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ABSTRACT: Rufinamide, possessing a triazole ring, is a new
antiepileptic drug (AED) relatively well-absorbed in the lower dose
range (10 mg/kg per day) and is currently being used in
antiepileptic medications. Triazole derivatives can interact with
various enzymes and receptors in biological systems via diverse
non-covalent interactions, thus inducing versatile biological effects.
Strain-promoted azide−alkyne cycloaddition (SPAAC) is a
significant method for obtaining triazoles, even under physiological
conditions, in the absence of a copper catalyst. To confirm the
progress of chemical reactions under biological conditions,
research on reaction monitoring at low concentrations is essential.
This promising strategy is gaining acceptance for applications in
fields such as drug development and nanoscience. We investigated the optimum Ir catalyst and magnetic field for achieving
maximum proton hyperpolarization transfer in triazole derivatives. These reactions were analyzed using signal amplification by
reversible exchange (SABRE) to overcome the limitations of low sensitivity in nuclear magnetic resonance spectroscopy, when
monitoring copper-free click reactions in real time. Finally, a more versatile copper-catalyzed click reaction was monitored in real
time, using a 60 MHz benchtop NMR system, in order to analyze the reaction mechanism.
KEYWORDS: NMR, hyperpolarization, signal amplification by reversible exchange, triazole, reaction monitoring

■ INTRODUCTION
Epilepsy is characterized by treatment-resistant seizures and
causes a high rate of seizure-related injury. Many patients with
epilepsy continue to have seizures despite treatment with
currently available antiepileptic drugs (AEDs), which include
valproic acid, lamotrigine, topiramate, and felbamate and work
by decreasing abnormal excitement in the brain.1,2 Rufinamide
(1a) is a new, orally active AED, which is relatively well
absorbed in the lower dose range and contains a triazole
structure.3 Triazole derivatives possess a range of pharmaco-
logical activities, for example, anti-microbial,4,5 anti-cancer,6

analgesic,7 and antiviral activities.8

Classically, the general procedure for producing triazole
derivatives involves “click chemistry,” that is, the utilization of a
copper(I)-catalyzed azide−alkyne cycloaddition (CuAAC) to
produce small molecules with heteroatom links (C−N).9,10 It
is generally a high-yielding chemical reaction that produces
easily removable side products, under relatively mild
conditions. CuAAC is used for bioconjugation to produce
fluorophores and reporter molecules.11−13

Strain-promoted azide−alkyne cycloaddition (SPAAC) can
be carried out using cyclooctyne, which can be effectively
converted to a triazole without using a copper catalyst. SPAAC
has been recognized for its ability to selectively modify

biomolecules and living cells under physiologically plausible
conditions.11−13 Bicyclo[6.1.0]-nonyne (BCN) demonstrated
exceptional reactivities in a copper-free click reaction with
various azides.14,15

Based on the prevalence of triazoles in biologically active
molecules, a more fundamental understanding of the chemistry
involved in the production process is required in order to aid
their utilization in pharmaceuticals. Nuclear magnetic reso-
nance (NMR) spectroscopy has been used extensively to
develop a detailed understanding of reaction mechanisms
through real-time monitoring.16,17 The benefit of this strategy
is that it allows easy tracking of the species in question,
assuming that there are separate signals across a specific
region.18,19 However, classical NMR spectroscopy incurs
significant startup, operating, and maintenance costs due to
the superconducting magnet technology, thereby limiting its
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application range. Benchtop NMR spectroscopic analysis uses
small permanent magnets and is, therefore, less expensive. It is
also more useful for studying pharmacokinetics and pharma-
codynamics of drug targets, commonly analyzed in the medical
and drug discovery sectors.20−22 However, real-time reaction
monitoring using bench-top NMR at low concentrations is
difficult to measure without a multi-scan in a short time due to
low resolution. Recently, applying hyperpolarization has
attracted the attention of chemists for being one of the most
promising methods for overcoming this limitation. Hyper-
polarization techniques have been developed and applied to
many types of chemical compounds, including small molecules
and biomedical materials.23−27 Brute force polarization,28

dynamic nuclear polarization (DNP),29−31 spin-exchange
optical pumping (SEOP),32,33 parahydrogen-induced polar-
ization (PHIP),34−36 and signal amplification by reversible
exchange (SABRE)37−39 are all examples of hyperpolarization
techniques. The parahydrogen-based hyperpolarization techni-
que has been widely considered to have the greatest potential
as a reaction monitoring tool for real-time reactions.40,41

