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Gram-negative bacteria, especially Enterobacterales, have emerged as major players in

antimicrobial resistance worldwide. Resistance may affect all major classes of anti-gram-

negative agents, becoming multidrug resistant or even pan-drug resistant. Currently,

β-lactamase-mediated resistance does not spare even the most powerful β-lactams

(carbapenems), whose activity is challenged by carbapenemases. The dissemination of

carbapenemases-encoding genes among Enterobacterales is a matter of concern, given

the importance of carbapenems to treat nosocomial infections. Based on their amino acid

sequences, carbapenemases are grouped into three major classes. Classes A and D

use an active-site serine to catalyze hydrolysis, while class B (MBLs) require one or two

zinc ions for their activity. The most important and clinically relevant carbapenemases

are KPC, IMP/VIM/NDM, and OXA-48. However, several carbapenemases belonging to

the different classes are less frequently detected. They correspond to class A (SME-,

Nmc-A/IMI-, SFC-, GES-, BIC-like…), to class B (GIM, TMB, LMB…), class C (CMY-10

and ACT-28), and to class D (OXA-372). This review will address the genetic diversity,

biochemical properties, and detection methods of minor acquired carbapenemases

in Enterobacterales.
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Nowadays antimicrobial resistance is of critical concern. Since the first identification of an enzyme
able to destroy the penicillin by Abraham and Chain in the 1940s (1), more than 4,900 β-
lactamases have been reported (http://www.bldb.eu/). Two main classifications are used: (i) the
structural classification of Ambler and (ii) the functional classification of Bush and Jacoby (2, 3).
Since the functional classification is more complicated, Ambler’s classification will be used in this
review. According to Ambler’s structural classification, four classes (A to D) of β-lactamase are
described (4). Briefly, the class A groups penicillinases and their extended-spectrum variants that
are inhibited by clavulanate, sulbactam, and tazobactam. The class B corresponds to metallo-β-
lactamases. All of the metallo-β-lactamases possess a carbapenemase activity. They are inhibited
by ion chelator such as EDTA but not by class A inhibitor (clavulanate, tazobactam, sulbactam).
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Class C enzymes correspond to cephalosporinase and
initially demonstrated better activity toward first generations
cephalosporins compared to penicillins. They are inhibited by
cloxacillin. Finally, class D enzymes, also named oxacillinases,
group very diverse β-lactamase sub-families. They were initially
reported to be inhibited in vitro by NaCl (5). Novel inhibitors
such as avibactam, relebactam, or vaborbactam that possess
inhibitory activity toward class A, C, and ± D will be described
further in this review.

Thirty years of carbapenemase epidemiology demonstrated
that these broad-spectrum enzymes might be split in two groups,
the “Big Five” carbapenemases and the “rare” carbapenemases.
The “Big Five” carbapenemases corresponds to the five main
carbapenemases identified worldwide being class A KPC
enzymes, metallo-β-lactamases of IMP, VIM&NDMgroups, and
class D OXA-48-like enzymes (4–7). The rare carbapenemases
constitute a diverse group of enzymes belonging to the four
classes of β-lactamases. The observed lower prevalence might
be due to genetic features leading to a lower spread, or to
the underdetection due to the lack of specific diagnostic tests
targeting these enzymes.

Before starting this journey in carbapenemases-producing
bacteria, it is important to overview the important changes
in bacterial nomenclature. Indeed, with the massive use of
whole genome sequencing, bacterial nomenclature has evolved
rapidly during the last decade. Accordingly, this nomenclature
evolution will lead to some changes in the old descriptions.
Enterobacteria constitute a large and diverse group of facultative
aerobic, gram negative rods. They are highly diverse regarding
their biochemical properties, their pathogenicity, as well as for
their ecological niches. The former order of Enterobacteriales has
been reorganized recently based on the phylogenetic analysis of
1,500 protein sequences and overall genome similarity (8). The
order of Enterobacterales is now composed of 7 families being
Enterobacteriaceae, Erwiniaceae, Pectobacteriaceae, Yersiniaceae,
Hafniaceae,Morganellaceae, and Budvicaceae. Themost clinically
relevant bacterial genera are part of the Enterobacteriaceae
family, including Escherichia/Shigella, Salmonella, Klebsiella,
Citrobacter, and Enterobacter. Yersiniaceae family contains
Yersinia spp. and Serratia spp. and Morganellaceae contains
Morganella spp., Proteus spp., and Providencia spp. To dive
deeper in Enterobacterales classification and evolution, the case
of Enterobacter genus is a key example. Described in the
1960s, this genus comprised more than 20 species (https://lpsn.
dsmz.de/genus/enterobacter) but its classification is continuingly
evolving. For instance, Enterobacter aerogenes (also renamed
Klebsiella mobilis in the 1970s) has been officially reclassified
as Klebsiella aerogenes (9). Another example of this constant
evolution is the reclassification of Enterobacter sakazakii as
Cronobacter sakazakii (10). Moreover, it is highly difficult,
even almost impossible, to decipher the E. cloacae complex
(ECC) using classical microbiological methods even using
MALDI-TOF for that purpose (11). For all these reasons,
ancient description of genus and species in this manuscript
should be analyzed with the prism that they were not
identified with phylogenetic analysis methods and thus can
be misidentified.

MINOR CLASS A CARBAPENEMASES

The main class A carbapenemases in Enterobacterales
correspond to KPC-type enzymes (4, 5). Beyond this major
carbapenemase family, a wide diversity of unrelated minor
class A carbapenemases have emerged including IMI-, FRI-,
or GES-type enzymes. To complicate the situation, some of
these carbapenemases possess a peculiar phenotype that can
be missed on the antibiogram. This chapter will focus on the
genetic diversity and phenotypes of these rarely described class
A carbapenemases.

IMI / NMC-A
The IMI/NMC-A (Imipenemase/Non-metallo-carbapenemase
A) carbapenemases form a group of carbapenemases identified in
Enterobacter genus. They are among the oldest carbapenemases
described (12, 13). IMI-1 confers resistance to penicillins
alone and in combination with clavulanate, early generation
cephalosporins, and carbapenems but spares broad-spectrum
cephalosporins such as ceftazidime (Figure 1) (12). Despite
rarely described, in comparison to “Big Five” carbapenemases,
IMI-like carbapenemases have been described in different
continents. IMI-1 was initially reported in the USA in an E.
cloacae isolate from 1984, thus a year prior the US approval of
imipenem. Since then, IMI-1 has been identified in Enterobacter
genus in Singapore, China, French Polynesia, Vietnam, and Japan
(14–17). IMI-2 was firstly identified in E. asburiae recovered from
environmental samples in US rivers from 1999 to 2001 (18). It
has been identified in Klebsiella variicola in UK, in E. asburiae
in Czech Republic, in E. cloacae from Spanish rivers, France, and
Canada, Enterobacter mori in Austria, and E. coli in Spain and
China (19–24). IMI-3 was firstly detected in China and France
(21, 25, 26). IMI-5, IMI-6 were identified in Canada (27). IMI-
9 was identified in Enterobacter cloacae in Canada and Norway
(27, 28). In addition, IMI-13 and IMI-17 were detected in France
by the French National Center (unpublished data). To date,
19 variants of IMI plus NMC-A have been identified. Genetic
analysis revealed interesting features related to the acquisition
of those genes. Whereas, blaIMI−1 is often carried on the
chromosome, blaIMI−2 is mainly carried on plasmids. The genetic
element at the origin of the acquisition of blaIMI−1 is a genomic
island involving XerC/XerD recombinases. These elements are
named EcloIMEX-like elements (27). At least 8 EcloIMEX have
been described in the literature. They differ by the diversity at the
3
′
extremity of the structures. However, the 5

