCBF and DSC-nrCBF
models, respectively. ASL-nCBE, arterial spin labeling normalized cerebral blood flow; DSC-nrCBE, dynamic
susceptibility contrast normalized relative cerebral blood flow; AUC, area under the curve.

AUC (95% confidence | Significance Sensitivity | Specificity

interval) (P-value) Cut-off | (%) (%)
ASL-nCBF model 0.888 (0.783-0.993) <0.0001 0.517 85.7 85.7
DSC-nrCBF model 0.962 (0.913-1.000) <0.0001 0.556 89.3 92.9

Table 1. Receiver operating characteristic analysis results of radiomics-based classification models for low- and
high-grade gliomas. AUC, area under the curve; ASL-nCBE, arterial spin labeling normalized cerebral blood
flow; DSC-nrCBE, dynamic susceptibility contrast normalized relative cerebral blood flow.

Test data # (n #1 (Diffuse #2 (Anaplastic #3 (Glioblasti #4 (Glioblasti
=4) astrocytoma, grade IT) | oligodendroglioma, grade III) | grade IV) gradeIV)
logit(p) asincpr® | —0.411 0.673 1.897 1.371
Probability (p)* | 0.399 0.662 0.870 0.797
Predicted class LGG HGG HGG HGG

Table 2. Prediction results of the ASL-nCBF classification model for low- and high-grade gliomas. *Cut-off
value: 0.517; ®p: probability of a patient with high-grade glioma (0 < p < 1); ASL-nCBE, arterial spin labeling
normalized cerebral blood flow; LGG, low-grade glioma; HGG, high-grade glioma.

#1 (Diffuse #2 (Anaplastic #3 (Glioblast #4 (Glioblast
Test data # (n =4) | astrocytoma, grade II) | oligodendroglioma, grade ITI) | grade IV) gradeIV)
logit(p)psc.mcr® | —2-379 0.829 5.154 1.106
Probability (p)® 0.085 0.696 0.994 0.751
Predicted class LGG HGG HGG HGG

Table 3. Prediction results of the DSC-nrCBF classification model for low- and high-grade gliomas. *Cut-off
value: 0.556; °p: probability of a patient with high-grade glioma (0 < p < 1); DSC-nrCBE dynamic susceptibility
contrast normalized relative cerebral blood flow; LGG, low-grade glioma; HGG, high-grade glioma.

The main first-order statistics, including the mean, median, 9Qth percentile, and maximum values of
ASL-nCBF tended to be lower than those of DSC-nrCBE. This could be explained from the fact that ASL tends to
underestimate CBF due to increased MTT (e.g., complex and heterogeneous vasculature in tumors or low blood
flow in white matter regions)'"'3. Our ASL-CBF and DSC-rCBF maps were normalized to normal-appearing
white matter (NAWM). Previous studies also reported that ASL-CBF tends to be lower than DSC-rCBF when
normalized to NAWM!12. Additionally, DSC imaging tends to overestimate rCBF because of its high sensitivity
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to large vessels®. In this study, large vessels were excluded from the tumor volume by using a semi-automated
segmentation method. However, intratumoral microvessels might not have been removed completely. This could
explain the hyperperfusion observed in DSC imaging, particularly in the maximum values.

The second- or higher-order statistics has been used for the assessment of texture pattern in brain tum-
ors*»?*2_ The texture analysis in our study included the GLCM-, GLDM-, GLRLM-, GLSZM-, and neighboring
gray-tone difference matrix (NGTDM)-based features. The 82.2% texture features that were significantly dif-
ferent (P < 0.00055) between ASL-nCBF and DSC-nrCBF mainly point that ASL-nCBF is more heterogene-
ous (GLCM-based Idm, GLCM-based Id, GLDM-based gray-level variance, GLDM-based large dependence
emphasis, and GLRLM-based run entropy) with greater variations in neighboring voxel values (GLCM-based
joint entropy and GLCM-based sum entropy) than DSC-nrCBE. Furthermore, the GLDM-based high gray-level
emphasis and GLRLM-based high gray-level run emphasis suggest that ASL-nCBF consists of a greater pro-
portion of high voxel values in the segmented tumor region, while the GLDM-based low gray-level emphasis,
GLRLM-based low gray-level run emphasis, and GLSZM-based low gray-level zone emphasis suggest that
ASL-nCBF consists of a smaller proportion of low voxel values. These findings are consistent with the trend
observed in our first-order-based features, such as entropy, uniformity, and skewness.