Further, SABRE, rather than PHIP using hydrogenation, has
been confirmed as a potential mechanism for reaction
monitoring and shows promise for future MRI applica-
tions.42,43

■ METHODS

Materials and Methods
Sample Preparation. Chemicals (1a−1c and 2a−2d) and

deuterated solvents (methanol-d4, CD3OD, 99.8 atom %D, Eurisotop,
and dimethyl sulfoxide-d6, CD3SOCD3, 99.8 atom %D, Eurisotop)
were also used in the form obtained. In the experiment, pre-catalysts
{[Ir(IMes) (COD)Cl] and [Ir(COD) (PCy3) (py)]PF6)] (2 mg, 3.1
μmol)} and substrates (1a−1c, 3a−3b, and 4a-4b, 31 μmol) were
dissolved in a deuterated solvent (900 μL).
SABRE Catalyst Activation and Calculation of the
Hyperpolarized Signal
1H NMR spectra used for the characterization of 1a−1c, 2a−2d, and
3a−3b were acquired on a Bruker Avance III NMR spectrometer
operating at 1H resonance frequencies of 300 and 60 MHz. The para-

hydrogen generator was composed of a home-built instrument, in
which hydrogen gas (Hanmi gas, >99.9%, a mixture of the spin
isomers ortho-hydrogen and para-hydrogen) was allowed to pass
through a heat exchanger filled with a FeO(OH) catalyst (Sigma-
Aldrich). This instrument was filled with liquid nitrogen in a Dewar
flask generating ca. 50% para-hydrogen. 1a−1c (31 μmol) was added
to a solution of pre-catalysts (3.1 μmol) in methanol-d4 or
MeOD:DMSO-d6 = 2:1, individually. A continuous flow of para-
hydrogen was allowed into the reactants and catalyst mixture at a rate
of 6 mL/min at 23 °C and 1 atm. In order to activate a mixture of the
substrate and the catalyst, para-hydrogen was bubbled through the
sample for 20 min in the NMR tube under the earth’s magnetic field.
Samples were injected rapidly into a 300 MHz NMR and 80 MHz
spectrometer, in less than 5 s, to measure the hyperpolarized signals.
Measurements were taken in a multitude of magnetic fields (the
earth’s magnetic field, 30 G, 50 G, 70 G, 90 G, 110 G, and 130 G),
and signals of hyperpolarized hydrogen were regularly obtained. All
NMR spectra were obtained for each magnetic field by bubbling for
another 1 min and taking one scan. Detailed experimental processes
were conducted in the same manner as that mentioned in the refs 26
39, and 41.

Click Reaction Monitoring using SABRE Hyperpolarization
For SPAAC reaction monitoring, pre-catalysts (0.07 μmol), reactants
(2a and 2c, 0.7 μmol) were dissolved in methanol-d4 (900 μL). The
reaction mixture was transferred to a 5 mm NMR tube and activated
by para-hydrogen for 20 min in a 90 G magnetic field. The bubbling
process by para-hydrogen substituted the stirring of the solution.
After activation, an individual hyperpolarized spectrum was obtained
by using the same hyperpolarized signal measurement procedure as
that described above, using 300 MHz NMR, at 10 min intervals over 2
h. In the case of benchtop reaction monitoring via hyperpolarization,
pre-catalysts (2 mg, 3.1 μmol) and reactants (2a, 2b, and 2d, 31
μmol) were dissolved in deuterated solvents (900 μL). The reaction
monitoring process was conducted in the same manner as that
mentioned above, using 60 MHz NMR, at min intervals over 2 h.