′
extremity carrying

the blaIMI-like gene is highly conserved and contained different
hypothetical proteins, a putative protease, and ABC_ATPase
and a glycosyltransferase (27). Some EcloIMEX elements (for
XER-dependent integrative mobile elements) seem to have
recombined and have lost part of their IMEX as observed for
EcloIMEX-8 (17). All of these elements are inserted in a dif site
between setB and yeiP genes. These elements are also responsible
for the acquisition of blaIMI−9 carried by EcloIMEX-5 and
EcloIMEX-6. The blaIMI−2 was carried on a self-transferable
plasmid of ca. 66 kb in E. asburiae from US rivers (18). After
initial identification, a blaIMI−2-carrying plasmid was sequenced
from K. variicola (19). This plasmid belonged to IncFII-family
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FIGURE 1 | Antibiograms of representative class A carbapenemases. (A)

IMI-1-producing E. cloacae complex clinical isolate. (B) GES-5 producing K.

pneumoniae clinical isolate. (C) SME-3-producing S. marcescens. (D)

FRI-1-producing E. coli transformant. AMX, Amoxicillin; AMC,

Amoxicillin/clavulanate; ATM, aztreonam; CAZ, ceftazidime; CTX, Cefotaxime;

CZA, Ceftazidime/avibactam; ETP, Ertapenem; FEP, Cefepime; FOX,

Cefoxitine; IPM, Imipenem; MEM, Meropenem; PIP, Piperacillin; TCC,

Ticarcillin/Clavulanate; TEM, Temocillin; TIC, Ticarcillin; TZP,

Piperacillin/Tazobactam.

plasmid and was of 77 kb in size. The blaIMI−2 gene has also
been identified in IncFI-like plasmid in E. coli in Spain (20).
The mechanism of acquisition of blaIMI−2 remains unclear. As
for all blaIMI-like gene, a LysR family transcriptional regulator,
blaIMI−R, is present upstream of blaIMI−2 (18). Different ISs or
IS remnants have been identified bracketing blaIMI−2-blaIMI−R

locus including ISEcl3, ISEcl1, ISEc36 (21). The presence of this
gene on IncF-type plasmid families is very likely the reason of
its occurrence out of Enterobacter genus. The blaIMI−3 gene
was identified on an IncFIIY plasmid within a new composite
transposon, Tn6306. This transposon is composed of 2 copies of
ISEcl1-like bracketing the resistance gene (21). The blaIMI−5 and
blaIMI−6 genes are also carried by different IncFII-type plasmids
of c.a 90 and c.a 165 kb (27). Of note, the blaIMI−6 and blaIMI−3-
carrying plasmids also carried a type VI secretion system that
might give an advantage under certain ecological niches.

BKC-1
BKC-1, for Brazilian Klebsiella carbapenemase, is one of the
latest carbapenemases described. The first occurrence of this

carbapenemase was reported in three K. pneumoniae strains
isolated in Sáo Paulo, Brazil (29). These three isolates were
recovered from two different hospitals but showed the same pulse
field gel electrophoresis (PFGE) pattern and belonged to same
sequence type (ST), ST1781. Cloned in E. coli, the production
of BKC-1 confers resistance to penicillins, broad-spectrum
cephalosporins, aztreonam, and decreased susceptibility to
carbapenems (Table 1). However, as observed for ESBLs, efficacy
of cefoxitin is not altered by BKC-1. Purification of this
enzyme confirmed the observed phenotype with hydrolysis of
penicillins, cephalosporins, and carbapenems but not cefoxitin.
Phylogenetic analysis revealed few similarities with other class A
carbapenemases, e.g., 39% of amino-acid identity with KPC-2.
The closest β-lactamase corresponds to an uncharacterized β-
lactamase identified in Sinorhizobium meliloti with 63% amino
acid identity (29). The blaBKC−1 is carried by a small non-
conjugative IncQ-type plasmid of 9.7 kb in size. Upstream of
blaBKC−1, a copy of ISKpn23 is inserted, likely leading to its
expression and its probable mobilization (30). Indeed, ISKpn23
belongs to IS1380 family. The most famous member of this
family is ISEcp1, known to mobilize adjacent genes by one-
ended transposition (31). This gene has also been identified in C.
freundii harboring the same plasmid (32). Until now, this enzyme
has never been described out of Brazil and presented an overall
low prevalence in this country with 0.3% (2/635) of Klebsiella
spp. isolates randomly selected among strains collected from
previous surveillance studies (33). In this study, the two isolates
of K. pneumoniae were clonally related belonging to ST442 and
possessed the same plasmid.

SHV-38
SHV is the natural class A β-lactamase of K. pneumoniae.
Variants of SHV with changes in their hydrolytic properties
were the main resistance mechanism to broad-spectrum
cephalosporins in the 1980s (with TEM-like enzyme) before
the emergence and the spread of CTX-M enzymes (34). These
enzymes gave the name of extended-spectrum β-lactamase
compared to narrow-spectrum SHV-1. Among more than
200 variants of SHV enzymes, SHV-38, possessing A146V
substitution, has been described to be the only SHV variant with
carbapenemase activity (35). Once cloned in E. coli, this enzyme
conferred increased MICs to imipenem as compared with SHV-
1 (Table 1). Enzymatic assays confirmed ability of SHV-38 to
hydrolyze imipenem (Table 2). However, no characterization of
the impact of the amino acid substitution was performed to
date (e.g., replacement of the valine by another amino acid
or the crystallization of this enzyme bound to imipenem).
This enzyme has been detected in Brazil, in environmental
samples in India and in Tunisia, but its presence is very likely
underestimated (36–38).

CTX-M-33
CTX-M enzymes are the main ESBLs described worldwide
and have replaced the “old” ESBLs, TEM-, and SHV-like
enzymes (39). Despite the fact that the production of CTX-M-15
associated to porin deficiency can increase theMIC of ertapenem,
this enzyme does not hydrolyze carbapenems at a significant
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TABLE 1 | Main features of rare carbapenemases in Enterobacterales.

MICs of β-lactams in cloning vector in E. coli (mg/l)

Name Number of variants Genetic environment Countries of isolation TIC CAZ IPM MEM ERT Strain of E. coli and

cloning vector/variant

References

for MICs

Class A

IMI-/NMC-A 20 EcloIMEX (IMI-1-like)

different ISs (IMI-2-like)

USA, Singapore, China,

French Polynesia, Vietnam,

Japan, Czech Republic,

France, Canada, Austria,

Spain, Norway

256 0.5 >32 >32 N/A E. coli DH10B

Vector pGB2-IMI-2

(18)

BKC 1 ISKpn23 Brazil >256 8 0.5 0.12 0.12 E. coli BL21

Vector pET-BKC

(29)

SHV-38 - N/A Brazil, India, Tunisia >512 64 0.5 0.12 N/A E. coli DH10B

Vector pBK-CMV-SHV-38

(35)

CTX-M-33 - N/A Greece, Portugal >512 32 1 0.25 0.25 E. coli TOP10

Vector natural plasmid

(42)

GES 43 (only few variants with

carbapenemase activity)

integron France, Greece, Japan,

Korea, Brazil, Czech Republic,

South Africa, Portugal,

Belgium, Macedonia, Israel

>256 0.75 1.5 0.094 N/A E. coli DH5alpha

Vector PACYC184-GES-5

(47)

SFC 1 N/A Portugal N/A 1 4 0.38 N/A E. coli XL2 pIH18 (64)

SME 5 SmarGI1-1 UK, USA, Argentina,

Switzerland, Canada, Brazil

512 1 32 2 N/A E. coli JM109

Vector pACYC-184-SME-

1 (pTN102)

(66)

FRI 9 ISs France, UK, Germany, Japan,

Canada

>256 2 4 0.38 0.75 E. coli TOP10

Vector pTOPO-FRI-1

(80)

FLC 1 Netherlands N/A 1 16 4 >2 E. coli LMG194 vector

pBAD

(24)

Class B

GIM 2 Integron Germany N/A 16 0.5 0.5 1 E. coli J53

Vector pGIM-1

(85)

KHM 1 ISs Japan 512 >512 0.5 4 N/A (94)

TMB 1 Integron France N/A >256 1 32 N/A E. coli DH5a

Vector pGEM-T-TMB-1

(97)

SFH 1 N/A Portugal N/A 0.19 >32 >32 N/A E. coli XL2 blue

Vector pBGS19-SFH-1

(101)

AIM 1 ISCR5 China N/A 32 0.25 0.25 1 E. coli TOP10

Vector pK18-AIM-1

(103)

LMB 1 ISs Austria, Argentina N/A 32 1 2 0.25 E. coli TOP10

Vector pBK-CMV-LMB-1

(108)

Class C

CMY-10 - ISCR1 Korea N/A 4 0.25 0.25 N/A E. coli J53

Vector natural plasmid

(111)

ACT-28 - None France >256 >256 0.5 0.047 0.125 E. coli TOP10

Vector pTOPO-ACT-28

(110)

(Continued)
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level (40, 41). Recently, a variant of CTX-M-15, CTX-M-33, was
reported to hydrolyze significantly carbapenems despite a very
low kcat for imipenem and ertapenem (42). This enzyme has been
firstly identified in Greece in 2007 and more recently in Portugal
(43, 44). As mentioned above for SHV-38, the prevalence of this
enzyme is likely underestimated since sequencing of the gene is
mandatory to detect this peculiar variant.

