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Lymphangioma is a common type of congenital vascular disease in children with a

broad spectrum of clinical manifestations. The current classification of lymphangioma

by International Society for the Study of Vascular Anomalies is largely based on

the clinical manifestations and complications and is not sufficient for selection of

therapeutic strategies and prognosis prediction. The clinical management and outcome

of lymphangioma largely depend on the clinical classification and the location of the

disease, ranging from spontaneous regression with no treatment to severe sequelae

even with comprehensive treatment. Recently, rapid progression has been made

toward elucidating the molecular pathology of lymphangioma and the development

of treatments. Several signaling pathways have been revealed to be involved in the

progression and development of lymphangioma, and specific inhibitors targeting these

pathways have been investigated for clinical applications and clinical trials. Some

drugs already currently in clinical use for other diseases were found to be effective

for lymphangioma, although the mechanisms underlying the anti-tumor effects remain

unclear. Molecular classification based on molecular pathology and investigation of the

molecular mechanisms of current clinical drugs is the next step toward developing

more effective individualized treatment of children with lymphangioma with reduced

side effects.
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BACKGROUND

Lymphangioma (lymphaticmalformation, LM), a congenital vascular disease, is a low-flow vascular
abnormality in lymphatic diseases that is characterized by excessive growth of lymphatic tissue
during prenatal and postpartum development. The incidence rate of LM is∼1:2000–4000, with no
variation between genders and races. Most patients (80–90%) are diagnosed before the age of two
(1, 2).

The clinical manifestations of lymphangioma are quite different among patients, varying
from local swelling leading to superficial mass to a large area of diffuse infiltrating lymphatic
channel abnormalities resulting in elephantiasis (3). Cervicofacial LM can cause facial elephantiasis,
and in some severe cases, it can lead to serious disfigurement of the face. Tongue LM can
lead to mandibular overgrowth and occlusal asymmetry, and oral and cervical LM can cause
obstructive acute respiratory distress and life-threatening situations (4, 5). Orbital LM may lead
to decreased vision, decreased extraocular muscle movement, ptosis and exophthalmos (6). LM
of the extremities can trigger swelling or gigantism, accompanied by overgrowth of soft tissue
and bones (7). LM usually grows slowly and steadily, but under certain conditions, such as
infection, hormonal changes or trauma, it can grow explosively and become a life-threatening
disease requiring immediate treatment (8, 9).
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CLINICAL CLASSIFICATION

The treatment principles and treatment schemes of
lymphangioma are quite different owing to its varied clinical
manifestations. The International Society for the Study of
Vascular Anomalies (ISSVA) generated a systematic classification
according to clinical manifestations and the presence or absence
of other symptoms (Figure 1) (10, 11).

Common (cystic) LM is the frequent lymphatic abnormality
during infancy and childhood, which usually involves isolated
and cystic tissue masses presenting in the head and neck
region (70–80%). However, common LM may also occur in
other organs containing lymphatic vessels, such as the chest
wall, trunk, limbs and parenchymal organs (12). Common LM
can be divided into three types: macrocystic LM (diameter >

1 cm), microcystic LM (diameter < 1 cm) and mixed cystic LM
(13, 14). Histologically, LM cysts may be vacant or filled with
protein-rich fluid brimming with lymphocytes and macrophages
(15–17). These typical clinical appearances and symptoms
help to differentiate it from complex lymphatic abnormalities
(CLAs), which involve multiple organs. Generalized lymphatic
anomaly (GLA) is a rare multiorgan dysfunction, involving
bones, liver, spleen, retroperitoneum, and other organs. Pleural
and pericardial effusions have been treated surgically, such
as by drainage and pleural fixation, but recent advances in
drug treatment are changing the treatment strategy for these
cases (18–20).

Kaposiform lymphangiomatosis (KLA) is an aggressive
lymphatic anomaly characterized by both tumor and
malformation. In the 2018 updated ISSVA classification,
KLA is regarded as a new subtype of GLA. The unique
histological feature of KLA is clusters or sheets of “kaposi-form”
hemosiderotic, spindled lymphatic endothelial cells arranged
in parallel fashion among abnormal and dilated lymphatic
channels. In addition, intrathoracic diseases accompanied by the
aggravation of respiratory symptoms and hemorrhagic effusion
are signs of KLA (21–23).

Gorham–Stout disease (GSD), also known as mass osteolysis,
is manifested by slow or rapid osteolysis accompanied by
cortical bone resorption and vascular fibrous connective
tissue replacement usually invading surrounding soft tissue
(24). Histological examination showed that the lymphatic
abnormality of bone with the increase of osteoclast activity
and bone loss may be caused by an increase of osteoclast
activity (23, 25). Although osteolysis can happen in patients
with GLA, cortex of the involved bones often remains
intact (26).