Synthesis of 3a and 3b
((5aR,6aS)-1-Benzyl-1,4,5,5a,6,6a,7,8-octahydrocyclopropa-

[5,6]cycloocta[1,2-d][1,2,3]triazol-6-yl)methanol (3a).
(1R,8S,9S)-Bicyclo[6.1.0]non-4-un-9-ylmethanol (2c, 24 mg, 0.16
μmol) was added to the solution of benzyl azide (2a, 21 mg, 0.16
μmol) in the acetonitrile/water (3:1) mixture and stirred at room
temperature for 2 h. The reaction solution was evaporated under

Figure 1. (a) Overall scheme for the SABRE-based hyperpolarization; (b) triazole derivatives as a substrate in SABRE experiments; (c) scheme of
SPAAC for real-time monitoring using hyperpolarization in 300 MHz NMR; and (d) scheme of CuAAC for real-time monitoring using
hyperpolarization in 60MHz NMR.
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reduced pressure, and the resulting mixture was diluted with
methylene chloride (5 mL). The crude mixture was washed with
water (5 mL), dried over magnesium sulfate, and concentrated under
reduced pressure. The resulting mixture was confirmed by column
chromatography (ethyl acetate, Rf = 0.4). Yield: 45 mg (100%)
3 - ( ( 5aR ,6aS ) - 6 - (Hyd roxymethy l ) - 5 , 5a , 6 , 6a , 7 , 8 -

hexahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-1(4H)-
yl)propane-1,2-diol (3b). (1R,8S,9S)-Bicyclo[6.1.0]non-4-un-9-yl-
methanol (2c, 20 mg, 0.13 μmol) was added to the solution of 3-
azido-1,2-propandiol (2b, 16 mg, 0.13 μmol) in methanol (1 mL) and
stirred at room temperature for 2 h. The reaction solution was
evaporated under reduced pressure, and the resulting mixture was
diluted with methylene chloride (5 mL). The crude mixture was
washed with water (5 mL), dried over magnesium sulfate, and
concentrated under reduced pressure. The resulting mixture was
confirmed by column chromatography (ethyl acetate, Rf = 0.1). Yield:
36 mg (99%)
Synthesis of 4a and 4b, General Procedure
1-Phenoxy-2-propyne (2d, 200 mg, 1.5 mmol) and copper acetate (27
mg, 0.15 mmol) were added to the solution of azide (2a and 2b, 1.5
mmol) in methanol (2 mL) and stirred at room temperature for 2 h.
The reaction solution was evaporated under reduced pressure, and the
resulting mixture was diluted with methylene chloride (5 mL). The
crude mixture was washed with water (5 mL), dried over magnesium
sulfate, and concentrated under reduced pressure. The resulting
mixture was confirmed by column chromatography (4a: 99% and 4b:
100%).

■ RESULTS AND DISCUSSION
Parahydrogen and the targeted substrates reversibly coordinate
to the metal center of an Ir catalyst. In SABRE (Figure 1a), the
magnetic symmetry of parahydrogen is broken, and the bound
hydride ligands are able to transfer their enhanced polarization
into the substrate via J-coupling of the complex.
A wide range of proton hyperpolarization in targeted

structures can be expected. Owing to the associated interest
and importance, SABRE-based experiments on SPAAC using
15N-containing synthons were recently performed, focusing on
15N nuclei within the structure.44 However, hyperpolarization
can also be delivered to various structural components
combined with 1H,45−47 13C,24,48,49 and 15N44,50 NMR signals;
therefore, there is the possibility of observing a wider range of
hyperpolarization by also focusing on other NMR-active
nuclei.
Therefore, to expand the study and applicability of SABRE,

larger bioactive molecules, with various NMR-active nuclei,
must be investigated. This can be explored using benchtop
NMR reaction monitoring systems.
Since an integrated enhanced signal from NMR after SABRE