GES
Among the wide diversity of ESBLs, some are major such as
the pandemic CTX-M-family enzymes, and some are minor
considering their rare identification or their restriction to
certain areas. Among these ESBLs, a family is of particular
interest: GES-type enzymes. Firstly identified in 1998 in France
in a K. pneumoniae isolate (45), GES-1 production conferred
resistance to penicillins, broad-spectrum cephalosporins, but
not to cephamycins and carbapenems (45). After this first
identification, a variant, GES-2, possessing a G170N substitution,
was characterized. This variant was the first ESBL variant with a
significant carbapenemase activity (46). Since then, more than 40
variants of GES-1 have been described. Among them, all variants
with a substitution of the glycine 170 exhibited significant
carbapenemase activity with the higher catalytic properties for
G170S substitution. In addition to carbapenem hydrolysis, G170S
substitution increased hydrolysis spectrum toward cephamycins
(47). Noticeably, two other amino acid positions are involved
in hydrolysis spectrum changes. Indeed, positions 104 and
243 are involved in increased hydrolysis toward oxyimino-
cephalospoins and aztreonam, respectively (47, 48). Several GES-
type carbapenemases have been identified in Enterobacterales
being GES-3 in Greece, Japan, and Korea (49–51), GES-4 in
Greece and Japan (49, 52), GES-5 in Korea, Brazil (including
remote community in Amazonia), France (Figure 1), Czech
Republic, South Africa, and Portugal (53–58), GES-6 in Belgium,
Macedonia, and Israel (59, 60), and GES-16 in Brazil (61). The
blaGES-type genes are usually carried by class 1 integron, but also
more rarely by class 3 integron responsible for their expression.
These genes have been described on a variety of plasmid families.
Noticeably, this gene family is increasingly reported with, for
instance, two recent reports of GES-5-producing K. pneumoniae
in Poland and GES-5-producingK. oxytoca, E. coli, and E. cloacae
in UK (62, 63).

SFC-1
Among rare class A carbapenemases, SFC-1 (Serratia fonticola
resistant to carbapenems) and SME-like (Serratia marcescens
enzyme) enzymes have been identified in Serratia fonticola
and Serratia marcescens, respectively (64–66). Despite its
identification on the chromosome of S. fonticola, blaSFC−1 is
not shared by all S. fonticola but only in one isolate from
Portugal. No information regarding its acquisition is available in
the literature. SFC-1 hydrolyzes all β-lactams including broad-
spectrum cephalosporins, cephamycins, and carbapenems.

SME
SME-1 was initially detected in two isolates recovered in
England in early 1980s (67). Kinetics parameters of SME-1 and

Frontiers in Medicine | www.frontiersin.org 5 January 2021 | Volume 7 | Article 616490

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


B
o
n
n
in

e
t
a
l.

M
in
o
r
C
a
rb
a
p
e
n
e
m
a
se

s
in

E
n
te
ro
b
a
c
te
ra
le
s

TABLE 2 | Kinetics of minor carbapenemases.

Class A Class B Class C Class D

Substrates Kcat (s-1)

NMC-A IMI-1 FRI-1 BKC-1 CTX-M-33 SHV-38 GES-5 SME-1SFC-1 GIM-1 AIM-1 TMB-1KHM-

1

ACT-28 CMY-10 OXA-23 OXA-40 OXA-58 OXA-198 OXA-372

Benzylpenicillin 260 36 1,060 34.2 210 100 317 19.3 6.6 778 23 70 3.06 5 5.5 15 40

Amoxicillin 816 190 >17,000 215 1,800 181

Ticarcillin 81 120 1.6 7.5 10 2.3 5 1 110

Piperacillin 6.1 >26,00 205 100 4 6.9 337 3.3 1 2.5 2.6

Oxacillin 14,306 2 1.5 25 145

Nitrocefin 22.4 5.8

Cephalothin 118.4 380 5 49.7 16 529 384 3 0.1 0.19 0.17

Cephaloridine 40 190 686

Cefoxitin NH 9.6 8.3 145 0.3 1,178

Cefotaxime 286 3.4 >220 0.4 620 1 2.9 <0.98 8.3 1.1 609 2,181 0.07 NH NH NH NH

Ceftazidime NH <0.01 NH 0.1 0.35 110 0.3 2.1 18 7 0.07 118 0.1 5.0 20 NH NH NH

Cefepime 28 1.69 70 3 17 93 NH NH NH NH

Aztreonam 707 51 >8,300 2.2 10 3 108 162 NH NH NH NH NH NH NH NH

Imipenem 1,040 89 1,790 0.03 <0.01 0.01 1.2 104 54 27 1,700 1.7 15 0.025 1.6 0.35 0.1 0.1 0.1 5.8

Meropenem 12 10 46 0.003 0.13 8.9 6.5 2.7 1,000 1.4 0.4 0.068 NH <0.01 0.01 0.13

Ertapenem 150 0.002 <0.01 0.4 0.021 0.49

Km (uM)

Benzylpenicillin 28 64 567 78.7 20 13 370 16.7 46 31 1,340 36 20.5 23 50 14 110

Amoxicillin 90 780 >5,000 160 35 488

Ticarcillin 152 393 32.7 40 14(Ki) 57 60 240 190

Piperacillin 13 >3,000 140 80 454 69 17 72 23 50 35

Oxacillin 267.3 876 70 30 125

Nitrocefin 20.9 12

Cephalothin 30 100 577 22 38 138 72 150 0.19 57

Cephaloridine 150 506 4.4

Cefoxitin 206 26 69 81

Cefotaxime 956 190 >5,000 223.9 215 800 341 NH 89 4 49 13 3.8 NH NH NH NH

Ceftazidime NH 270 NH 92.9 1,500 3,800 394 NH 52 31 148 31 8 306 33.9 2,500 NH NH NH

Cefepime 3,400 174.3 100 1,600 431 594 NH NH NH NH

Aztreonam 125 93 >5,000 1200.7 60 5,500 259 484 NH NH NH NH NH NH NH

Imipenem 92 170 1,614 4.4 0.2 (Ki) 24 4.2 202 82 287 97 200 268 1.9 11.4 4.8 6.5 7.5 0.15 26

Meropenem 4.4 26 70 1.5 90 13.4 26 25 163 75 12 <1 NH 0.075 0.006 0.7

Ertapenem 98 1.7 0.009 (Ki) 31 0.5 0.25

Kcat/Km (uM/s)

Benzylpenicillin 9.3 0.6 1.9 0.4 10 7.7 0.9 1.2 0.14 26 0.017 1.9 0.14 0.22 0.11 1.07 2.8

(Continued)
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TABLE 2 | Continued

Class A Class B Class C Class D

Substrates Kcat (s-1)

