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Context: Due to great variability of the hypothalamus-pituitary-adrenal (HPA)-axis,

research has to produce better-controlled findings to make a more meaningful statement

regarding the effect of exercise training (ET) on the cortisol awakening response (CAR),

especially in children.

Objective: The aim of the study was to investigate the effects of different ET interventions

on the CAR in children.

Design and setting: We conducted a short-term training study for 10 weeks in primary

schools in Westphalia, Germany.

Participants: 71 children (9–10 years old) were randomly assigned to a cardiovascular

exercise group (n = 27), a motor exercise group (n = 23), or a control group (n = 21).

Intervention: An experienced instructor trained the children in an after-school setting

in 45min sessions, three times a week over the course of 10 weeks.

Main outcome measure: CAR (0, +30 min) was assessed on 2 schooldays one week

apart before and after the 10-week intervention. A Shuttle Run Test was performed to

determine the cardiovascular fitness. Motor fitness was assessed using the Heidelberg

Gross Motor Test.

Results: Children who enhanced their cardiovascular fitness over the course of the

intervention showed an increased CAR after the intervention time (B = 0.213), whereas

children who underwent a motor exercise intervention and at the same time gained in

motor fitness exhibited a decreased CAR after intervention (B = −0.188).

Conclusions: It has been speculated that other neurobiological pathways are activated

by different exercise interventions. The extent to which these ET effects on CAR can be

applied in clinical settings needs further investigation.

Précis: The 10-weeks longitudinal effects of cardiovascular vs. motor exercise

interventions (three times a week) on CAR in children show that these interventions exert

different effects on hypothalamus-pituitary-adrenal (HPA) axis activity.

Keywords: cortisol, exercise training, physical stress, children, adolescents, motor exercise, cardiovascular

exercise
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INTRODUCTION

Children and adolescents in industrialized countries today
increasingly suffer from inactivity and associated health issues
such as obesity and psychological disorders, e.g., as an effect
of stress exposure (1). Exercise training (ET), however, is an
easy-to-implement intervention, which can be administered in
group settings including schools. It has been proven that ET has
long-term beneficial effects and is a cost-efficient and sustainable
strategy to improve health in various mental and physical
disorders (2, 3). ET is defined as a structured exercise program
that involves the use of large muscle groups for extended periods
of time. ET differs from physical activity (PA) in its planned and
structured nature (4). Even though it appears that experts believe
prevention of diseases should start in childhood and adolescence,
there are rarely studies that focus on the effects of ET on health in
children under the age of 12 (5). The present study focuses on an
age group that lacks extensive research on stress related hormonal
indices (e.g., HPA axis activity).

The HPA axis is a highly stress-responsive system and shows
a strong diurnal pattern with the glucocorticoid cortisol as an
end product. One suitable marker for determining HPA axis
activity is the CAR. The CAR is a reliable measure for the acute
responsiveness of the HPA axis and can serve as a useful index
of adrenocortical activity (6). Cortisol levels, which are measured
during the first 30min after awakening show an increase of 50–
70% in the vast majority of adults but generally seem to be less
pronounced in children and adolescence (7). In adults, CAR is
generally positively associated with job and general life stress (8).
Even though it is still unclear what contributes to a “healthy”
CAR, ET has been argued to alter the HPA axis activity in adults
depending on the intensity of the intervention (e.g., moderate
vs. vigorous) as well as on the intervention type (e.g., aerobic
vs. yoga) (6). Thus, exercise intensity is an issue like in other
interventions to promote mental health (9, 10).