is not applicable to the quantitative estimation of the reaction,
non-uniform signal amplification may not be a perfect method
for the reaction monitoring system. However, identifying
hidden NMR signals from reaction monitoring can provide
structural information from intermediates and/or products,
which can be a useful analytical method both in thermody-
namic analysis and in kinetic analysis. Therefore, we
demonstrated the hyperpolarization of rufinamide, a triazole-
containing drug used for epilepsy and other triazole derivatives.
The triazole derivatives produced by SPAAC and CuAAC

for bioconjugation were investigated using real-time reaction
monitoring of low-concentration samples, focusing on
individual protons in order to understand the click reaction
mechanism. These protons cannot be detected without
hyperpolarization in a single scan and the same magnetic
field. We used both Crabtree’s Ir catalyst and the IMes-Ir

catalyst (Figure S1) to optimize the hyperpolarization
conditions. A benchtop 60 MHz NMR system was used to
monitor the CuAAC reaction, which provides more versatile
triazole structures.
The triazole derivatives produced by SPAAC and CuAAC

for bioconjugation were investigated using real-time reaction
monitoring of low-concentration samples, focusing on
individual protons in order to understand the click reaction
mechanism. These protons cannot be detected without
hyperpolarization in a single scan and the same magnetic
field. We used both Crabtree’s Ir catalyst and the IMes-Ir
catalyst (Figure S1) to optimize the hyperpolarization
conditions. A benchtop 60 MHz NMR system was used to
monitor the CuAAC reaction, which provides more versatile
triazole structures.
The overall investigative scope of SABRE-based hyper-

polarization and its monitoring using benchtop systems is
described in [Figure 1b−d]. Hyperpolarization of triazole
derivatives was conducted in various external magnetic fields
and optimized in a specific magnetic field for the anti-
convulsant drug rufinamide (1a), 1H-1,2,3-triazole, and 1-
methyl-1,2,3-triazole (1b and 1c) (Figure 1b). Formation of
hyperpolarized triazole derivatives was monitored in low-
concentration click reactions, which used the SPAAC reaction
of BCN with an azide, in the absence of a copper catalyst (3a
and 3b) (Figure 1c). Additionally, benchtop NMR was used to
monitor the CuAAC reaction using SABRE hyperpolarization
(4a and 4b) (Figure 1d).
The suspected mechanism of rufinamide(1a) is a sodium-

dependent action with potential limitation, which is considered
to have a membrane-stabilizing effect and is the modulation of
sodium channel activity.51,52 In the case of 1a, the proton of 1
(σH 8.4), which contains the aromatic ring, was not the highest
amplified proton, as compared to that of 1b and 1c (Figure
2a). We assumed that the proton of 1 was affected by the
amide group. The proton of 4 was enhanced approximately 25-
fold at a magnetic field of 110 G. The maximum amplification
of the proton directly connected to aromatic nitrogen was also
observed in different triazole derivatives formed through the
click reaction. The remote located protons from coordinated
nitrogen exhibited reduced signal amplification values similar
to those reported previously as 5-fold to 10-fold.27

The hyperpolarization of triazole derivativeshas received
little attention as the main substrate, and its polarization
efficiency of the proton has been reported to be very low or
used to as coligand.53−55 To study the click reaction
monitoring, we conducted a SABRE-based hyperpolarization
study on several triazole structures to demonstrate its efficacy
in hyperpolarization.
Figure 2b shows the 1H thermal and SABRE spectra for 1H-

1,2,3-triazole (1b) with hyperpolarized signal enhancements
using the IMes-Ir catalyst at 90 G. The external magnetic field
was modified to optimize hyperpolarization; its polarization is
maximized at approximately 90 G (Figure S2). The highest
amplified proton signal, proton 1 of 1b, represents a 63-fold
hyperpolarization. 1-Methyl-1,2,3-triazole (1c) can be used as
a co-substrate for several SABRE-compatible substrates.45,55,56