Intratumoral heterogeneity is an important predictor of tumor prognosis®’. Preclinical studies in ASL imaging
have demonstrated that CBF exhibits intratumoral heterogeneity in rat and mouse glioma models?®?. The present
study revealed that ASL-nCBF is more heterogeneous than DSC-nrCBE The discrepancy in perfusion patterns
between ASL and DSC imaging may be attributed to their principles and methodology. ASL measures CBF by
using labeled arterial water as a freely diffusible tracer, which distributes across capillary membranes through-
out the brain tissue'! and is not affected by the destruction of the blood-brain barrier (BBB)'?. On the contrary,
DSC imaging utilizes an exogenous contrast agent as a non-diffusible tracer and is sensitive to the BBB destruc-
tion*. ASL imaging more accurately reflects the physiological perfusion of tissues and can objectively evaluate
the degree of angiogenesis and malignancy in brain tumors due to the different diffusivity of the tracers'**'. These
suggest that ASL-nCBF reflects glioma perfusion heterogeneity better than DSC-nrCBE. Therefore, ASL imaging
has potential for characterizing perfusion heterogeneity in gliomas.

MR perfusion-weighted imaging studies have reported that ASL-CBF is positively correlated with DSC-rCBF
and DSC-rCBV in brain tumors!!-13. For the first-order-based mean in this study, there was a strong positive
correlation between ASL-nCBF and DSC-nrCBF (p = 0.73, P < 0.00055) in gliomas. This finding agrees with
those reported previously'!~*. Besides the mean, strong and moderate positive correlations were observed in the
first-order based median (p = 0.70, P < 0.00055), 90t percentile (p = 0.75, P < 0.00055), and maximum (p =
0.57, P<0.00055). This suggests that even though ASL imaging underestimates CBF compared with DSC imag-
ing, ASL imaging could be an alternative method to DSC imaging for evaluating glioma perfusion. On the other
hand, very strong positive correlations (r > 0.8 or p > 0.8) between ASL-nCBF and DSC-nrCBF were found in
texture features. Some features with significant correlations were, for example, the GLCM-based joint entropy and
GLCM-based sum entropy, which are associated with randomness of voxel values, and the GLDM-, GLRLM-,
GLSZM-based gray-level non-uniformity, and NGTDM-based coarseness, which are associated with heterogene-
ous texture. These relationships between ASL and DSC imaging imply that both techniques may evaluate similar
perfusion patterns (e.g., randomness and heterogeneity) in gliomas.

The ROC analysis showed that the DSC-nrCBF model has better diagnostic performance for differentiating
HGGs from LGGs. Several studies have applied radiomics to MR imaging and reported diagnostic performance
for distinguishing between LGGs and HGGs****?%, A study showed that a logistic regression model using radi-
omic features from ASL-CBF had an AUC, sensitivity, and specificity of 0.750, 71.4%, and 63.9%, respectively?’.
Combining radiomic features from various MR imaging techniques improved the model performance with an
AUG, sensitivity, and specificity of 0.911, 85.2%, and 85%, respectively?. Another study reported that the AUC,
sensitivity, and specificity of a support vector machine model using 30 texture features from multi-parametric MR
imaging, including ASL imaging, were 0.987, 96.4%, and 97.3%, respectively*!. Zacharaki et al. proposed a sup-
port vector machine model, including DSC-rCBYV, with an AUGC, sensitivity, and specificity of 0.896, 84.6%, and
95.5%, respectively?®. Our models have a diagnostic performance comparable to that of these studies for distin-
guishing between LGGs and HGGs. Furthermore, our ASL-nCBF and DSC-nrCBF models have a relatively high
performance, with their AUCs being not significantly different (P > 0.05). These imply that preoperative glioma
grading using radiomics may be feasible with only a single MR perfusion-weighted imaging-derived parameter,
such as CBF. Additionally, most selected features for model construction were related to texture patterns. This
suggests that texture analysis in MR perfusion-weighted imaging is useful for distinguishing HGGs from LGGs.
The ASL-nCBF model is interchangeable to the DSC-nrCBF model for glioma grading and should be preferred,
especially for patients who cannot undergo DSC imaging.