NMC-A IMI-1 FRI-1 BKC-1 CTX-M-33SHV-38 GES-5 SME-1SFC-1 GIM-1 AIM-1 TMB-1KHM-

1

ACT-28 CMY-10 OXA-23 OXA-40 OXA-58 OXA-198 OXA-372

Amoxicillin 9.1 0.2 3.4 1.35 51 0.4

Ticarcillin 0.5 0.3 0.05 0.2 0.7 0.04 0.02 0.004

Piperacillin 0.5 0.9 1.5 1.3 0.009 0.1 20 0.12 0.05 0.05 0.07 0.58

Oxacillin 53.5 0.002 0.83 1.2

Nitrocefin 1.1 0.47

Cephalothin 12.5 0.05 0.09 0.72 14 2.8 0.05 0.001 0.02 0.003

Cephaloridine 0.27 0.4 155.9

Cefoxitin 0.04 57 0.004 14.5

Cefotaxime 0.3 0.02 0.04 0.002 3 0.001 0.009 NH 0.09 0.24 12 167.8 0.02 NH NH NH

Ceftazidime 0.05 0.00002 NH 0.001 0.0003 0.03 0.0007 NH 0.04 0.58 0.0005 0.002 14.8 0.0003 0.15 0.01 NH NH

Cefepime 0.008 0.01 0.7 0.002 0.04 0.16 NH NH NH

Aztreonam 5.6 0.5 1.7 0.002 0.2 0.0005 0.4 0.004 NH NH NH NH NH NH NH

Imipenem 11 0.5 1.1 0.007 0.0005 0.3 0.5 0.7 0.09 17.5 0.009 0.06 0.013 0.14 0.07 0.015 0.014 0.67 0.22

Meropenem 2.7 0.4 0.7 0.002 0.0014 0.6 0.3 0.11 6,1 0.019 0.03 >0.06 NH <0.0002 1.67 0.52

Ertapenem 1.5 0.013 0.04 0.7

NH, Not Hydrolyzed.
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SME-2 demonstrated hydrolysis of penicillins, early-generation
cephalosporins, and carbapenems but not cephamycins and
broad-spectrum cephalosporins (68) (Figure 1). To date, five
point-derivative variants of SME-1 were reported. SME-1 has
been detected in UK and across the USA (68–71), SME-2 in
Argentina, Switzerland, Canada, USA (68, 72, 73), SME-3 in USA
(74), SME-4 in Brazil, Argentina, andUSA (75–77), and SME-5 in
Canada (Genbank accession number KJ188748). Analysis of the
genetic context revealed that expression of this carbapenemase
was under the control of a lysR-family transcriptional regulator,
SmeR (78). SmeR acts as an inducer of carbapenemase expression
in presence of cefoxitin or imipenem. Little information is
available regarding the genetic environment of blaSME−like gene.
The blaSME−1/−2 genes were embedded within a 28 kb genomic
island named SmarGI1-1. This genomic island was inserted
within the chromosome of S. marcescens at the locus ssrA coding
for the tmRNA representing the att site (79). A similar structure
is responsible for the acquisition of blaSME−4 in S. marcescens
isolate in Argentina (76).

FRI
One of the last described class A carbapenemase family in
Enterobacterales corresponds to FRI-1, for French resistance to
imipenem (80). The blaFRI−1 gene was detected in a E. cloacae
isolated in a patient hospitalized in Paris area, with a previous
history of travel in Switzerland. Production of FRI-1 conferred
resistance or reduced susceptibility to penicillins, cephalosporins,
aztreonam, and carbapenems (Figure 1; Table 1). Purified FRI-
1 enzyme exhibited hydrolysis of all tested β-lactams except
ceftazidime. It can be noticed that Km were relatively high
compared to other class A carbapenemases indicating a weak
affinity (Table 2). Nine variants have been described to date.
These variants did not correspond to point derivatives but
exhibited 81–94% amino acid identities for FRI-8 and FRI-6,
respectively. FRI-1 has been reported in France (80), FRI-2 in
UK (81), FRI-3 in Germany (82), FRI-4 in Japan (83), FRI-
5 in Japan (MH208723), FRI-6 in Canada (84), FRI-7/-8/-9 in
Japan (AP019534, AP019635, AP019633). The blaFRI−1 gene was
associated to a lysR-family transcriptional regulator as observed
for blaSME−1 responsible for inducible expression of the gene
(80). The blaFRI−1 gene has been identified on a 110 kb non
conjugative and untypeable plasmid. The IncFII/IncR plasmid
of 98 kb in size carrying the blaFRI−4 gene has been entirely
sequenced. Interestingly, the blaFRI−4 gene and its surrounding
region were duplicated on this plasmid (83). The last class A
carbapenemase identified is FLC-1, for FRI-like carbapenemase,
from Indian frozen seafood in Netherland in 2017 (24). This
carbapenemase is 99.66 and 82.3% amino acids identical to
FRI-8 and FRI-1, respectively. Therefore, this enzyme may be
reclassified as FRI-like variant. The phenotype observed in FLC-
1-producing is similar to FRI-1 (Table 1). This was confirmed
in biochemical analysis being hydrolysis of penicillins and
carbapenems but not ceftazidime or cefepime (Table 2). The
blaFLC−1 was carried by a plasmid belonging to IncFII family.
Surrounding the blaFLC−1 gene, remnants of IS belonging to IS3
family have been identified (24).

MINOR CLASS B CARBAPENEMASES

Metallo-β-lactamases belong to the molecular class B of Ambler’s
classification and group 3 of Bush & Jacoby’s classification
(2, 3). These enzymes are very diverse in term of structure
and hydrolytic profile. They can be classified in different
subgroups (B1, B2, & B3) based on their structures. The main
metallo-β-lactamases that have been identified worldwide in
Enterobacterales are NDM-, VIM-, and IMP-like enzymes (4). In
addition, several rare class B carbapenemases have been described
in Enterobacterales being class B1 GIM-1, TMB-1, and KHM-1,
class B2 SFH-1, and class B3 LMB-1 and AIM-1.

GIM-1
GIM-1, for Germany Imipenemase, is a class B1 metallo-β-
lactamase described in 2002 from five imipenem-resistant P.
aeruginosa in Germany (85). This enzyme, as for most class B1
β-lactamases, confers resistance to penicillins, broad-spectrum
cephalosporins, and carbapenems but spares aztreonam (85). It
is not inhibited by clavulanate or avibactam but is inhibited in
vitro by EDTA. Purified enzyme is able to hydrolyze all tested
β-lactams except for aztreonam (Figure 2; Table 2). Crystal
structures of GIM-1 revealed that the active site is narrower
in comparison to VIM-1 but possessed flexibility in two loops
likely explaining its wide variety of substrates (86). The blaGIM−1

gene was then identified in S. marcescens from a German patient
over a 20-month period (87). After this first occurrence in S.
marcescens, the blaGIM−1 gene was described in E. cloacae, K.
oxytoca, E. coli, C. amalonaticus, and C. freundii (88–92). To date,
this carbapenemase has spread only in Germany. Analysis of the
genetic context revealed that blaGIM−1 is part of class 1 integron
(85, 88, 89). This gene was carried by different conjugative
plasmids but not typeable by PBRT (88, 90). Until now, only one
variant, GIM-2, of this carbapenemase has been described in E.
cloacae in Germany (93).