Channel-type LM (CCLA), previously known
as lymphangiectasia, is another type of LM.
CCLA is characterized by distal obstruction of
lymphatic vessels that affects lymphatic drainage and
obstructive injury caused by dyskinesia of lymphatic
vessels (20).

This scientific classification of LM allows scientific
and systematic study of the pathogenesis and treatment
options of each disease type, to achieve the purpose of
personalized treatment.

MOLECULAR PATHOGENESIS

The clinical outcome spectrum of LM is wide, spanning from
spontaneous regression with no treatment to disfigurement,
organ dysfunction and life-threatening infection. There is no
standard management algorithm for all types of LM and the
response of any given type of LM to a certain treatment
may vary. One of the main reasons is the diversity of the
molecular biological background of LM. Thus far, the etiology
andmolecular biological mechanisms of lymphatic abnormalities
are not very clear. Better understanding of the pathogenesis of
lymphangioma is required to develop more effective diagnosis
and treatment strategies, improve the curative effects, reduce side
effects, and achieve accurate treatments.

PI3K/AKT/MTOR Signaling Pathway
Many studies have shown that LM can present either as
isolated vascular abnormalities or as part of PROS, such as
Klippel-Trenaunay-Weber syndrome, Proteus syndrome, Turner
syndrome, PTEN hamartoma tumor syndrome and CLOVES
syndrome (27–29). Several recent reports indicated that the
occurrence of LM may involve gene mutations in somatic cells.
Somatic mutations in PIK3CA, which are the most common
somatic gene mutation in LM, have been specifically discovered
in LM-LECs (30, 31). PIK3CA mutations are also found in other
vascular malformations, but not in normal lymphatic vessels
(32, 33).

PI3Ks are pivotal regulators that are involved in cell
proliferation and differentiation. These kinases are activated
by upstream receptors upon ligand binding, such as hormone
molecular or growth factors (Figure 2) (34, 35). One study found
PIK3CA and PIK3R3 mutations in LM-LECs (30). The PIK3CA
mutation is a somatic mutation and its allele frequency detected
in LM-LECs is about 50%, indicating that the mutation may
be heterozygous. The PIK3R3 mutation is usually a germline
mutation detected in the mother and siblings that is present
in all cells of patients with LM; however, the mechanism
underlying how the PIK3R3 mutation leads to the LM phenotype
remains unclear (36, 37). These mutations lead to increased
AKT-Thr308 phosphorylation, resulting in high cell proliferation
and sprouting potential of LM-LECs. The overactivated PI3K
pathway can be inhibited by specific small molecular inhibitors
against PI3K, such as Wortmannin and LY294 (30).

Activated mTOR may lead to the formation of LM
by accelerating the growth and proliferation of cells and
lymphangiogenesis by regulating the phosphorylation and
activation of 4EBP and S6K, which provides amolecular principle
for the development of mTOR-targeted therapy for LM (38, 39)
(Figure 3).

Other studies have shown that PIK3CA mutations may lead
to the upregulation of various inflammatory cytokines in LM,
such as VEGF-C, COX2, HO-1, and ANGPTL4, and the over-
activation of COX2 may accelerate vessel dilation and expansion
in LM (40–42). ANGs, including ANG1and ANG2 was proved
to have the potential of being used as diagnostic marker of
lymphatic abnormalities (21, 43). Mutated PIK3CA can lead
to ANG2 repression by inducing phosphorylation-dependent
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FIGURE 1 | The international society of the study of vascular anomalies classification of lymphatic malformations.

FIGURE 2 | The structure of class I PI3Ks. PtdIns-(4,5)-P2 serves as the substrate of PI3Ks, which are heterodimeric molecules composed of both a catalytic subunit

(p110α, β, γ, and δ) and a regulatory subunit (p85α, p55α, p50α, p85β, and p55γ. PIK3CA, encoding the PI3K catalytic subunit p110α, which can affect the activity of

PI3K and the level of phosphorylation of AKT, may lead to excessive proliferation of lymphatic endothelial cells. All p85 isoforms have two Src homology 2 (SH2)

domains and are encoded by PIK3R1 (which encodes p85α, p55α and p50α), PIK3R2 (which encodes p85β) and PIK3R3 (which encodes p55γ). The PIK3R3

mutation exists in patients with LM, but the mechanism of the PIK3R3 mutation to the LM phenotype needs further investigations.

inactivation of FOXO1 and FOXO3a, which are the essential
transcription factors for ANG2 expression (44). The PI3K/AKT
axis plays an important role in the maturation of the lymphatic
vessel, which may provide reasonable explanations for the
microscopic characteristics of LM.