To our knowledge, there are no randomized and controlled
intervention studies focusing on the effects of ET on the CAR
in children. Only a few studies investigated the relationship
between ET and CAR in children and adolescents in cross-
sectional designs presenting insconsistent results. For example,
a positive correlation between CAR and vigorous PA was
found in a study focusing on 8-year-old girls suffering from
metabolic syndrome (11). In contrast, a lower CAR was linked
to the duration of acute daytime sport among healthy older
adolescents (aged 10–18 years) (12). Finally, a study among
healthy 8-year-old children showed no differences in the diurnal
salivary cortisol pattern based on the level of the overall
daytime PA (13). However, children’s general physical fitness
level and regular physical activity were not assessed, which could
affect cortisol activity. Further, these were all cross-sectional
study designs, which limit causal relationships between ET/PA
and CAR.

As the exercise intervention type (6) might affect chronic
stress levels (e.g., CAR), it could be argued that exercise
interventions that focus on improvement of motor abilities
might be beneficial for preserving cognitive resources and thus,
freeing resources to deal with complex situations in daily life

and resulting in a reduced stress response (14). Cardiovascular
exercise, by contrast, may lead to stronger neurogenesis, which
might result in stronger cortisol responses after a chronic exercise
intervention (15). It was previously argued that hippocampal
neurogenesis is mainly promoted by cardiovascular exercise
interventions (16). Niemann et al. (17) could not reveal changes
in hippocampal volume after 6 months of motor demanding
training, but found a significant increase in volume after
cardiovascular training in elderlies. Thus, specific stressors
influence neurogenesis and the HPA axis activity in different
ways (18).

Overall, the existing literature does not allow for causal
inference because it is unknown if the parameter itself (being
more physically fit) caused the changes in HPA axis activity
or if other factors might have accounted for these differences.
Therefore, controlled intervention studies are required to focus
on the causal relationship between exercise and HPA axis activity
(e.g., CAR) in a young, pre-adolescent age group. Martikainen
et al. (13) stipulated that the exercise intervention type needs
to be manipulated. Taken together, the current study aims
to fill this gap by investigating the effect of a 10-week ET
intervention (cardiovascular vs. motor fitness group) on the HPA
axis activity in 8- to 10-year-old children. We hypothesized that
cardiovascular exercise leads to an increased CAR response and
motor exercise training results in a decreased, or no change in,
CAR response among children.

METHODS

Participants
Data1 of 71 prepubescent primary school children (39 female)
between 9 and 10 years (Mage = 9.4; SDage = 0.6) with
no psychological or physical impairments (e.g., obesity) were
randomly assigned to a cardiovascular exercise group (CV, n =

27), a motor exercise group (MO, n = 23), or a control group
(CON, n= 21).

Inclusion/Exclusion Criteria
All participants were recruited from local schools and inclusion
criteria were 9–10 years of age, right-handedness, corrected-to
or normal vision and prepubescent status according to parent
and self-report on the Tanner staging system (below a score
of 2 on the five-point scale) (20). In case of the presence of
mental and physical impairments and/or previous or actual
intake of psychoactive substances, participants were deemed
ineligible. Before the study commenced, the ethics committee
of the German Psychological Society approved the protocol (HB
02201 6_amd_092011). All participants and their legal guardians
provided informed written consent after study procedures were
explained in detail. The study was conducted following the
guidelines set forth in the declaration of Helsinki and registered
in the German Clinical Trials Register (DRKS00016590).

1Data from this sample (including working memory performance) have been

previously reported (19) but neither of the analyses on HPA activity included in

the current manuscript.
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TABLE 1 | Salivary cortisol raw scores (nmol/l) for each time point.