We obtained an unprecedented, hyperpolarized signal from
the aromatic proton and methyl group of 1c with an
approximately 200-fold enhanced signal after SABRE (Figure
2c). The polarization trend with the magnetic field was
maximized at 130 G Aromatic protons 1 and 2 increased to a
larger extent than the N-methyl group (Figure S2). The
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amplified proton signals were similar across the entire magnetic
field. Compared with 1b, it can be assumed that the electron
density of the methyl group aids in stronger binding to the Ir
catalyst, resulting in a positive polarization effect.
Unlike 1a, maximum amplification was observed for the

proton directly connected to the aromatic nitrogen, which was
also seen in different triazole derivatives formed through the
click reaction. After analysis, we concluded that the protons
located remotely, that is, away from metal-coordinated
nitrogen, exhibited a reduced signal amplification value,
which aligns with previously reported data.27

After obtaining enough hyperpolarized signals from triazole
structures, we proceeded to the next study of click reaction
monitoring. The SPACC real-time reaction monitoring system
(Figure 3) adopted a low enough concentration of the reactant
that fails to identify the whole 3a structure signal from a single

scan as an experimental condition. If the number of scans is
increased, the 3a structure can be identified even at this low
concentration; however, since the signal average with time
delay due to the increased number of scans is inevitable, single
scan-based real-time reaction monitoring without time delay
was carried out after signal amplification through SABRE.
Furthermore, Figures 3 and 4 show plots of different

concentrations of 3a, which showed slightly different signal
amplification trends in various external magnetic fields (the
highest enhancement factor at 90G, 0.7 μmol, Figure S3). The
synthesis of triazole derivative 3a began with azide 2a (1 eq)
and BCN 2c (1 eq) in the absence of a copper catalyst (Figure
3a). Using the SABRE experiment and 3a (0.7 μmol), proton
(σH 5.5) 1, connected to aromatic nitrogen, exhibited the
maximum amplification (approximately 20-fold), and the
polarization transfer also proceeded to the neighboring phenyl
group, resulting in a 13-fold amplification, as well as an 11-fold
amplification of proton 2 at 90 G magnetic field (Figure S3).
Notably, regardless of the signal amplification value, the phenyl
peaks (σH 7.5) and proton 2 (σH 3.6) were revealed before
proton 1 during real-time hyperpolarized monitoring.
Therefore, we can assume that hyperpolarization of the

phenyl group is directly caused by parahydrogen in the catalyst,
instead of spin diffusion-like polarization transfer from proton
1. Furthermore, based on reaction monitoring, the hyper-
polarization effect of proton 1 was assumed to decrease upon
nucleophilic attack of a nitrogen anion to the triple bond of
BCN because no amplification of reactants was observed at the
beginning of the reaction. This perfectly supports the SPAAC
mechanism [Figure 3b].
Figure 4 shows the normal signal and its hyperpolarized

signal after SABRE with the IMes-Ir catalyst, which
demonstrates the extent of hyperpolarization in 3a from the
entire molecular structure. Proton 7, which represents the
cyclooctane ring, had the highest amplified signal value in a
110 G magnetic field, among the amplified proton signals. The
polarization of the entire structure showed no significant
differences, which could be attributed to the fast exchange of
the Ir catalyst.
Other than the Zeeman effect and J-coupling matching

condition, its polarization transfer could be attributed to other
factors such as spin diffusion and SPINOE.57−59 We tested the
SABRE method with Crabtree’s Ir catalyst, which showed a
slightly lower polarization number than the IMes-Ir catalyst.
To investigate click reactions in detail, additional reaction
monitoring was conducted using SPAAC with 3-azidopropane-
1,2-diol to produce 3b. Similar reaction conditions to the
synthesis of 3a were used, that is, stirring in methanol for 2 h

Figure 2. Molecular structures of 1a−c and the normal 1H NMR
(black spectrum) and hyperpolarized signals from 1a−c (31 μmol)
after SABRE in the presence of 110 G, 90 G, and 130 G external
magnetic field using the IMes-Ir catalyst (red spectrum).