VEGF-C and Its Receptor
In the development of lymphatic vessels, SOX18 and COUP-
TFII transcription factors in embryonic vein jointly activate
the expression of PROX1 in venous endothelial cell subsets.
PROX1 is a marker of embryonic venous endothelial cells with

a molecular function of cell proliferation promoter and fateful
factor of LECs (45, 46). VEGF-C and VEGFR-3 are necessary
for the development of lymphatic vessels. A recent study showed
that lymphatic vessels do not develop in mouse embryos in
the absence of VEGF-C (47). Other studies showed that the
transcripts of VEGF-C and its receptors VEGFR-3 and VEGFR-
2 are co-localized in the LM-LECs (48). The VEGF-C transcript
was not detected in any type of hemangioma or angiosarcoma,
indicating that VEGF-C is a specific marker of the lymphatic
system, not only in the embryonic stage but also in lymphoid
diseases, such as lymphangioma (49). The expression of VEGF-C
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FIGURE 3 | Involvement of the dysregulated PI3K/AKT/mTOR signaling pathway in LM. In the PI3K/AKT/mTOR signaling pathway, the somatic mutations on PIK3CA

are specifically discovered in LM-LECs. Also, some LM can present as part of PROS, the inhibitors against PI3K, i.e., LY294002, BYL719 and Wortmannin, may

provide a new therapeutic target for the treatment of LM. The mutations on PIK3CA can increase AKT-Thr308 phosphorylation, triggering high cellular proliferative and

sprouting potential of LM-LECs, which could be inhibited by the specific small molecular inhibitors, such as ARQ092, MK-2206. MK-2206 may be worthy of further

treatment of LM. Sirolimus can potently and specifically inhibit the activity mTOR. PIK3CA mutation can repress ANG2 by conducting phosphorylation-dependent

inactivation of FOXO1, which is the essential transcription factors for ANG2 expression. The decreased expression of ANG2 makes lymphatic vessels more stable and

muscular. Furthermore, the inhibitors against PI3K, AKT, mTOR, provide a new therapeutic target for the treatment of LM.

receptors, such as VEGFR-2 and VEGFR-3, was also identified
in the LM-LECs. Therefore, abnormal expression of VEGF-C in
lymphatic endothelial cells may be the basis of the pathogenesis
of LM. Some studies found that the level of VEGF-C is increased
in the serum of patients with GSD, and overexpression of VEGF-
C may be one of the mechanisms leading to osteolysis in these
patients (50, 51).

Neuropilin2 (Nrp2) is critical for other aspects of VEGF-C-
mediated lymphangiogenesis (52). In recurrent lymphangioma,
both VEGF-C and Nrp2, but not VEGFR, are upregulated (53,
54). These findings imply that targeting VEGF-C/Nrp2 may
be a potential therapeutic strategy for recurrent lymphangioma
(Figure 4).

Wnt/β-Catenin Signaling Pathways
Wnt/β-catenin signaling is necessary for lymphatic development.
PROX1, as a sifnificant transcription factor in lymphatic
endothelial cells, can promote the development of lymphatic
vessels by forming complexes with β-catenin and the TCF/LEF
transcription factor TCF7L1 to enhanceWnt/β-catenin signaling
and promote the expression of FOXC2 and GATA2 in LECs
(55) (Figure 5). Dermal lymphatic dysplasia occurred in mice
knocked out for Wnt5a and a high level of Wnt5a expression
was detected in LM-LECs, indicating that Wnt5a may play an
important role in lymphangioma formation (56). The activities

of Wnt5a are transduced through non-classical pathways. Non-
classical Wnt signaling transduction is the main mechanism
of lymphangiogenesis and lymphatic differentiation (57, 58).
An immunochemical experimental study revealed nuclear
localization of β-catenin in the endothelium of LM, which further
confirmed the importance of the Wnt/β-catenin pathway in the
formation of LM (59). This pathway may provide a new potential
molecular target for LM therapy.

RAS/RAF/MEK/ERK Signaling Pathway
RAS proteins, members of the small protein GTPase family, are
the translational products of three generally expressed proto-
oncogenes and include H-RAS, K-RAS and N-RAS (60). The
RAS/RAF/MEK/ERK signaling pathway is part of the MAPK
cascades, RAS also activates the PI3K/AKT signaling pathway
(Figure 6) (61, 62).