This study has several limitations. First, the sample size was small. To avoid any bias in patient selection, the
glioma patients were enrolled consecutively. Even though there was this limitation, it was possible to identify
differences and correlations between radiomic features of ASL and DSC imaging-derived parameters, which was
the main purpose of our study, and to reach a conclusion about the perfusion patterns of ASL and DSC imaging.
A future study with a larger sample size may yield improved ASL and DSC models for glioma grading. Second,
post-labeling delay (PLD), one of the scan parameters of ASL imaging, was fixed at 1525 ms for all cases. If the
PLD is shorter/longer than the arrival time of labeled arterial blood, CBF may not be assessed correctly. Ideally,
PLD is set by considering the patient background (e.g., age and medical history). However, it is difficult to set a
PLD for each individual patient with brain tumor. Third, the ASL and DSC imaging data were acquired at differ-
ent resolutions (voxel spacing; ASL: 1.9mm X 1.9mm x 4.0mm, DSC: 1.7mm X 1.7mm X 6.0 mm). This may
have contributed to the increased glioma perfusion heterogeneity in ASL imaging and differences in the texture
features between ASL and DSC imaging. Despite these limitations, our findings demonstrated that radiomics is
useful for characterizing glioma perfusion in ASL and DSC imaging and for classifying LGGs and HGGs.

SCIENTIFIC REPORTS |

(2020) 10:6121 | https://doi.org/10.1038/s41598-020-62658-9


https://doi.org/10.1038/s41598-020-62658-9

www.nature.com/scientificreports/

In conclusion, radiomics in ASL and DSC imaging showed that ASL imaging has lower CBF and reflects gli-
oma perfusion heterogeneity better than DSC imaging, whereas both techniques characterize similar perfusion
patterns. For classifying LGGs and HGGs, the DSC-nrCBF model showed higher diagnostic performance and
was comparable to the ASL-nCBF model. Radiomics can provide glioma perfusion patterns quantitatively, which
can be used to differentiate gliomas, and ASL imaging can be a non-invasive alternative to DSC imaging for eval-
uating glioma perfusion.

Materials and methods

Patient population. This retrospective observational study was approved by our institutional review board
(Osaka University Ethics Committee, approval number 17225-2), and passive informed consent was obtained in
the form of opt-out on the institutional website from all individual patients. All procedures performed were in
accordance with the ethical standards of the institutional review board and with the 1964 Helsinki declaration
and its later amendments or comparable ethical standards. Fifty-four patients with pathologically proven gli-
omas who underwent pseudo-continuous ASL and DSC perfusion-weighted imaging during the same session
in our institution prior to any treatment and/or biopsy between January 2014 and December 2019 were eligible
for this study. All patients’ histopathological diagnoses fulfilled the 2007 or 2016 WHO classification criteria of
the central nervous system tumors®*>**. The flow diagram for patient selection is shown in Fig. 1. Eight patients
were excluded due to the following reasons: (1) inadequate quality of MR images (e.g., motion and susceptibility
artifacts) for tumor segmentation (n = 4), (2) WHO grade I gliomas (n = 3), and (3) pilomyxoid astrocytoma (n
= 1). WHO grade I gliomas, such as pilocytic astrocytoma, are benign and are considered a separate entity*!. A
definite grading for pilomyxoid astrocytoma is not currently recommended according to the 2016 WHO classifi-
cation criteria®. Finally, 46 glioma patients, including 15 LGGs and 31 HGGs, were enrolled in this study.