Minutes from awakening

0 30

PRE

t1 17.99 (7.77) 21.39 (9.68)

t2 17.73 (10.82) 22.24 (8.95)

POST

t3 17.98 (8.90) 21.34 (12.50)

t4 18.27 (8.30) 23.29 (12.60)

Measurements
Cortisol Awakening Response (CAR)
The CAR can be defined as the change in cortisol concentration
immediately post-awakening: it represents a discrete aspect
of the cortisol circadian cycle and has good intra-individual
stability across time (21). Morning salivary cortisol levels were
assessed at home at two time points. Children obtained saliva
samples 0 and 30min after awakening with the help of their
parents, who were instructed personally and with the help of
written manuals. Wakening time was 7 o’clock for all children.
In order to increase reliability of the measure two cortisol
samples (0, +30min) were taken one week later both on the
same day of the week pre- and post-intervention. Children
were asked to refrain from physical activity one day before the
assessment. Overall salivary cortisol was sampled eight times
(see Figure 1 and Table 1). Saliva samples were analyzed from
whole saliva collected via the SaliCap R©system (IBL, Hamburg,
Germany). For each assessment, participants were asked to
accumulate saliva in their mouth for 2min and refrain from
swallowing while doing so. The accumulated saliva was then
transferred into a pre-labeled vial via a straw. After arriving
at school, research staff collected and stored the samples at
−20◦C until analysis. Cortisol levels (nmol/l) were analyzed
using a commercially available enzyme-linked immunoassay
(IBL, Hamburg, Germany) at the Biochemical Laboratory of the
Department of Clinical Biopsychology, University of Marburg.
Intra- and inter-assay coefficients of variation were 6.7 and
7.6%, respectively.

CAR was calculated as the area under the curve (AUCg), in a
first step using the mean of both saliva samples (immediately and
30min after awakening) for pre and post-intervention separately,
as it has been shown that awakening cortisol levels might be
sensitive to differences in daily activities. In a final step, AUCg
was calculated in accordance to Fekedulegn et al. (22). The raw
scores for salivary cortisol are illustrated in Figure 1.

Cardiovascular Fitness (Card Fit)
Card Fit was tested with the Shuttle Run Test, a standard method
for determining cardiorespiratory fitness in school children.
Children were asked to run between two lines set 20m apart.
In accordance with the standardization used elsewhere (23), the
children ran back and forth continuously with an initial speed
of 8.0 km.h-1, increasing the level by 0.5 km h−1 each minute.
Acoustic signals in a given frequency were used to control the
pace. In all stages the students were motivated by cheering

FIGURE 1 | Salivary cortisol raw scores (nmol/l) for each measurement point

pre (t1, t2) and post (t3, t4) intervention.

and by a pacemaker. We determined the HRmax as well as the
maximum scores reached, which are the level and number of
shuttles reached before fatigue (i.e., unable to maintain pace).

Motor Fitness (Mot Fit)
Mot Fit was assessed using the Heidelberg Gross Motor Test
for children. We included the performance of six motor
tasks [i.e., balance, rhythm, spatiotemporal orientation, and
motor adaptation to moving objects; for further details see
Koutsandréou et al. (19)] that were quantitativelymeasurable and
calculated a sum score. For example, in the motor adaptation to
moving objects task, points were earned by first throwing a ball
backword through straddled legs against a 3m distant wall and
then, catching the rebounding ball (two points) or just touching
or dropping it (one point).

Intervention
For 10 weeks, three times a week, for 45min, an experienced
exercise instructor trained the participants after school in groups
of 7–14 children. The CV group trained their cardiovascular
fitness via running and running-based games, however, varied
to avoid boredom. The MO group focused on improving fine
and gross motor body coordination through playful coordination
exercises with low intensity: for the cardiovascular system. The
control group received assisted homework sessions to prevent
attention bias and control for retest effects (19). As previously
reported (19) the three experimental groups (MO: 125.4 bpm,
CV: 138.8 bpm, CON: 79.4 bpm) differed significantly regarding
their mean heart rate levels: (recorded by F1 Polar HR monitors;
Polar, Kempele, Finland) during exericse with MO and CV
scoring significantly higher than CON but also CV scoring
slightly higher than MO.

Procedure
For the pre-post-design of this study, cardiovascular and
motor fitness were assessed in the week prior to the start
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TABLE 2 | Results of the hierarchical regression analysis of post-intervention CAR (cortisol awakening response, log-transformed AUC) with gender, age, pre-intervention

CAR, and performance in the shuttle run test (Pre CP) were entered in Model 1.