Some researchers have investigated the pathogenesis of LM
from the perspective of genetics. A recent study performed
cfDNA analysis of plasma and pleural effusion in patients with
KLA and identified somatic activation mutations in NRAS in
approximately 30% of endothelial cells from isolated LECs from
GLA patients, which further demonstrated the possibility of
somatic NRAS mutations causing GLA (63). Another study
reported that somatic NRAS p.Q61R mutants are frequently
found in KLA (64). Some researchers isolated lymphangioma
endothelial cells from GLA tissue and performed whole

Frontiers in Pediatrics | www.frontiersin.org 4 December 2021 | Volume 9 | Article 735832

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Liu et al. Recent Progress in Lymphangioma

FIGURE 4 | Involvement of dysregulated VEGF-C and receptor pathways in LM. SOX18 and COUP-TFII transcription factors in embryonic vein together activate the

expression of PROX1 in venous endothelial cell subsets. Sirolimus can rapidly reduce the expression of Prox1, VEGFR-3 mRNA and protein, which may be related to

the inhibition of Prox1 transcriptional activity. The mechanism of propranolol in the treatment of LM may be closely related to the members of the VEGF family, such as

VEGF-C. Both VEGF-C and neuropilin2 (Nrp2) are upregulated in recurrent lymphangiomas. These findings imply that targeting VEGF-C/Nrp2 may be a potential

therapeutic strategy for recurrent lymphangioma. FOXC2 haploinsufficiency may be associated with macrocystic LM. BMP modulators have certain therapeutic

potential, such as dorsomorphin, may support the participation of BMP pathways in the study of LM therapy. However, it needs further clinical trials to prove potential

clinical benefits in the treatment of LM.

FIGURE 5 | Involvement of Wnt signaling pathways in LM. PROX1 forms complexes with β-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt /

β-catenin signaling and promote the expression of FOXC2 in LECs, thus accelerating the development of lymphatic vessels. The nuclear localization of β-catenin in the

endothelium of LM has been found. Wnt modulators have certain therapeutic potential, such as LDN-193189 and calyculin A, these drugs may support the

participation of Wnt pathways in the study of LM therapy. Furthermore, the modulators against Wnt signaling pathways may supply a new therapeutic target for the

treatment of LM.
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FIGURE 6 | The RAS/RAF/MEK/ERK signaling pathway in LM and potential therapeutics. EphB4 and NRAS mutations activate the RAS/MEK/ERK signaling pathway.

NRAS gene mutation in lymphatic endothelial cells of GLA and KLA has been discovered, MAPK inhibitors (U0126) require clinical trials to explore their potential in the

treatment of LM. The somatic cell activation mutation of NRAS in lymphatic endothelium can increase phosphorylation of AKT and ERK in lymphatic endothelial cells

of GLA. Recently, a new drug, trametinib, blocking the enhanced phosphorylation of ERK and reducing the viability of the endothelial cells, maybe a promising choice

for the treatment of GLA. CCLA, is connected with the mutation in EPHB4 following the autosomal dominant inheritance. The inhibitors against RAS, MAPK, and

EPHB4 may provide a new therapeutic target for the treatment of LM.

exon sequencing to search for pathogenic genes; the findings
confirmed the somatic cell activation mutation of NRAS in
lymphatic endothelium and showed increased phosphorylation
of AKT and ERK in lymphatic endothelial cells of GLA (65).
The detection of NRAS gene mutation in lymphatic endothelial
cells of GLA and KLA not only provides a more specific
means for the diagnosis of LM but also provides a potential
opportunity for the development of targeted therapy for current
drug-resistant lesions.

A previous study found that CCLA is associated with a
mutation in EPHB4 and follows autosomal dominant inheritance
(66). Other studies reported that EPHB4 mutations can lead to a
wide range of vascular diseases (67). These gene mutations may
be a cause of LM, and suppression of these genes may become a
new therapeutic strategy for the treatment of LM.

Other Pathways
Recent studies indicated that embryo mutant PKD1 and PKD2
can contribute to abnormal lymphatic vessels similar to LM,
providing powerful evidence that the down-regulation of theirs
protein products, PC-1 and PC-2 may give rise to the over-
activation of the ERK pathway in LM and promote the
proliferation of LM-LECs (68, 69). These studies shed light on
the underlying mechanisms of LM and may lead to new methods
for the treatment of LM.