MR imaging. All patients underwent multi-parametric MR imaging using a 3-T scanner (Discovery MR750
3.0 T, GE Healthcare, Milwaukee, WI, USA) with a 32-channel head coil. The following 7 MR imaging sequences
were acquired: (1) T, fluid-attenuated inversion recovery (FLAIR) image, (2) T, FLAIR image, (3) T,-weighted
image (T,WTI), (4) T,"-weighted image (T,"WI), (5) pseudo-continuous ASL imaging, (6) DSC imaging, and (7)
contrast-enhanced T,-weighted image (CE-T,WI). The main parameters of ASL and DSC imaging were set as fol-
lows. Axial ASL imaging, acquired using a three-dimensional pseudo-continuous ASL with spiral fast spin-echo
sequence: PLD = 1525 ms, repetition time (TR) = 4642 ms, echo time (TE) = 10.5ms, flip angle (FA) = 111°, 512
sampling points on 8 spiral arms, in-plane matrix = 128 x 128, field of view (FOV) = 240 mm, slice thickness =
4mm, band width (BW) = +62.5kHz, number of slices = 37, scan time = 2 min 1 s. Oblique-axial DSC imaging,
acquired using a gradient-echo echo-planar imaging sequence after a bolus injection of 0.1 ml/kg of gadoterate
meglumine (MAGNESCOPE, Guerbet, Tokyo, Japan) at a rate of 3ml/s, followed by a 30 ml bolus of saline flush
at the same rate: TR = 2000 ms, TE = 13.3 ms, FA = 60°, matrix size = 96 x 128, FOV = 220 mm, slice thickness
= 5mm, slice spacing = 1 mm, BW = £250 kHz, number of slices = 22, scan time = 1 min 20s. Before DSC
imaging, a bolus injection of 0.1 ml/kg of gadoterate meglumine was used for dynamic contrast-enhanced imag-
ing (preload leakage correction to minimize T, effects for DSC imaging). The scan parameters of the anatomical
MR imaging, T, FLAIR, T, FLAIR, T,WI, T,"WI, and CE-T,WI, are described in Supplementary Text S1.

Post-processing. The post-processing of the ASL and DSC imaging data was performed with 3DASL and
BrainStatAIF applications implemented with FuncTool (version 14.3.01, GE Healthcare, Milwaukee, WI, USA),
respectively. The ASL-CBF and DSC-rCBF maps for each patient were generated from ASL imaging and DSC
imaging, respectively. Motion correction and arterial input function (AIF) deconvolution with singular value
decomposition were applied to the DSC-derived map. The AIF locations were detected automatically.

All MR images of each patient were registered to the patient’s own oblique-axial CE-T,WI, which was set
to align along the anterior commissure—posterior commissure line, using Functional MR Imaging of the Brain
Software Library (version 5.0.9, FMRIB Analysis Group, University of Oxford, Oxford, UK). Then, these MR
images were resliced to match the oblique-axial CE-T,WI.

Additionally, a 6.8-mm diameter spherical volume-of-interest (VOI) (162.8 mm?) was placed within NAWM,
avoiding any abnormalities, in CE-TWIs and T, FLAIR images. The VOIs were transferred to all perfusion
maps in order to normalize ASL-CBF and DSC-rCBF in each patient. The VOI measurements were performed
using ITK-SNAP (version 3.6.0, Penn Image Computing and Science Laboratory, University of Pennsylvania,
Philadelphia, PA, USA). All voxels in the ASL-CBF and DSC-rCBF maps were divided by the mean value of the
NAWM VOI in the respective map, whereby the ASL-nCBF and DSC-nrCBF maps were generated.