Variable Post-CAR

Model 1 Model 2 Model 3

B SE t p B SE t p B SE t p

Constant 6.716 1.447 4.639 0.000 6.919 1.455 4.754 0.000 7.026 1.416 4.962 0.000

Gender −0.170 0.160 −1.059 0.293 −0.154 0.164 −0.940 0.351 −0.226 0.162 −1.394 0.169

Pre-CAR 0.284 0.079 3.585 0.001 0.295 0.080 3.666 0.001 0.271 0.077 3.506 0.001

Pre-CP −0.012 0.045 −0.259 0.796 0.018 0.049 0.371 0.712 0.045 0.047 0.950 0.346

Age 0.094 0.133 0.703 0.485 0.040 0.136 0.292 0.771 0.049 0.132 0.372 0.711

CE −0.031 0.096 −0.323 0.748 −0.017 0.091 −0.191 0.849

ME −0.009 0.096 −0.094 0.925 −0.003 0.090 −0.033 0.974

1Card Fit 0.167 0.087 1.924 0.059 0.215 0.083 2.572 0.013

1Mot Fit 0.013 0.082 0.164 0.870 0.032 0.078 0.414 0.680

CE × 1Card Fit 0.213 0.099 2.157 0.035

ME × 1Card Fit 0.072 0.100 0.720 0.474

CE × 1Mot Fit 0.018 0.093 0.189 0.851

ME × 1Mot Fit −0.188 0.093 −2.016 0.049

R2 0.187 0.236 0.366

F 3.73 2.35 2.74

df (4.65) (8.61) (12.57)

1R2 0.049 0.130

1F 0.981 2.914

df (4.61) (4.57)

PreCP, Pre-cordiocosculor performance. Experimental group assignment (cardiovascular exercise group, CE, and motor exercise group, ME), and increases in cardiovascular fitness

(1CardFit) and motor fitness (1MotFit) were entered in Model 2. Lastly, interaction terms between variables were entered in Model 3.

of the intervention, and 1 week before the last intervention
appointment. Following the recommendation by Hellhammer
et al. (24), CAR was assessed twice prior and after the
intervention: 1 week prior (1st time pre) and on the day of
the start of the intervention (2nd time pre), as well as 1 week
before the last intervention appointment and at the end of the
10-week intervention.

Statistical Analyses
For statistical analysis cortisol values were log-transformed to
achieve normal distribution. A series of hierarchical regression
analyses were performed in three blocks to predict post-
intervention average CAR value for the two assessments (t3,
t4), and to control for lower order effects before testing for
higher order effects (see Table 1). In the first block we controlled
for sex, the average value of CAR for the two pre-intervention
assessments (t1, t2), pre-intervention cardiovascular fitness level,
and age. In the second block, the experimental groups (MO vs.
CON, CV vs. CON) were included as categorical variables in
the model, as well as the change scores for cardiovascular and
motor fitness. In the third block, the interaction terms between
cardiovascular/motor fitness and intervention condition were
added (cardiovascular fitness × CV; cardiovascular fitness ×

MO; motor fitness × CV; motor fitness × MO). For statistical
analysis SPSS 24 software (IBM, Armonk, USA) was used.