KHM-1
KHM-1, for Kyorin Hospital Metallo-β-lactamase, is a class B1
metallo-β-lactamase identified in a clinical isolate ofC. freundii in
Japan (94). This carbapenemase confers resistance to penicillins,
broad-spectrum cephalosporins, and carbapenems but spares
aztreonam (94). This enzyme was purified and confirmed
the hydrolytic properties observed for the recombinant strain
(Table 2). The blaKHM−1 gene has never been described out
of Japan. However, this gene was present not only in clinical
settings but also in urban sewage that might indicate a spread
in the community. This carbapenemase has been identified
in C. freundii, K. quasipneumoniae, and E. hormaechei subsp.
hoffmannii (94–96). Genetic analysis revealed that blaKHM−1 is
not part of class 1 integron or “classical” transposon. In C.
freundii, genes of unknown function bracketed the blaKHM−1

(94). In K. quasipneumoniae and E. homaechei, a copy of ISEc68
and IS5 have been identified, respectively (95, 96). The blaKHM−1

has been identified on different large IncA/C-type plasmids.
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FIGURE 2 | Antibiograms of representative class B carbapenemases. (A)

GIM-1-producing E. cloacae complex clinical isolate. (B) TMB-1 producing E.

coli transconjugant. (C) SFH-1-producing S. marcescens clinical isolate. (D)

LMB-1-producing C. freundii clinical isolates. AMX, Amoxicillin; AMC,

Amoxicillin/clavulanate; ATM, aztreonam; CAZ, ceftazidime; CTX, Cefotaxime;

CZA, Ceftazidime/avibactam; ETP, Ertapenem; FEP, Cefepime; FOX,

Cefoxitine; IPM, Imipenem; MEM, Meropenem; PIP, Piperacillin; TCC,

Ticarcillin/Clavulanate; TEM, Temocillin; TIC, Ticarcillin; TZP,

Piperacillin/Tazobactam.

TMB-1
TMB-1, for Tripoli Metallo-β-lactamase, has been described
from an environmental isolate of Achromobacter xylosoxidans
in Libyan hospital in Tripoli, Libya (97). Since then, this
carbapenemase have been identified in A. baumannii
and Acinetobacter calcoaceticus in Japan (98). Of note, a
point derivative variant of TMB-1, TMB-2, possessing the
substitution S228P, has been described in Acinetobacter pittii
and Acinetobacter genomospecies 14 BJ also in Japan (99). The
production of TMB-1 confers resistance to penicillins/inhibitor
combinations and broad-spectrum cephalosporins but spares
aztreonam, as classically observed with class B1 enzymes.
Of note, MIC for meropenem is higher than for imipenem
with TMB-1 (MICs at 1 mg/L vs. 32 mg/L for imipenem and
meropenem, respectively). This difference was not observed
with TMB-2 for which MICs to imipenem and meropenem
were similar (MICs at 2 mg/L) (99). To date, only one report
of TMB-1 is available in Enterobacterales from France (100).
Two TMB-1-producing clinical isolates of E. hormaechei and C.
freundii were recovered from a patient previously hospitalized
in Tunisia (Figure 2). The blaTMB−1 gene is embedded in class
1 integron as a gene cassette always in the first position. In

A. xylosoxidans and Acinetobacter, it was likely carried on the
chromosome whereas it was carried by an IncN-type plasmid in
Enterobacterales (100).

SFH-1
SFH-1, for Serratia fonticola carbapenem hydrolase,
is a particular case since it corresponds to the sole
characterized metallo-β-lactamase belonging to B2 subclass
in Enterobacterales. This gene has been only described in S.
fonticola in Portugal (101, 102). However, no extensive genetic
analysis was performed to characterize the genetic context of this
gene. Interestingly, the phenotype conferred by the production
of this enzyme is peculiar. Indeed, it confers resistance to
carbapenems but neither to cephalosporins nor penicilins
(Figure 2; Table 1).

AIM-1
AIM-1, for Adelaide imipenemase, was described in clinical
isolates of P. aeruginosa in Adelaide, Australia, in 2002
(103). Very few reports of AIM-1 were available in the
literature. The blaAIM−1 gene has been detected in urban
wastewater in West Africa and in China (104, 105). The unique
description in Enterobacterales corresponds to a AIM-1-
producing K. pneumoniae in China (104). AIM-1 producing
K. pneumoniae was resistant to penicillins, except piperacillin,
to broad-spectrum cephalosporins and carbapenems, but
remained susceptible to aztreonam. Crystal structure of AIM-1
revealed that the active site is narrower than other class B3
carbapenemases (106). However, this particular conformation
might explain the higher efficiency compared to other B3. The
genetic context of blaAIM−1 revealed its association with ISCR5,
an insertion sequence moving by rolling circle transposition
(103). However, the acquisition mechanism remains poorly
understood. In K. pneumoniae, no information related to the
genetic context is available in the manuscript.

LMB-1
LMB-1, for Linz Metallo-β-lactamase, is the last metallo-
β-lactamase described in Enterobacterales (107). This
carbapenemase has been firstly identified in E. cloacae in
an Austrian patient hospitalized in Salzburg, Austria, in 2013.
LMB-1 belongs to class B3 and the closest clinically relevant
carbapenemase corresponds to AIM-1 (42% amino acid identity).
However, analysis of available β-lactamase in genbank database
indicated that LMB-1 presented 99% amino acid identity with
a predicted β-lactamase from marine bacteria Rheinheimera
pacifica (107). LMB-1-producing E. cloacae was resistant to
penicillins, broad-spectrum cephalosporins, and carbapenems.
Recently this carbapenemase has been identified in a clinical
isolate of C. freundii in Buenos Aires, Argentina (Figure 2)
(108). Until now, LMB-1 has not been purified due to some
difficulty to express this carbapenemase (108). However, in
both studies, specific activities indicated that LMB-1 hydrolyzed
all β-lactams except aztreonam and cefepime. Analysis of
the genetic context showed that blaLMB−1 is embedded in a
complex genetic structure with different class 1 integrons.
Immediately downstream of the blaLMB−1 gene, an ISCR1
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is present, whereas a putative phosphodiesterase is found
upstream. This phophodiesterase is likely part of the genome of
the progenitor. In both isolates, the genetic context is similar but
differs in the gene cassette arrays of class 1 integrons. However,
in the Austrian isolate, two copies of IS6-family ISs bracket
the whole structure forming a putative composite transposon.
The blaLMB−1 is carried on conjugative plasmids. Nevertheless,
these two plasmids do not belong to same incompatibility group
being IncFIb-like in Austria and IncA/C in Argentina. This is
an interesting phenomenon since its identification in distant
geographic areas on different plasmids might indicate that this
gene has spread more than expected.

MINOR CLASS C CARBAPENEMASES

Class C β-lactamases, also known as cephalosporinases, have
been rarely reported as carbapenemases. To date, only two β-
lactamases were described possessing a carbapenemase activity
being CMY-10 and more recently ACT-28 (109, 110).

CMY-10
CMY-10 is a point variant of CMY, the natural cephalosporinase
of Citrobacter spp. identified in Enterobacter aerogenes (111).
CMY-10 conferred high levels of resistance to penicillins
and penicillin/inhibitor combinations and cephalosporins such
as cefoxitin, cephalothin, or ceftazidime. This variant was
categorized as an extended-spectrum AmpC (ESAC) due to
increased MICs toward carbapenems and aztreonam (Table 1).
Carbapenem hydrolysis properties were explained by a widened
active site as compared to P99 AmpC due to a three amino acids
deleted in R2 loop (109). The blaCMY−10 gene was carried on
a conjugative plasmid associated to a complex class 1 integron
(112). It is usually located at the 3’ end of integron and associated
with ISCR1 leading to its expression. This β-lactamase have
exclusively been reported in Korea (111–113). However, its
prevalence may be underestimated. Indeed, this variant cannot
be detected without sequencing and is not targeted by most
detection tools available in the market. Regarding the treatment
of this ESAC, scarce information is available. Avibactam is
active against class C β-lactamases but it has been demonstrated
that mutation in �-loop can increased MICs of ceftazidime-
avibactam (114). Another study demonstrated that nucleotides
guanosine monophosphate (GMP) and inosine monophosphate
(IMP) are potential inhibitors for this enzyme (115).