Another report identified that the genes encoding FOXF1
and DIRAS3 are highly overexpressed in LM-LECs (70).
Haploinsufficiency of FOXF1and FOXC2 may be associated with
macrocystic LM (71). Previous studies reported the presence of
lymphoid aggregates in LM is imbedded in these inflammation
sites, indicating LM may be a chronic inflammatory disease

(72, 73). LTs and LIGHT are important inflammatory mediators
that control the formation of TLOs (74). LTs may accelerate
the progression of LM by increasing the proliferation of LECs.
LTs and LIGHT promote the development of LM by activating
the NF-kB pathway to enhance LEC proliferation (75). The
expression of LTs and their receptors was enhanced in LM,
demonstrating the important role of LT signaling pathways in the
pathogenesis of LM. These results suggest a potential therapy for
LM by targeting LTs and LIGHT, especially LM with infection.
However, the mechanisms by which LTs and LIGHT promote
the formation of LM still need to be identified. M2-polarized
macrophages assembled through TLOs in infected LM may give
rise to disease progression by secreting VEGFC and accelerating
the proliferation of LECs (76). These outcomes suggest that
targeting macrophages in LM may be a prospective method for
LM therapy.

Many LM patients who have microcystic disease are quite
insensitive to surgery and sclerotherapy with a high recurrence
rate. Recent studies found a population of LMPCs in LM that is
scattered among the aberrant lymphatic vessels, demonstrating
that LMPCs may be the cell type of origin in LM; this finding
may explain the high rate of recurrence (77). Therefore, targeting
the progenitor cell population in LM by therapeutic interventions
may be a new treatment option.

TREATMENTS

Surgery
Although little improvement has been made in the surgical
techniques of LM treatment, surgery still plays an important
role and remains the first choice for the treatment of LM (78).

Frontiers in Pediatrics | www.frontiersin.org 6 December 2021 | Volume 9 | Article 735832

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Liu et al. Recent Progress in Lymphangioma

However, LM is invasive and adjacent to important structures,
and usually cannot be completely removed because the operation
of LM is usually complex and prone to damage cranial nerves
and blood vessels (79). Many complications are reported after
operation, including facial nerve injury, hemorrhage, seroma
and infection, among others (80). The most common nerve
that is injured is the submandibular branch of the facial nerve;
both mixed microcystic and macrocystic LM infiltrate the facial
nerve area, making it difficult to differentiate the nerve from
the LM during operation (81, 82). In addition, LM frequently
shows recurrence. Thus, incomplete resection, high risk of injury
to important tissues and high recurrence rate are associated
with surgical treatment (83). Surgical scars can also cause
aesthetic problems and lead to body image problems, especially
in children. Therefore, new treatment strategies are needed to
treat LM. In recent years, alternative treatments for LM have
been explored.

Sclerotherapy
Clinically, the most common alternative therapy for LM that
cannot be completely resected or that is too difficult to operate
is the injection of sclerosing agents into the lesion. Thus far,
many patients with LM have received sclerotherapy as the
preferred treatment, with satisfactory results and no serious
complications (84). Sclerotherapy is evolving and has several
advantages over surgical resection, such as simple operation
and lower risk of nerve injury. Some studies have shown that
sclerosing agents are effective in treating macrocystic LM, with
much less efficacy inmicrocystic LM (85–87). Sclerosants include
OK-432, doxycycline, bleomycin, ethanol, hypertonic saline,
acetic acid, and sodium tetradecyl sulfate, among others (88, 89).
OK-432 sclerotherapy is becoming a recognized alternative to
surgery, especially for patients with microcystic LM. OK-432 can
induce and activate leukocytes to produce cytokines, such as IL-
6, IL-8, IL-12, IFN- γ, and TNF-α. These cytokines can increase
the permeability of endothelial cells and accelerate the speed and
flow of lymphatic drainage, leading to the shrinking of the cystic
cavity of LM and regression of the lesion (90–92). Compared with
other sclerosing agents, the main advantage of OK-432 is the
reduction of major complications and the absence of perifocal
fibrosis, which allows follow-up surgery to continue when the
sclerotherapy is not effective. However, OK-432 is prohibited
in patients who are allergic to penicillin (84). Other agents are
discussed in Table 1. Notably, some adverse reactions have been
reported after sclerotherapy, such as soft-tissue edema leading
to airway obstruction and skin necrosis. The effectiveness of
sclerotherapy can also be restricted by the high recurrence rate
(109, 110).

Radiofrequency Ablation
RFA, also called hypothermic ablation, can destroy lesion tissue
at low temperatures (40–70◦C) with minimal damage to adjacent
structures. RFA has been used as the first choice for the treatment
of microcystic LM in the mouth and throat and more specifically
for microcystic LM on the tongue (111, 112). Clinically, the
lesions of microcystic LM tend to involve more mucosa and are
prone to recurrence. RFA is an effective method for the treatment

of local superficial microcystic LM (113), and studies have shown
that RFA is of great value in the treatment of retropharyngeal
LM (114). Submucosal resection of large microcystic LM that
obstructs the pharyngeal airway can be performed by RFA,
instead of conventional surgical techniques, which can help to
stop bleeding and retain important surrounding structures (111).

