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Exposure to air pollution and scarlet fever
resurgence in China: a six-year surveillance study
Yonghong Liu1,11, Hui Ding1,11, Shu-ting Chang2,11, Ran Lu3, Hui Zhong1, Na Zhao 4, Tzu-Hsuan Lin2,

Yiming Bao 5, Liwei Yap2, Weijia Xu6, Minyi Wang6, Yuan Li7, Shuwen Qin 8, Yu Zhao 8, Xingyi Geng 9,

Supen Wang 10, Enfu Chen 8✉, Zhi Yu1✉, Ta-Chien Chan 2✉ & Shelan Liu8✉

Scarlet fever has resurged in China starting in 2011, and the environment is one of the

potential reasons. Nationwide data on 655,039 scarlet fever cases and six air pollutants were

retrieved. Exposure risks were evaluated by multivariate distributed lag nonlinear models and

a meta-regression model. We show that the average incidence in 2011–2018 was twice that in

2004–2010 [RR= 2.30 (4.40 vs. 1.91), 95% CI: 2.29–2.31; p < 0.001] and generally lower in

the summer and winter holiday (p= 0.005). A low to moderate correlation was seen

between scarlet fever and monthly NO2 (r= 0.21) and O3 (r= 0.11). A 10 μg/m3 increase of

NO2 and O3 was significantly associated with scarlet fever, with a cumulative RR of 1.06

(95% CI: 1.02–1.10) and 1.04 (95% CI: 1.01–1.07), respectively, at a lag of 0 to 15 months. In

conclusion, long-term exposure to ambient NO2 and O3 may be associated with an increased

risk of scarlet fever incidence, but direct causality is not established.
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Scarlet fever is a disease caused by a group A Streptococcus
(Streptococcus pyogenes)1,2. The signs and symptoms
include a sore throat, fever, headaches, swollen lymph

nodes, and a characteristic rash3. It most commonly affects
children between 5 and 15 years of age, though it can also occur
in adults4.

Most scarlet fever cases are mild infections, and fatal infections
are now rare5. However, a small proportion of cases still may
develop serious sequelae, including kidney disease, rheumatic
heart disease, and arthritis2,6. Spread of scarlet fever occurs by
close contact, via respiratory droplets (e.g., saliva or nasal dis-
charge) or by fomites4. Scarlet fever outbreaks are most often
observed in kindergartens, other schools, factories, etc.7–10.

The incidence of most childhood infectious diseases sig-
nificantly decreased during the course of the last century with
immunization, development of effective treatments, improved
living standards, hygiene, nutrition, etc.1,2. Scarlet fever was a
feared killer in the eighteenth and nineteenth centuries
throughout Europe. Its spread dropped dramatically worldwide
during the twentieth century11, but it has recently reemerged, as
evidenced by its rise in several countries8,12. For example,
increased scarlet fever incidence has been seen in Asia, especially
in Korea, mainland China and Hong Kong, and in Europe, par-
ticularly in the United Kingdom1,5,12–15. Because there are cur-
rently no vaccines available to protect against S. pyogenes
infection, the resurgence of scarlet fever has been a concerning
public health problem globally8.

In 2019, the World Health Organization (WHO) listed ten
threats to global health, of which air pollution is considered by
the WHO to be the greatest environmental risk to health. The
primary cause of air pollution is also a major contributor to
climate change, which impacts people’s health in different ways.
A string of evidence has revealed positive associations between air
pollution exposure and respiratory diseases16. However, the
effects of air pollution on resurgence of scarlet fever have been
less reported in both developed and developing countries. A small
number of previous studies have projected air-pollution-related
scarlet fever in a small number of cases, but these only focused on
specific regions or cities in China, or were based on a single
scenario12,17–19, and the findings are diverse, fragmental, and
nonconclusive.

In this study, we applied an ecological study design to examine
the associations between long-term air pollution exposure,
meteorological conditions, and scarlet fever incidence in all of
China. We assessed the relative risk by a distributed lag nonlinear
model (DLNM), stratified by different air pollutants, meteor-
ological factors, and high- and low-incidence areas. In addition,
the demographic and behavioral effects on scarlet fever incidence
such as population density and school breaks were also evaluated.
To our knowledge, this is the first nationwide study of the rela-
tionship between historical exposure to air pollution exposure
and a sudden rise in scarlet fever, relying on the largest data from
all parts of China, covering an overall population and the longest
period.

These findings showed that the number of scarlet fever cases
began to increase suddenly from 2011. Statistical examinations of
6-year nationwide data suggested long-term exposure to ambient
NO2 and O3 is associated with the scarlet fever upsurge. Scarlet
fever incidence also appeared to be associated with school breaks
such that lower incidence rates were observed in the summer and
winter holidays compared with when school was in session.
Despite the inherent limitations of the ecological study design,
this study encourages public health authorities to consider NO2

and O3 risks when addressing the prevention and control of
scarlet fever resurgence. School-based control measures could be
particularly important in scarlet fever control.