Figure 3. (a) Reaction mechanism for strain-promoted benzyl azide-bicyclo[6.1.0]nonyne (BCN) cycloaddition. (b) 1H spectral reaction
monitoring using hyperpolarized SPAAC using benzyl azide (1 eq, 0.7 μmol), BCN (1 eq, 0.7 μmol), and the IMes-Ir catalyst (0.07 μmol) in the
presence of a 90 G external magnetic field (300 MHz NMR, 10 min intervals over 2 h).
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(Figure 5a). Although 3b has a lower signal enhancement value
than 3a, it is a triazole structure containing a diol, which can be

hyperpolarized using SABRE. Interestingly, the polarization
transfer from parahydrogen to 3b is more efficient than with 3a

Figure 4. 1H spectrum of 3a (31 μmol) before (black spectrum) and after SABRE in the presence of 110 G external magnetic field in methanol-d4
(red spectrum) and signal amplification value of individual protons from hyperpolarized 3a using the IMes-Ir catalyst and Crabtree’s catalyst.

Figure 5. (a) Reaction scheme of strain-promoted 3-azidopropane-1,2-diol-bicyclo[6.1.0]nonyne (BCN) cycloaddition and 1H spectrum of 3b (31
μmol) before (black spectrum) and after SABRE, in the presence of 90 G external magnetic field, using the IMes-Ir catalyst in methanol-d4 (red
spectrum) and (b) signal amplification value of individual protons from hyperpolarized 3b using the IMes-Ir catalyst and Crabtree’s catalyst.

Figure 6. (a) Proposed 2a and 2d cycloaddition reaction mechanism, refer to Fokin et. al; (b) 1H spectral reaction monitoring of the
hyperpolarized azide−alkyne click reaction in the presence of the earth field using the IMes-Ir catalyst in DMSO-d6 at 60 MHz NMR.
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(Figure 5a). The enhancement of 3b by hyperpolarization was
measured while changing the magnetic field during the
polarization transfer time (Figure 5b).
However, there was no significant difference in the extent of

hyperpolarization across magnetic field strengths. Crabtree’s
catalyst had lower amplification than the IMes-Ir catalyst,
which was similar to 3a.
A recent study on SPAAC by Ducket’s group has revealed

that 15N isotope phenyl azide (Ph−15N3) contained long T1
values, enabling strong hyperpolarization when reacting with
BCN.60 It is claimed that these data depict the successful
examination of SPAAC reactions as it confirms the possibility
of obtaining 15N signals for the phenyl azide and the triazole,
simultaneously. Another study presents the hyperpolarization
of triazole-containing antifungal drugs and, thus, deducing
detailed hyperpolarization mechanisms for both 1H and 15N
nuclei.61 Critically, both signal amplification values in the 15N
peaks are increased, but the enhanced 1H signal is similar or
lower. The effect is limited to the triazole group, so it was not
possible to obtain long-range analysis data.
These SPAAC-based reaction monitoring experiments were

performed using a 7 T magnet. Using this setup, we were
successful in detecting a hidden structural signal after
hyperpolarization.
In contrast, because CuAAC has more potential for

producing versatile and simplified triazole structures in
reactions, we considered using a portable benchtop NMR as
an in operando reaction monitoring system. Studying the
reaction mechanism of a catalytic reaction is generally more
complicated, and it is important to achieve higher reaction
efficiency. Real-time CuAAC monitoring was performed using
a 60 MHz benchtop NMR and SABRE in DMSO as it is a
more bio-friendly solvent, which is less toxic than the methanol
solvent and can expect the reaction monitoring in more
biological circumstances. Further, its reaction monitoring can
expand its possibility to be used in experiments involving many
other aprotic solvents. (Figures 6 and 7).
The mechanism showed that the synthesis of 4a was based

on a molecular electron density theory (MEDT) study, using
density functional theory (DFT) methods (Figure 6a).62,63