Some studies reported that the combination of RFA and
bleomycin sclerotherapy is a safe and effective method for the
treatment of retropharyngeal LM (115, 116). While RFA is of
great value in the treatment of localized superficial microcystic
LM, further development and research is required to better apply
RFA to other parts of microcystic LM.

Medical Therapy
Despite the multiple treatments mentioned above, achieving
optimal results for the LM with large lesion range and infiltrative
growth is difficult with operation or sclerosing agent. Recently,
some researchers have attempted to treat LM with oral medical
drugs. Several of the oral drugs have shown reasonable effects
on LM and have been used for patients with LM in many
medical centers.

SILDENAFIL

In 2012, Swetman et al. treated a child who suffered from both
pulmonary hypertension and systemic multiple LM with oral
sildenafil. Thereafter, sildenafil was indicated as an option for the
treatment of LM and as a monotherapy or in combination with
other therapies (117).

The mechanism underlying the effect of sildenafil in LM is
not quite clear. As a selective type PDE-5 inhibitor, the primary
function of sildenafil is to suppress the breakdown of cGMP,
giving rise to the relaxation of smooth muscle and vascular
dilation (118, 119). One of the hypotheses is that sildenafil relaxes
the perivascular smooth muscle and consequently causes the
collected lymph to flow into the venous system to depressurize
LM. Sildenafil may also trigger nitric oxide synthase to stimulate
vasodilation, mediate lymphangiogenesis and enhance lymphatic
dilatation and drainage (117, 120). Gandhi et al. found that oral
sildenafil is also effective for orbital lymphangioma (121).

Other reports have suggested that microcystic LM is resistant
to sildenafil (122). Therefore, randomized controlled clinical
trials are needed to verify the efficacy of sildenafil in the treatment
of LM (123).

PROPRANOLOL

Propranolol has recently been developed as a first-line treatment
for infant hemangioma (IH) and also shows therapeutic effects
in some LM cases, providing an alternative treatment for LM
in children (124). Wu et al. reported that the symptoms of
some patients with LM were significantly improved after taking
propranolol, which may also restrict the growth of congenital LM
in the uterus and stagnate the growth of cervicofacial LM (125).

The mechanism of propranolol in the treatment of LM may
involve VEGF family members, such as VEGF-A, VEGF-C, and
VEGF-D. Propranolol was shown to reduce the expression of
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TABLE 1 | Details of the drugs that are currently used for sclerotherapy.

Sclerosant Mechanism Indications Complications References

Doxycycline 1. Inhibition of matrix metalloproteinases and cell

proliferation.

2. Suppression of angiogenesis and

lymphangiogenesis induced by VEGF.

3. Deposition of collagen and fibrin, leading to

dense adhesion and fibrosis.

Macrocystic LM 1. Tooth discoloration.

2. Electrolyte abnormalities.

(93–96)

Bleomycin 1. Inhibition of DNA synthesis.

2. Destroy the endothelial junction and promote the

transformation of endothelial cells into fibroblasts.

Macrocystic LM 1. Interstitial pneumonia and

pulmonary fibrosis.

2. Hypertension.

(97–100)

Pingyangmycin 1. Cell death is induced by destroying DNA double

strands and inhibiting DNA synthesis.

2. Selective destruction of LECs lining with cysts.

3. Increased collagen deposition in the cyst cavity.

Macrocystic LM

Postoperative adjuvant

treatment of

Microcystic LM

1. Alopecia.

2. Changes of skin pigmentation in

gastrointestinal reaction.

3. Pulmonary fibrosis.

(101–103)

Ethanol Destroy endothelial cells, induce thrombosis by

denaturing blood proteins, destroy the intima of

abnormal blood vessels, and cause scar formation

and transmural vascular necrosis.

Macrocystic LM Pulmonary hypertension, pulmonary

embolism, cardiovascular failure,

rhabdomyolysis, consumptive

coagulopathy, and allergic reactions.

Deep ulcers, hemoglobinuria, and

motor or sensory nerve damage.

(104–107)

Sodium tetradecyl

sulfate (STS)

When combined with doxycycline or ethanol,

emulsified cell membrane lipoprotein can increase

membrane permeability, cell death, and fibrosis.