Results
Scarlet fever distribution in China, 2004–2018. The study
consisted of 655,039 scarlet fever cases between January 1, 2004
and December 31, 2018. The annualized average incidence was
3.26 per 100,000 people (shown in Fig. 1). Scarlet fever started to
surge in 2011, rising by a factor of three between 2004 and 2011
(rate ratio [RR] 3.27, 95% CI: 3.22–3.32; p < 0.001), further
increasing in 2017 (5.37 per 100,000 population) and peaking
in 2018 (5.67 per 100,000 population) (shown in Fig. 1). The
average incidence rate during the post-upsurge period
(2011–2018) was two times more than in the pre-upsurge period
(2004–2010) [RR= 2.30 (4.40 vs. 1.91), 95% CI: 2.29–2.31; p <
0.001) (see Fig. 1).

We used a heat map to show seasonal patterns, and found that
nationally, scarlet fever showed semiannual peaks of activity,
including a major peak in May and June followed by a smaller
peak in November and December (Supplementary Fig. 1). Scarlet
fever predominantly circulated in the north, northeast, and
northwest of China (Supplementary Fig. 2).

Air pollution characteristics in China, 2013–2018. During
2013–2018, nationally, the monthly mean concentration was
51.28 μg/m3 for PM2.5, 90.75 μg/m3 for PM10, 24.35 μg/m3 for
SO2, 33.63 μg/m3 for NO2, and 1.08 mg/m3 for CO, and the
daytime 8-h mean concentration for O3 was 86 mg/m3. The
monthly concentrations of PM2.5 and PM10 were much higher
than the China guidelines II level issued in 2018 (see Table 1 and
Supplementary Fig. 3). The boxplots of monthly variation of air
pollution concentrations show an obvious seasonal pattern
(Fig. 2a). The peaks of PM2.5, PM10, and NO2 concentration
mostly appeared in December and January, while the peaks of O3

appeared in late spring to late summer, from May to August.
The annual mean concentrations of six air pollutants varied

greatly across the 31 provinces, but significantly increased in
northern to western China (Fig. 3 and Supplementary Fig. 3). In
particular, the concentrations of PM2.5 and PM10 in the majority
of provinces were over the China guidelines II (Fig. 3). During
2013–2018, the mean monthly concentrations of six air pollutants
in high-latitude areas were obviously higher than those in low-
latitude areas (Supplementary Fig. 4 and Supplementary Table 1).
Nevertheless, their trends varied over time. The mean monthly
concentrations of PM2.5, PM10, and CO significantly decreased
year by year, while the values of O3 greatly increased in the 6
years during 2013–2018, and NO2 showed a volatile rising trend
starting in 2016, following a downward trend during 2013–2016.
The concentration of PM2.5, PM10, and NO2 in most months
exceeded the China guidelines II. Meanwhile, the seasonal
variation in the high-latitude areas was basically consistent with
that in the low-latitude areas (Supplementary Fig. 4). In addition,
the concentrations of NO2 and O3 were positively correlated with
scarlet fever incidences in quantile groups (Supplementary Fig. 5).

Meteorological factors distribution in China, 2004–2018.
Nationally, the monthly mean ambient temperature was 13.37 °C,
the mean relative humidity was 66.03%, air pressure was 940.27
Pa, precipitation amount was 76.90 mm, wind speed was 2.13 m/
s, and sunlight was 172.59 h throughout China. The values after
imputation are listed in brackets in Table 2, and are very close to
the original data distribution. We adopted the imputed values in
our models.

There was significantly higher precipitation than that just in
the period of 2004–2010, whereas the hours of sunlight and
wind speeds were much lower in the post- than pre-upsurge
period (all p values < 0.05, Supplementary Fig. 6). In contrast,
mean temperature, relative humidity, and air pressure were not
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significantly different between the two periods (all p values > 0.05,
Supplementary Fig. 6).

The boxplots of meteorological conditions show clear variations
in the four seasons (Fig. 2b) from 2013 to 2018, and the incidence
of scarlet fever also showed seasonal variations, with the average
highest number of cases in spring (Fig. 2c), and a similar pattern
can also be found from 2004 to 2018 (Supplementary Fig. 7). The

temperature, relative humidity, and precipitation were higher in
summer. The atmospheric pressure was higher in winter, and
wind speed and sunlight were higher in spring.