ACT-28
The other class C β-lactamase with potential carbapenemase
activity is ACT-28 (110). ACT-1 was firstly identified in a
carbapenem resistant K. pneumoniae in US (116). Lately, it has
been demonstrated that the progenitor of blaACT−like genes
was the Enterobacter genus (117). ACT-28 was firstly identified
in eight carbapenem non-susceptible Enterobacter kobei sent
to the French National Reference Centre for antimicrobial
resistance (110). All isolates presented a positive carbapenem
hydrolysis using the Carba-NP test. ACT-28-producing E. kobei
isolates were resistant to penicillins, to penicillin/inhibitor
combination, to broad-spectrum cephalosporins except

FIGURE 3 | Antibiograms of representative class C & D carbapenemases. (A)

ACT-28-producing E. kobei clinical isolate. (B) OXA-23 producing P. mirabilis

clinical isolate. (C) OXA-372-producing C. freundii clinical isolates. AMX,

Amoxicillin; AMC, Amoxicillin/clavulanate; ATM, aztreonam; CAZ, ceftazidime;

CTX, Cefotaxime; CZA, Ceftazidime/avibactam; ETP, Ertapenem; FEP,

Cefepime; FOX, Cefoxitine; IPM, Imipenem; MEM, Meropenem; PIP,

Piperacillin; TCC, Ticarcillin/Clavulanate; TEM, Temocillin; TIC, Ticarcillin; TZP,

Piperacillin/Tazobactam.

cefepime, to aztreonam, but remained susceptible to carbapenem
according EUCAST guidelines (Figure 3) (110). Purified ACT-28
exhibits low catalytic activity for imipenem (kcat = 0.025 s−1)
but presents a high affinity (Km = 1.9µM) resulting in a catalytic
efficiency (kcat/ Km) at 0.013 µM−1.s−1, which is twice the
value of ACT-1 purified in parallel. This small difference of
catalytic efficiency might explain the positivity of detection tests
based on imipenem hydrolysis. Furthermore, despite the fact
that this catalytic efficiency is low, it is in the same range as
other carbapenemases such as OXA-23 (Table 2). Regarding the
genetic context, the blaACT−28 was carried on the chromosome
of a lineage of E. kobei ST-125. No mobile element was identified
at the vicinity of this gene, indicating that this gene was not
acquired but belongs to the core genome of this lineage. Search
in the NCBI database identified this gene in different countries,
including Brazil, USA, and UK, always in E. kobei of ST-125.

MINOR CLASS D CARBAPENEMASES

In Enterobacterales, the main class D carbapenemase is OXA-48
that has spread worldwide with endemic area in Mediterranean
countries with the exception of Israel, Greece, and Italy for
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which KPC-like enzymes represent the main carbapenemase.
In this part of the manuscript, we will focus on the class
D carbapenemases other than OXA-48-like enzymes. We can
divide these enzymes in two groups: (i) carbapenemases firstly
identified in other bacterial families before secondary spreading
in Enterobacterales (OXA-23, OXA-40, OXA-58, & OXA-198)
and (ii) carbapenemases identified firstly in Enterobacterales
(OXA-372 & OXA-427).

OXA-23
The blaOXA−23 gene codes for the main carbapenemase identified
in Acinetobacter genus (118). In Acinetobacter spp. OXA-23
production confers high level resistance to all β-lactams. The
blaOXA−23 gene was identified on many different conjugative
plasmids, including GR6 incompatibility group, the most
distributed plasmid family in Acinetobacter baumannii (119).
The blaOXA−23 gene is most often found several transposons
associated with ISAba1 (e.g., Tn2006 or Tn2008) or ISAba4
(Tn2007) (120, 121). This cabapenemase has been reported
worldwide but until 2002, it has never been described out of
the Acinetobacter genus. The first report of OXA-23-producing
Enterobacterales was published in 2002 with the description of 10
isolates recovered from 1996 to 1999 in a French hospital. Clonal
relationship identified that all these isolates were clonally related
despite they were recovered over a 4-year period without any
link between patients (122). Since then, several report of OXA-
23-producing P. mirabilis were reported in France, Singapore,
and Finland (123–125). Intriguingly, the genomes of 20 OXA-
23-producing P. mirabilis isolates recovered from France and
Belgium have been compared to all Proteus genomes available
in the NCBI database. This study highlighted that all isolates
belonged to a single lineage that has spread since 1996 (126).
Moreover, veterinary samples were included in this study and
revealed that this lineage has spread also in animals (126).
Analysis of the genetic context revealed that the blaOXA−23

gene is mainly carried on the chromosome of P. mirabilis (122,
124, 127) except for one isolate from France and three isolates
from Singapore. There, the blaOXA−23 gene has been identified
carried on an AbaR4-like structure on an untypeable plasmid
(125). The AbaR4 structure is composed of Tn2006, carrying
the blaOXA−23 gene, embedded in a complex transposon usually
inserted in comM gene on the chromosome of A. baumannii
(128). Regarding the other isolates, the blaOXA−23 is carried by
complex IS26-based transposon. However, it is always associated
to ISAba1 in its 5’ extremity leading to its expression (126).
OXA-23-producing P. mirabilis can be hard to detect. Indeed,
MICs to carbapenems are relatively low and may be hidden by
the low affinity of PLP for imipenem in Proteus. A moderate
increase of carbapenem MICs can be observed from 0.25 to 0.5
mg/L but the presence of this carbapenemase should be evocated
mainly in case of an increase of MICs for amoxicillin-clavulanate
combination (Figure 3) (129). In addition to the difficulty to
detect a phenotype associated to the production of OXA-23,
most of carbapenemase detection tests for Enterobaterales do
not detect carbapenem hydolyzing class D β-lactamases (CHDLs)
other than OXA-48 (126).

OXA-24/40
The blaOXA−24/−40 was firstly identified in Acinetobacter
baumannii isolates from Spain and then described in several
countries (130). Only one description of OXA-24-producing P.
mirabilis is reported to date (131). No information is available
regarding the genetic context of blaOXA−24/−40, except the
impossibility to transfer the carbapenemase by conjugation.

OXA-58
The last major CHDL frequently identified in Acinetobacter is
OXA-58. This carbapenemase was firstly identified in France
in 2003 (132) but then has been reported worldwide in
Acinetobacter genus (118). Since recently, this carbapenemase
was limited to Acinetobacter spp. The first report of OXA-58 in
Enterobacterales was published in 2013 from Sierra Leone (133).
However, no genetic is available with these isolates. Intriguingly,
in addition to the blaOXA−58 gene, some K. pneumoniae
possessed the blaOXA−51-like gene also, which is the natural β-
lactamase of A. baumannii, suggesting a misidentification of the
bacterial isolates or a contamination with Acinetobacter DNA.
Since then, three recent studies regarding OXA-58-producing P.
mirabilis from Belgium, Poland, and Germany were published
(134–136). Genetic analysis revealed that isolates from Poland
and Germany shared the same genetic context. The blaOXA−58

was carried by a small untypeable plasmid of 6.2 kb also carrying
aadA14 aminoglycoside resistance gene (135, 136). On the other
hand, the Belgium isolate possessed a peculiar genetic context.
The blaOXA−58 gene was localized on the chromosome associated
to a class C β-lactamase ampC gene and was repeated in tandem
(134). In all isolates, fragments of ISAba3-like were identified at
the vicinity of blaOXA−58 as observed in Acinetobacter. ISAba3
was described as the probable mobile element at the origin of the
expression of blaOXA−58 in Acinetobacter (137). It is likely that
the same promoter was conserved in P. mirabilis explaining the
conserved fragments of ISAba3.