Macrocystic LM

Orbital LM

Skin necrosis and nerve injury. (85, 108)

VEGF, resulting in the down-regulation of the mitogen-activated
protein kinase cascade, which is indispensable for angiogenesis
(126–128). In vitro, propranolol inhibits the proliferation,
migration, and differentiation of endothelial cells in a dose-
dependent manner (129). In addition, VEGF subgroups express
differently in IH and LM, for instance, VEGF-A is highly
expressed in IH but rarely expressed in LM. In contrast, high
expression of VEGF-C in LM may be one of the reasons why
propranolol is not suitable for all LM (130, 131). Therefore,
furthering understanding of the mechanism of propranolol in
LM is required.

SIROLIMUS

Sirolimus (also known as rapamycin) is a macrolide compound
that potently and specifically inhibits the activity of mTOR and
thus effectively blocks the PI3K/AKT/mTOR signaling pathway,
which is shown to promote lymphangiogenesis (132, 133). In
addition, sirolimus can also block the process of endothelial
differentiation and vascular repair mediated by pluripotent cells,
prevent the accumulation of hypoxia-inducible factor-1a, and
block VEGF signal transduction (134). Recent studies have
shown that sirolimus can rapidly reduce the expression of Prox1
and VEGFR-3 mRNA and protein, which may be related to
the inhibition of Prox1 transcriptional activity, and prevents the
growth of abnormal lymphatic vessels, without significant effect
on normal lymphatic vessels (135).

In the study of Hammill et al., four patients with diffuse
microcystic LM were treated with oral sirolimus, and the
chylous pleural exudate decreased gradually and symptoms

improved (132). In a study by García-Montero et al., two patients
diagnosed with local microcystic LM who failed traditional
treatment methods achieved significant improvement by taking
sirolimus, without significant side effects (136). Another study
reported that topical sirolimus can successfully treat patients with
superficial LM, and sirolimus may be a valuable alternative for
the treatment of superficial LM (137, 138). However, sirolimus
still has many side effects, including gastrointestinal disorders,
metabolic toxicity. There are usually no serious complications,
and most patients tolerate sirolimus (132). Therefore, sirolimus
may become a hotspot in the research of microcystic LM in
the future.

OTHER DRUGS

Many promising drugs that target the aforementioned signaling
pathways are currently under clinical trials. Several inhibitors
targeting the PI3K/AKT/mTOR signaling pathway, such
as PI3K inhibitors (LY294002, BYL719, wortmannin),
AKT inhibitors (ARQ092, MK-2206), MAPK inhibitors
(U0126), and sorafenib (multiple kinase inhibitors), are
under development. One study found that MK-2206 may
be effective in treatment of “typical” LM; BYL719 is more
effective in inhibiting the proliferation of KLA cells than
U0126, but it also inhibits normal lymphatic endothelial cells
(30, 139). BYL719 is currently undergoing clinical trials in
patients with PIK3CA-dependent tumors. In 2018, Venot et
al. demonstrated that the PIK3CA inhibitor BYL719 improved
the symptoms of patients with PROS and shows good tolerance
(140). Because LM are part of PROS, studies are required to
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further explore the therapeutic potential of PIK3CA inhibitors
in LM.

A recent study reported a novel drug, trametinib,
which blocks the enhanced phosphorylation of ERK
and reduces the viability of the endothelial cells, as a
promising choice for the treatment of GLA (65). Therefore,
these inhibitors may serve as new targeted therapy
of LM and further clinical trials are needed to verify
their efficacy.

Bevacizumab, an inhibitor of VEGF-A, inhibits
the proliferation of LM endothelial cells in a dose-
dependent manner and has been successfully used in
the treatment of diffuse pulmonary lymphangiomatosis
(65, 141–143).

Several studies have also suggested that BMP and Wnt
modulators, such as dorsomorphin, LDN-193189 and calyculin
A, may have certain therapeutic potential, supporting the
participation of BMP and Wnt pathways in the study
of LM therapy. Other drugs such as a JAK inhibitor
(ruxolitinib), calcium channel blocker (amlodipine) and
KATP activator (minoxidil), may have therapeutic potential
and further clinical trials are required to examine their
potential clinical benefit in the treatment of LM (59). Other
drug therapies have also been used to treat patients with
GLA, such as zoledronic acid and interferon α 2b, and
achieved a certain curative effect (18, 144, 145). Prednisolone
and sunitinib have also shown success in treating LM
as either a monotherapy or part of combination therapy
(146, 147).