The formation of intermediate A is the first step, whereby 1-
phenoxy-2-propyne (2d) coordinates to copper acetate. The
sigma-bound copper catalyst bearing the pi-bound enriched
copper atom B reversibly coordinates an organic azide, forming
complex C. Following this step, a nucleophilic attack at the
terminal azido nitrogen by the ß-carbon of the acetylide forms
the first covalent C−N bond, producing intermediate D. The
ligand exchange in this intermediate is faster than the

formation of the second covalent C−N bond, which results
in ring closure, accounting for the statistical incorporation of
Cu into triazolide E.
This indicates a thermodynamic preference for the NHC-

bound copper triazolide.62 This reaction can be monitored
because of its simple molecular structure through the hydrogen
signal amplification of the entire molecule (4a) through
hyperpolarization. The decreasing number of reactants (R1)
and increasing number of products (2 and 3) were clearly
observed. Detection of proton 1 was not shown before proton
2 and 3 in SABRE, which supports the theoretical mechanism
study that it is formed in the last step of the production of 4a.
Regardless of the progress of the reaction, it is difficult to
distinguish the phenyl group, which is present in both the
reactant and the product. The amplification of 4a in methanol
is up to 15-fold, and the increase in proton 1 is significant, but
monitoring is difficult because deuterium exchange occurs with
the deuterated methanol-d4 solvent during monitoring (Figure
S4). Deuterated 4a was hyperpolarized in methanol-d4 using
300 MHz NMR. Proton 1 in the triazole ring is deuterated to a
significantly lower extent in 4a. However, it is reported that
deuterated substrates have proven beneficial, especially ones
able to reduce the number of polarization acceptor spins at the
metal center. They also have the additional benefit of
attenuating the effect of relaxation.60

Signal enhancement is effective for non-deuterated triazole
derivatives (Figure S5). Compared with Methanol, DMSO can
penetrate biological membranes, such as human skin, affecting
the lipid structure and causing bilayer breaks.64,65 Click
reaction monitoring using DMSO and benchtop NMR opens
up a new possibility for use in in vitro experiments; it has
already been widely used in in vitro drug tests.66,67

To track the change of the phenyl group in the click
reaction, the synthesis of 4b was conducted using azido
propanediol (Figure 7a). The hyperpolarization of 4b was
inhibited by the diol because the water peak was amplified
significantly during the reaction. Figure 7b shows reaction
monitoring for the synthesis of 4b. Noticeably, the change in
the phenyl group splitting pattern and the decrease in R1 could
also be traced. R1 consumption proceeds faster at 60 min. The
slow manifestation of protons 1 and 3 indicates that the
reaction rate changes and shows the selectivity of the click
reaction. However, it was difficult to observe protons 6 and 7
because of the amplified water peak. Additionally, it is also
worth noting that Ir-based SABRE is possible in the copper-
containing solvent, allowing for real-time monitoring of the
click reaction.

Figure 7. 2b and 2d cycloaddition reaction scheme. (b) 1H spectra of the hyperpolarized reaction monitoring azide−alkyne click reaction in the
presence of the earth field using the IMes-Ir catalyst in DMSO-d6 at 60 MHz NMR.
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■ CONCLUSIONS
Successful real-time click reaction monitoring, which has been
widely used in both organic and biological reactions, was
performed on a 1.4 T benchtop NMR. SABRE, a real-time
hyperpolarization technique, was used to study the reaction
mechanism and selectivity and to amplify the hidden proton
signals usually undetectable at low concentrations. Further-
more, SABRE studies on several triazole structures, including
the drug molecule rufinamide, have revealed much higher
hyperpolarization efficiency than previous SABRE studies.
These studies provide a wealth of information and potential
applications for polarizable biomaterials and also for real-time,
SABRE-based benchtop NMR reaction monitoring systems.
Eventually, our results may expand the scope of future research
to include continuous real-time reaction monitoring and can
also be utilized in more biochemical areas, for example,
optimizing bio-orthogonal reaction conditions and under-
standing the reaction mechanisms in confined biological
conditions.
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