RESULTS

In order to test the effects of a 10-week physical exercise
intervention on motor vs. cardiovascular fitness on CAR in
children, we computed a hierarchical regression analysis using
three blocks (see Table 2). In the first block, post-intervention
CAR was residualized for age, gender, pre-cardiovascular
performance, and pre-intervention CAR. Including pre-
intervention CAR (B = 0.284, p = 0.001), age (B = 0.094, ns),
gender (B = −0.170, ns), and pre-cardiovascular performance
(B = −0.012, ns) rendered the regression analysis on post-
intervention CAR significant, R2 = 0.187, F(4, 65) = 3.730,
p = 0.009. In Model 2, we included changes in participants’
intervention-induced cardiovascular (1Card Fit) and motor
fitness (1Mot Fit), as well as participants’ training intervention
[cardiovascular exercise training (CV) or motor exercise training
group (MO)] compared to the control group in the model.
In Model 3, the interaction terms (multiplicative term of z-
standardized variables) of training intervention (CV vs. MO) by
changes in participants’ fitness levels (1Mot Fit,1Card Fit) were
added to the regression. Adding the cardiovascular and motor
exercise group and the cardiovascular and motor pre-to-post-
fitness changes did not result in a significant improvement in
Model 2. However, including the interaction terms significantly
improved Model 3, 1R2 = 0.130, 1F(4, 57) = 2.914, p = 0.029,
and rendered the whole model significant, R2 = 0.366, F(12, 57)
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FIGURE 2 | Post-intervention CARs (log-transformed AUC) in the three experimental groups (CV, MO, Control) as function of change in motor fitness (left graph) and

change in cardiovascular fitness (right graph).

= 2.353, p = 0.005 (see Table 2). Participants in the CV who
enhanced their cardiovascular fitness over the course of the
intervention showed an increased CAR after the intervention
time (B = 0.213), whereas children who underwent a motor
exercise intervention and at the same time gained in motor
fitness exhibited a decreased CAR after 10 weeks of intervention
(B=−0.188; see Figure 2).

DISCUSSION

The aim of this study was to investigate the effects of
cardiovascular vs. motor exercise interventions on CAR in 9
to 10-year-old children. Our results show that cardiovascular
and motor exercise exert different effects on HPA axis
activity. Thus, specific exercises influence the HPA axis activity
in different ways. Whereas, an increase in cardiovascular
fitness was accompanied by an increase in HPA axis activity,
particularly in children who underwent a cardiovascular exercise
program, an increase in motor fitness in children who
underwent a motor exercise program was accompanied by a
decrease in CAR.

First, it should be kept in mind that it is still challenging
to identify whether a large or small CAR is considered
“healthy.” Second, to our knowledge, there is not enough
systematic research on children, who represent an under-
studied population. Research in this field is scarce, which
makes it challenging to put results into context and highlights
the importance of addressing the effects of different exercise
interventions on the cortisol activity in children in future
research. We base our argumentation on findings in adults
showing that a higher increase in CAR is generally positively
associated with job and general life stress (8).

Children who did increase their cardiovascular fitness,
regardless of their experimental group assignment, showed an
increase in cortisol activity. This is in line with previous findings

in children indicating vigorous physical activity was positively
related with 30min post-waking cortisol values (11).With respect
to children that did increase their cardiovascular fitness and
presented an increase in cortisol activity, it could be argued that
this is a result of an HPA axis hyper-responsiveness as a biological
consequence of the frequent activation of the axis triggered by
exercise stress: this may be part of the physiological adaptation of
the neuroendocrine system to chronic demands (25).

Utilizing a set of salivary cortisol data in a small sample
population of healthy older adults (mean age 65), a robust cortisol
awakening response, and increased CAR after exercise training
(a 6-month supervised intervention designed to reach 60–70% of
their maximum heart rate reserve, 3 days a week, without any
mentioned motor demands) were observed (26). However, one
has to keep in mind that the cortisol response like many mental
health related responses to exercise is depending on age (27).

Children in the motor exercise group that did increase their
motor fitness showed a decrease in cortisol activity. This result
is in line with research linking lower CAR to the duration
of daytime sport (12). In a study with healthy young adults,
the impact of long duration and high intensity of exam stress
on the CAR supports that the HPA axis is down-regulated by
chronic major stress, with this downregulation reflected by a
reduction of the CAR (28). Although themechanisms resulting in
hypocortisolism are not yet fully clarified, possible explanations
include changes in the biosynthesis of HPA-axis hormones
and/or availability and functioning of their receptors at all levels
of the HPA-axis [see Heim et al. (29) for discussion].