COMBINED TREATMENT

Since a single treatment cannot provide satisfactory results, most
patients should use multiple treatments. There are reports in the
literature that superficial microcystic mucosal LM can be treated
in several ways, including laser ablation (the most commonly
used is CO2 laser), radiofrequency ablation, microdebrider
resection, bleomycin sclerotherapy, and systemic sirolimus
(148–151). All these methods can alleviate the symptoms of
pain and bleeding. Surgical resection is the main treatment
method, which can fully remove large cystic lesions and
significantly remove the volume of large cystic lesions. Any
remaining diseases can be treated with sclerotherapy. Bleomycin
is currently used to treat residual microcystic disease and
has achieved some success (152). Any persistent disease may
require several rounds of sclerotherapy. Surgery, as a main
method, can effectively reduce the size of the disease. Or
first take medication to reduce the size of the disease, and
then it can be removed by surgery. Likewise, any residue
can be treated with sclerotherapy. Unfortunately, there are
no published data to evaluate the existence of multimodal
treatments, and further verification by clinical practice is
still needed.

CONCLUSION

With the increasing knowledge about lymphangioma, more
and more emphasis is being placed on individual therapy, in
which different treatment strategies are made according to the
location, scope and classification of the lesions. For example,
surgery and most sclerotherapy agents are suitable for large
cystic lymphangiomas but not microcystic LM. While the above-
mentioned new drugs are more applicable for the treatment of
macrocystic LM, further study is required as the response of
macrocystic LM to drugs might also vary. Only certain patients
with LM can benefit from the drugs, indicating that themolecular
pathological basis of different LM might be distinct and require
different therapeutic targets. Currently, however, the detailed
molecular pathology of LM remains far from clear. To achieve
better diagnosis and treatment for LM, the following research
directions need to be explored. First, better understanding of the
pathological characteristics of each type of LM is required, which
is not only helpful to improve the clinical diagnosis of different
types of LM but will also be conducive to in-depth analysis
of their pathogenesis and molecular biological characteristics, a
more precise molecular classification, and achieving successful
treatment of LM. Secondly, continued exploration of drugs that
have been used in the treatment of LM and those that are in
clinical trials is necessary as well as studying the pharmacological
mechanism of these drugs to maximize their efficacy and reduce
various side effects, and identify the specific therapeutic regimen
for the corresponding classification. Finally, for some LM, which
are not sensitive to drug therapy, comprehensive treatments such
as surgery, sclerotherapy and drug therapy also need be explored
to minimize complications of the disease and improve the quality
of prognosis of patients.
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GLOSSARY

LM, lymphatic malformation; LECs, lymphatic endothelial
cells; VEGFR-3, vascular endothelial growth factor receptor-
3; VEGF-C, vascular endothelial growth factor-C; PIK3CA,
phosphatidylinositol-4,5-bisphosphate3kinase, catalytic subunit
alpha; PI3Ks, class I phosphoinositide 3-kinases; PROS, PIK3CA
-related overgrowth spectrum; LM-LECs, LM lymphatic
endothelial cells; PI3Ks Class I, phosphoinositide 3-kinases;
PIK3R3, PI3K regulatory subunit-3; mTOR, mechanistic target
of rapamycin; 4EBP, 4e binding protein; S6K, ribosomal protein
6S kinase; COX2, cyclooxygenase-2; HO-1, oxygenase-1;
ANGPTL4, angiopoietin-like 4; ANGs, angiopoietins; ANG2,
angiopoietin 2; ANG1, angiopoietin 1; FOXO1, forkhead box
O1; FOXO3a, forkhead box O 3a; SOX18, sex-determining
region Y box 18; COUP-TFII, chicken ovalbumin upstream
promoter-transcription factor II; PROX1, prospero-related
homeoboxtranscription factor-1; TCF7L1, transcription factor
7-like 1; FOXC2, forkhead box C2 protein; GATA2, GATA
binding protein 2; H-RAS, harvey rat sarcoma viral oncogene
homolog; K-RAS, kirsten rat sarcoma viral oncogene homolog;
N-RAS, neuroblastoma RAS viral oncogene homolog; MAPK,
mitogen-activated protein kinase; EPHB4, ephrin B4; PKD1,
protein kinase D1; PKD2, protein kinase D2; PC-1, polycystin-1;
PC-2, polycystin-2; FOXF1, forkhead Box F1; DIRAS3, ras
homolog member I; FOXC2, forkhead box C2 protein; LTs,
lymphotoxins; LIGHT, LT-related inducible ligand; NF-kB,
nuclear factor-kappa B; TLOs, tertiary lymphoid organs;
LMPCs, lymphatic malformation progenitor cells; BMP, bone
morphogenetic protein.
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