OXA-198
OXA-198 is a CHDL initially described in P. aeruginosa (138).
After this sole occurrence, it was recently described in a
Citrobacter pasteurii clinical isolate from France (139). In P.
aeruginosa, blaOXA−198 is carried on an IncP11 plasmid of 49 kb
(140), but in C. pasteurii, it was carried on an IncHI-type
of 183Kb (139). In both cases, blaOXA−198 is embedded in a
class 1 integron. In P. aeruginosa, blaOXA−198 is the second
cassette whereas in C. freundii, it corresponds to the third
cassette (139). To date, this carbapenamase has been identified
only in France and Belgium. This carbapenemase confers only
a slight decrease of susceptibility to carbapenems (MICs of
0.38 mg/L, 0.5 mg/L, and 1 mg/L for meropenem, ertapenem,
and imipenem, respectively in the C. pasteurii clinical isolate)
(Table 1). In addition, this carbapenemase confers resistance
to penicillins/inhibitor combination but spares ceftazidime.
Catalytic constants confirmed this resistance phenotype with
hydrolysis of penicillins and carbapenems but no activity toward
broad-spectrum cephalosporins (Table 2).
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OXA-372
OXA-372 belongs to a new family of CHDLs described
in Enterobacterales (141). This carbapenemase has been
identified in C. freundii recovered from hospital wastewater
in Italy (141). OXA-372 confers resistance to penicillins and
diminished susceptibility to carbapenems but not to broad-
spectrum cephalosporins, a common phenotype associated to the
production of CHDLs (Figure 3; Table 1). Kinetic parameters
confirmed that this enzyme is able to hydrolyze penicillins
and carbapenems but not broad-spectrum cephalosprins and
aztreonam (Table 2). Analysis of the genetic context revealed
that the blaOXA−372 gene was carried by a multireplicon plasmid
(IncA/C & IncN). This gene was embedded into a complex
structure made of reminiscence of Tn6017 itself inserted in
Tn6256, a Tn3-family transposon.

OXA-427
The last family of CHDL described in Enterobacterales
corresponds to OXA-427 (142). This carbapenemase has been
described in Belgium from various Enterobacterales being K.
pneumoniae, E. coli, K. oxytoca, S. marcescens, and Providencia
rettgeri. This carbapenemase confers resistance to penicillins
including temocillin, ceftazidime, aztreonam, and ertapenem
but spares cefotaxime (Table 1). Genetic analysis revealed that
blaOXA−427 was localized on an IncA/C-type plasmid of 177kb
(142). Immediate genetic context is made of a class 1 integron
upstream of blaOXA−427 and a copy of IS1326 dowstream
(142). A recent study identified the blaOXA−427 on a multi-
replicon plasmid IncA/C-InFIb-like plasmid (143). This plasmid
of 321 kb actually resulted of the co-integration of the IncA/C-
type plasmid carrying blaOXA−427 and an IncFIb-like plasmid
(143). Biochemical analysis confirmed that OXA-427 is able to
hydrolyze ceftazidime and imipenem (142), and was inhibited by
avibactam (144).

DETECTION METHODS FOR RARE
CARBAPENEMASES

Since it is difficult (or impossible) to prevent the emergence
of carbapenemases and more generally resistance genes, the
most powerful method to bend their spread is to detect them.
Indeed, earliest detection associated to hygiene measures and
antimicrobial stewardship are our armamentarium against those
bugs (145–147).

Mirroring the spread of carbapenemases numerous detection
tools have emerged. These tests may be classified in different
families based on their detection technology: (i) phenotypic
tests, (ii) enzymatic tests based on hydrolysis, (iii) immuno-
chromatographic assays, and (iv) molecular tests. This part of
the manuscript will focus on the abilities of these tests to
specifically detect rare carbapenemases and not on their global
performance. Of note, taking in account the low number of
isolates producing these rare cabapenemases, sensitivity and
specificity might be false.

Electrochemical Assay
Among the biochemical tests, the BYG test, named after the
name of developers, is an electrochemical assays able to detect
carbapenemase activity via a variation of conductivity during the
carbapenem hydrolysis (148). During its multicenter evaluation,
the BYG test was able to detect all GIM-1 (n = 1), FRI-1 (n =

1), SME-like (n = 2) producers. However, only 5/7 IMI/NMC-
A producing isolates and no GES-5 producers (0/4) could be
detected (148).

Colorimetric Biochemical Assays
Different biochemical colorimetric tests based on the hydrolysis
of carbapenem have been developed. The first test, the Carba-
NP test, can detect imipenem hydrolysis via the production of
acidic derivatives of imipenem (149). This test, along with the
commercial test RAPIDEC R© Carba NP (Biomérieux, France),
has been extensively tested on major carbapenemases (149–
151). Carba NP test was able to detect IMI/NMC-A-like,
SME-like, FRI-1, and GIM-1 enzymes but failed to detect
some GES-5 producing isolates (151). Another test based on
colorimetric changes after hydrolysis of a chromogenic β-
lactam is the β-CARBATM test (Biorad, France) (152). This test
showed similar sensitivity/specificity for the detection of the
main carbapenemases compared to the Carba NP test and its
commercial version, the RAPIDEC R© Carba NP (152). It was also
efficient in the detection of GIM-1. But it systematically failed to
detect all minor class A carbapenemases including IMI-/NMC-
A-like, SME-like, GES-5, and FRI-1 (151, 153). This result might
be explained by the fact that the chromogenic β-lactam included
in the β-CARBATM test do not correspond to a true carbapenem,
but a broad-spectrum cephalosporin that is likely not hydolzyzed
by these minor class A carbapenemases.

MALDI-TOF Based Detection of
Carbapenem Hydrolysis
The last group of β-lactam hydrolysis-based detection assay
correspond to the use of MALDI-TOF for the detection of
a carbapenemase activity (154). Several detection tests using
MALDI-TOF were developed including only one commercial
kit, the MBT STAR R© Carba IVD Kit (Brucker). These tests
are based on the detection of (i) the disappearance of the
carbapenem peak and (ii) the concomitant appearance of
the peak corresponding of the hydrolyzed carbapenem after
incubation of the carbapenemase-producing bacteria in a
carbapenem supplemented solution. Overall, these tests showed
good sensitivity/specificity for the detection of the main
carbapenemases (154, 155). A multicentric evaluation of two
methods, an in-house MALDI-TOF based protocol and the MBT
STAR R© Carba IVD Kit, demonstrated that the twomethods were
able to efficiently detect IMI-/NMC-A-like, SME-like, GES-5,
GIM-1, and FRI-1 producing isolates (155).

Hodge Test
One of the first phenotypic tests used for the detection
of carbapenemase producers is the modified Hodge test, as
known as cloverleaf test (156). Due to high number of false
positive results as well as the weak sensitivity, this test is
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no longer considered as a good alternative for the detection
of CPE including rare carbapenemase (156, 157). Of note,
another modified Hodge test, Triton Hodge test, was developed
by addition of Triton X-100 during the process (158). This
test demonstrated good sensitivity to detect carbapenemases
including NMC-A, SME-1, and GES-5 (produced by P.
aeruginosa) (158).

CIM Test
Another phenotypic test based on indirect detection of
carbapenemase production corresponds to CIM test, for
Carbapenem Inactivation Method, and derivatives (159). The
aim of this test is to detect the ability of a carbapenem susceptible
bacteria to grow close to a carbapenem containing disc after
incubation of this disc with the suspected carbapenemase-
producing bacteria. In a retrospective and prospective evaluation,
this test revealed a good specificity and sensitivity for the
detection of IMI-1/-2/-3, NMC-A, SME-1/-2, FRI-1, GIM-1,
GES-5, and OXA-372 producers (160). The mCIM, modified
Carbapenem InactivationMethod, corresponds to a CIM test for
which water was replaced with trypticase soy broth during the
incubation phase between the carbapenem containing disc and
the tested strain, and the time was extended (161). This test was
able to detect the rare carbapenemases tested being NMC-A-like
and SME-like enzymes (161). One of the most critical features
with these tests is the 24 h delay to obtain the results. Another
CIM derivative, rCIM for rapid Carbapenem Inactivation
Method, was developed to target carbapenemase production in
Enterobacterales (162). This test used a nephelometer to evaluate
the growth of the susceptible bacteria instead of using a plate
allowing a faster evaluation of the growth (few hours instead
of 24 h). This tests accurately detected FRI-1, GES-5, IMI-1/-2,
SME-1/-2, GIM-1, and OXA-372 (162).