One could argue that due to improved motor abilities
cognitive resources are freed to deal with complex situations in
daily life resulting in a reduced chronic stress response (14). It
has been further suggested that having control or no control
over stress can have opposite effects on neural plasticity (15).
Regarding the training of the cognitive system in this group
one could speculate that it leads to an improved self-regulation
and thus influencing neural input/traffic to the HPA axis.

Frontiers in Endocrinology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 463

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Wegner et al. Exercise Training and Children’s Cortisol

Results by Blair et al. (30) indicate that moderately higher
levels of cortisol are associated with better performance on self-
regulation, however it remains to be evaluated if this elevation
in cortisol would lead to a change in CAR. One could also
argue that the cognitive challenge of this exercise should induce
neurogenesis (31). However, these argumentations would impede
an explanation of the observed differences. Only the following
hypothesis backed up by human data can somehow explain our
findings. A recent study about the hippocampal volume in older
humans after a 6-month intervention period, indicates that only,
cardiovascular but notmotor demanding training led to increases
in hippocampal volume (17) which is positively related to the
magnitude of the CAR (32).

One limitation of the study is that we only used two time
points to assess the AUCg for the CAR. However, this procedure
has been previously presented by different authors (5). Another
limitation is that in the motor exercise group it is not possible to
standardize the intensity for the neural nor for the cardiovascular
system to compensate for motor demands of the different
exercises, which can be challenging for one participant and more
difficult for another participant. It cannot be ruled out that
training programs matched for cardiovascular load, but with
different coordinative demands would have resulted in a different
pattern of results. As we previously reported both experimental
exercise groups differed in intensity (19, 33).

Also, even though the children in the MO group were
provided with playful exercises, and children in the CV
group completed a variation of running exercises, it remains
unclear how they were perceived by the children themselves.
Finally, we did not control for subjectively perceived
(chronic) stress prior or post-intervention. Future research,
especially when focusing on children, should do so in order
to control for potential confounding variables, as general
life stress in adults has been associated with differences
in CAR (8).

Another limitation of our study is that we did not assess
abdominal fat in these children. It is known that abdominal fat
may affect neuroendocrine responses mainly to psychological
stress (34). However, significant changes in abdominal fat usually
take place during puberty and children in our study were
on average 9.4 years old which might diminish the effect of
abdominal fat on HPA axis reactivity. Also, there is not enough
systematic research on this specific understudied population and
research in this field has not been well-discussed in the literature
yet. This should be addressed in future studies and encourage
researchers to add abdominal fat as a covariate.

One advantage of the present study though is that the AUCg
used presents a more stable measure of the CAR because we
used two AUCg measurements 1 week apart as previously
recommended in the CAR guidelines by Stalder et al. (35).

However, as training intensity and volume play a crucial role
for the effects on CAR (6), future research should implement
follow-up measurement points.

Overall, our results show that cardiovascular and motor
exercise training in school exerts different effects on HPA
axis activity. Whereas, an increase in cardiovascular fitness
was accompanied by an increase in HPA axis activity, an

increase in motor fitness in children was lead to a decrease
in CAR.

Research has yet to produce more detailed and consistent
findings to make a more meaningful statement regarding ET
and its role on CAR, especially in children. The current study
raises questions that future research needs to address in order
to increase prevention of potential pathological diseases in
childhood and adolescence.

Unfortunately, we simply do not know under what
circumstances, for whom, and at what developmental
periods under- vs. over-activation of the HPA-axis are most
likely and how this is expressed by changes in CAR in
this age group. While we suspect that under-activation of
the HPA-axis may in fact be a reflection of more severe
stress exposure and have more serious consequences than
hyperactivation (36), however it needs to be established what
the consequences are and under which cortisol concentration
they occur.
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