Tumor segmentation. A supervised random forests machine-learning algorithm implemented with
ITK-SNAP was used for semi-automatic tumor segmentation. CE-T;WIs and T, FLAIR images were used to
cross-reference the solid portion of the tumor in all patients, which was defined as the gadolinium-enhanced
region on the CE-T,WIs and/or the signal abnormality region on the T, FLAIR images. The machine-learning
algorithm took into account the intensities of both MR images during segmentation®. T| FLAIR images, T,WIs,
and T,"WIs were used to exclude any cysts, calcifications, edema, hemorrhage, necrosis, and large vessels in the
tumor volume. Figure 5 shows an example of tumor segmentation.

Radiomic feature extraction. The segmented tumor volume was used as a mask image for radiomic feature
extraction. A total of 91 radiomic features (Supplementary Table 1) were extracted from each of the ASL-nCBF
and DSC-nrCBF maps by using PyRadiomics (version 1.3.0, Computational Imaging and Bioinformatics Lab,
Harvard Medical School, Boston, MA, USA)?%. The extracted radiomic features can be divided into the following
6 classes: (1) first-order statistics (18 features), (2) GLCM (22 features), (3) GLDM (14 features), (4) GLRLM (16
features), (5) GLSZM (16 features), and (6) NGTDM (5 features). All radiomic features were extracted using the
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Figure 5. Example of tumor segmentation for a patient with WHO grade IV glioblastoma (59-year-old male).
(a) CE-T,WL. (b) T, FLAIR image. (c) The segmented tumor volume (red color) overlaid on the CE-T,WI. (d)
The segmented tumor volume (red color) overlaid on the T, FLAIR image. (e) The ASL-nCBF map overlaid

on the CE-T, WL (f) The DSC-nrCBF map overlaid on the CE-T, WI. WHO, World Health Organization; CE-
T, WI, contrast-enhanced T,-weighted image; FLAIR, fluid-attenuated inversion recovery; ASL-nCBE arterial
spin labeling normalized cerebral blood flow; DSC-nrCBE, dynamic susceptibility contrast normalized relative
cerebral blood flow.

default parameters of PyRadiomics. The feature descriptions and mathematical definitions can be found else-
where (http://www.radiomics.io/pyradiomics.html)?.

Statistical analysis.  All values are expressed as the mean =+ standard deviation. All statistical analyses were
conducted using R software (version 3.5.0, R Foundation for Statistical Computing, Vienna, Austria). A P-value
of < 0.05 was considered statistically significant.

The paired t-test or Wilcoxon signed-rank test was used to compare the radiomic features between ASL-nCBF
and DSC-nrCBF. Pearson’s product-moment correlation coefficients (r) or Spearman’s rank-order correla-
tion coefficients (p) were used to examine the correlations of the radiomic features between ASL-nCBF and
DSC-nrCBE. The Shapiro-Wilk test was used for testing the data normality. The Bonferroni correction method
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for multiple comparisons was applied to adjust the significance level (), resulting in P < 0.00055 (o« = 0.05/91)
to be considered statistically significant.

Before the construction of the radiomics-based classification models, the sample was randomly divided into
a training set (n = 42) and a test set (n = 4). The test set included 1 patient with WHO grade II, 1 patient with
WHO grade III, and 2 patients with WHO grade IV gliomas. The LASSO regression was used to select the radi-
omic features that best classify LGGs and HGGs in the ASL-nCBF and DSC-nrCBF maps (training set, n =
42). Leave-one-out cross validation was used for the tuning parameter (\) selection. The radiomic features with
non-zero coeflicients were selected. The selected features were used to construct a logistic regression model for
each perfusion map, as follows:

P

loglt(p) = ln 1 ] = ﬁo + ﬂlxl + ﬂz-xz + ...+ /8ix’

3)

where p indicates the probability of a patient with HGG (0 < p < 1), and ; and x; indicate regression coefhi-
cients and explanatory variables, respectively. In this study, the x; variables corresponded to the selected radiomic
features.

ROC analysis was performed to assess the performance of each model for differentiating between LGGs
and HGGs. The empirical method by DeLong et al.’® was used to compare the AUCs of the ASL-nCBF and
DSC-nrCBF models. Additionally, the test set was used to evaluate whether the models can correctly predict the
class (LGG or HGG) of new patients.

Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary
Information files.
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