Inhibition Phenotypic Tests
Among the phenotypic detection tests, a wide diversity
of combined disk methodologies has been developed. The
combined disk assays are based on the use of carbapenem
impregnated disk associated to different inhibitors such as
boronic acid, dipicolinic acid, and cloxacillin, inhibiting class
A, B, and C β-lactamases, respectively. As observed with
the CIM and the mCIM, a 24 h delay is required to obtain
results. Few studies tested the accuracy of this test on
rare carbapenemases. Recently, the Carbapenemase Detection
Set R© (MAST Diagnostic) was evaluated (163). This assay
accurately detected IMI-/NMC-A-like, SME-1/-2, and FRI-
1 as class A carbapenemase, GIM-1 as a class B, but
complementary tests were needed to decipher the presence
of GES-5 (due to the absence of any diameter differences
with all tested inhibitors) (164). Other combined disc methods
are commercially available but were not evaluated on rare
carbapenemase-producing Enterobacterales.

Lateral Flow Immunoassays
Recently, lateral flow immunoassays have been developed for
the detection of the main carbapenemases. The main tests
are RESIST-4 O.K.V.M (Coris Bioconcept), which detect KPC,

NDM, VIM, OXA-48-like enzymes, and NG-Test R© CARBA 5
(NG Biotech), which detects KPC, NDM, VIM, OXA-48-like,
and IMP enzymes. Both of these tests can deliver results in
<15min when performed on bacterial colonies (165–167) or
directly from positive blood cultures (168, 169). Despite both of
these tests possess excellent performance for the detection of the
“Big five” carbapenemases encountered in Enterobacterales, none
of the rare carbapenemase are included in the detection panel yet.
More recently, the OXA-23 K-Set R© (Coris Bioconcept) has been
developed for the detection of OXA-23-producing Acinetobacter
spp. However, OXA-23 is also rarely identified in P. mirabilis.
Accordingly, a recent evaluation demonstrated that OXA-23
K-Set R© accurately detects OXA-23-producing P. mirabilis (170).

Molecular Detection of Carbapenemase
Encoding Genes
The last group of detection tests gathers the molecular test in
which PCR is the warhorse for the detection of carbapenemase
encoding genes. By contrast to biochemical tests that detect
carbapenemase activity, molecular tests detect the presence of a
specific gene. Thus, the main caution of these tests is “we are
able to detect only what we target.” One of the most worldwide
spread molecular assay for the detection of carbapenemase
encoding genes corresponds to the GeneXpert R© (Cepheid) (171).
The current version Carba-R V2 is able to detect accurately
and “Big Five” carbapenemase encoding genes but none of
the rare carbapenemase encoding ones (172). Currently, this
issue is common for most of PCR-based detection kit including
Revogene (Meridian bioscience), Biofire filmArray Blood Culture
identification panel (BioMérieux) Amplidiag CarbaR+MCR
(Mobidiag), Luminex xTAG assay (Luminex corp), Check-MDR
CT103 (Check-Points Health), or CRE ELITe MGB R© (Elitech)
kits (173–177). Interestingly, the blaOXA−23 and blaOXA−58 genes
are detected by Amplidiag CarbaR+MCR kit.

Whole genome sequencing, despite not based directly on PCR,
is a molecular method very useful for precise identification of
resistance mechanism to carbapenems. The main weakness of
this technology is that a genotype may not explain a phenotype
and vice versa. Indeed, the presence of a gene does not necessarily
prove its expression. That is the reason why in silico antibiogram
is not widely used yet (178). However, this method is able to
detect any gene related to β-lactamases whatever its homology
or phenotype as well as undetected or totally novel β-lactamase
family. Moreover, servers for analysis of WGS raw data are not
appropriate for an easy interpretation of the data, e.g., Resfinder
(179), CARD (180).

β-LACTAMASE INHIBITORS AND RARE
CARBAPENEMASES

The use of β-lactamase inhibitors is crucial to fight β-
lactamase-producing isolates. Among the well-known inhibitors,
the three inhibitors of class A β-lactamases, clavulanate,
tazobactam, and sulbactam, are widely used in clinical practice
(181). Unfortunately, carbapenem-resistant Enterobacterales
(and particularly carbapenemase-producing Enterobacterales)
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are most often resistant to the classical β-lactam/β-lactamase
inhibitors associations (e.g., amoxiciline-clavulanate, ticarcilline-
clavulanate, piperacilline-tazobactam, ceftolozane-tazobactam)
used to treat infected patients. Thus, an urgent need for new
inhibitors was obvious. Recently, several inhibitors have been
developed. Among them three inhibitors are now approved or
in phase 3, avibactam (belonging to diazibyciclooctanone DBO),
relebactam (DBO), and vaborbactam (boronic acid derivative)
(182). Avibactam, formerly NXL-104, in combination with
ceftazidime, proved its efficacy against class A, C, and some
class D but not against class B β-lactamases (183). Among
rare carbapenemases, avibactam demonstrated efficacy against
CTX-M-33-, GES-5-, SME-2-producing isolates (42, 184). To
this short list, zidebactam, a new DBO member, can be added
(185), nacubactam, a bridged DBO, enmetazobactam, belonging
to penicillanic acid sulfone class, taniborbactam a boronic acid
derivative (186–188). Avibactam inhibits class A, C, and D
whereas relebactam and vaborbactam mainly inhibit class A
and C (189). Activity of vaborbactam in combination with
meropenem has been described toward some rare class A
carbapenemase such as SME-, NMC-A-, FRI-1-, and BKC-1-
producing isolates (190). However, this combination has limited
activity against class B (NDM-, VIM-, or IMP-producing isolates)
and class D (OXA-48-like-producing isolates) (191). Relebactam
demonstrated inhibition toward KPC-, SHV-, CTX-M-,TEM-
, or class C-β-lactamases but exhibited moderate inhibition
against OXA-48-like (183). However, it has been observed that,
despite activity against class A carbapenemases such as KPC,
relebactam does not inhibit SME-4 enzyme (192). A GES-
20-producing K. pneumoniae resistant to imipenem-relebactam
was also reported (193). Cefepime-enmetaozactam, formerly
AAI101, demonstrated activity against ESBLs- or AMPc-
producing isolates but limited activity toward KPC- and VIM-
producing isolates (183). No data regarding its activity against
minor carbapenemase is available. Zidebactam (formerly WCK
5107) exhibited activity against class A and B carbapenemases
and moderate inhibition activity OXA-23/-40/-58-producing A.
baumannii (194). Noticeably, zidebactam also inhibits PBP2 and
thus possess intrinsic antibacterial activity (183). Among minor

carbapenemases, cefepime/zidebactam demonstrated activity
against a GES-18-producing isolate (194). Nacubactam, formerly
FPI-1465, demonstrated in vitro inihibition against class A,
C, and some class D β-lactamases (183). As observed for
zidebactam, Nacubactam demonstrated affinity to PBP2 and thus
also exhibited activity toward MBL-producing isolates (188).
This molecule remains to be tested for minor carbapenemases.
Taniborbactam, formerly VNRX-5133, is able to inhibit class
A, C, and D β-lactamases and even class B carbapenemases
(187, 195). Among MBLs inhibited by VIM-, NDM-, SPM-1-
producing isolates but not IMP-like enzyme (187). Of note,
GIM-1 and GES-5 are inhibited by taniborbactam (195).

CONCLUSIONS

Since the first description of “an enzyme able to destroy
penicillin,” thousands of β-lactamases were identified
from more than 50 families. The wide genetic diversity
associated to very diverse phenotypes largely complicate
the identification of the resistance mechanisms involved in
carbapenem resistant Enterobacterales. Although several
tools have been developed for the accurate detection of
the 5 main carbapenemases, KPC, NDM, VIM, IMP, and
OXA-48-like, it might be now interesting to developed
multiplex tests (molecular tests or immunochromatographic
assays) that will be able to fill the gap in the detection of
rare carbapenemase-encoding Enterobacterales. It might be
of particular interest for Ambler class A carbapenemases
of GES-, IMI-, SME-, and FRI-type that have already been
reported in different countries, and for which some of the
widely used colorimetric biochemical tests (e.g., β-CARBATM

test) remain inefficient. Without efficient detection tools,
these enzymes might be a concern in a near future in
healthcare facilities.
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