We further stratified the analyses of meteorological variables at
higher latitudes and low latitudes, finding that higher latitude
areas showed lower mean temperature, lower relative humidity,
lower pressure, and lower precipitation amount. However, higher
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Fig. 1 Annual incidence rate of scarlet fever in all of China, 2004–2018. Blue bar: the number of scarlet fever notifications by year; Red line: Annual
scarlet fever incidence per 100,000 population by calendar year; Yellow line: the mean annual incidence for the period 2004–2018; We defined the mean
annual incidence as the cumulative number of annual scarlet fever cases (2004–2018) divided by the general population size (2004–2018); AI1= average
annual incidence 2004–2010 (per 100,000). We defined AI1 as the cumulative number of annual scarlet fever cases (2004–2010) divided by the general
population size (2004–2010); AI2= average annual incidence 2011–2018 (per 100,000). We defined AI2 as the cumulative number of annual scarlet fever
cases (2011–2018) divided by the general population size (2011–2018). The figure consists of 655,039 scarlet fever cases between January 1, 2004 and
December 31, 2018. Scarlet fever started to surge in 2011 and peaked in 2018 (5.67 per 100,000 population). After the upsurge in 2011, the annual
incidence of scarlet fever remained higher than average level except for in 2013. Source data are provided as a Source Data file.

Table 1 Descriptive statistics for monthly scarlet fever cases and air pollution concentrations, and weather conditions in China,
2013–2018 (n= 2232).

Variables Mean SD Min. P25 P50 P75 Max. §China
guideline II

No. of scarlet
fever cases

5123 2893 959 2704 4445 7262 12593 /

PM2.5 (μg/m3) 51.28 29.09 8.00 31.00 44.00 64.00 225.00 35
PM10 (μg/m3) 90.75 44.56 20.00 58.00 82.00 115.00 405.00 70
SO2 (μg/m3) 24.35 22.00 2.00 12.00 17.00 28.25 228.00 60
NO2 (μg/m3) 33.63 13.82 9.00 23.00 32.00 42.00 97.00 40
O3 (μg/m3) 86.00 31.52 9.00 63.00 84.00 108.00 198.00 160
CO (mg/m3) 1.08 0.47 0.30 0.80 1.00 1.20 4.90 4
Mean temperature (°C) 13.54 10.78 −22.68 6.49 14.91 22.21 32.00 /
Relative humidity (%) 66.71 13.72 27.23 56.74 69.63 78.33 89.21 /
Air pressure (Pa) 939.98 94.10 644.76 904.73 984.44 1001.48 1030.95 /
Precipitation (mm)a 74.50

(74.53)
72.66
(72.43)

0.00 (0.00) 14.22 (14.58) 52.28
(52.42)

118.12
(118.20)

570.30
(570.30)

/

Wind speed (m/s) 2.17 0.50 1.07 1.80 2.12 2.49 4.30 /
Sunlight (h)a 170.67

(170.50)
59.24
(58.76)

17.80 (17.80) 129.59
(129.93)

176.30
(175.45)

214.21
(213.85)

328.57
(328.57)

/

/: Not available.
(.) values after imputation, SD standard deviation, min. minimum, P25 25th percentile, P50 median, P75 75th percentile, max. maximum, PM2.5 particulate matter of <2.5 μm, PM10 particulate matter of <10
μm, SO2 sulfur dioxide, NO2 nitrogen dioxide, O3 ozone, CO carbon monoxide.
aThere were a number of missing values in the following variables: precipitation: 25, sunlight: 61.
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wind speed and sunshine were identified in high-latitude areas
(all p values < 0.05; see Supplementary Fig. 8 and Supplementary
Table 2).

Relationship between air pollutants and scarlet fever. We dis-
covered significant associations between scarlet fever incidence
and four of the six air pollutants. The strongest correlation was
found in NO2 [r= 0.21], while the other positive correlations
were weak [PM10 (r= 0.13), max 8-h average of ozone (r= 0.11),
and PM2.5 (r= 0.06)] (see Fig. 4).

The exposure–response relationship curves showed essentially
linear associations between scarlet fever and lag air pollution
concentrations in the DLNM model. In the single-variable model
(Fig. 5a–d), the range of relative risks from 2013 to 2018 was
0.54–2.04 for NO2, 0.65–1.92 for O3, 0.39–3.24 for PM10, and
0.35–1.78 for PM2.5. The remaining two air pollutants, SO2 and
CO, were not significantly correlated with scarlet fever incidence
(p > 0.05). Thus, we did not include them in DLNM. In the
multiple-variable model (Fig. 6a, b), the range of relative risks
from 2013 to 2018 was 0.73–2.44 for NO2 and 0.91–1.14 for O3.
The maximum RR of NO2 was 2.44 under exposure to 97 μg/m3
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Fig. 2 Boxplots of six air pollutants, six meteorological conditions and the number of scarlet fever cases in four seasons from 2013 to 2018. a The
seasonal pattern of air pollutants. b The seasonal pattern of weather conditions. c The seasonal pattern of scarlet fever. An analysis of variance (ANOVA)
test is applied to examine the values or concentrations among the four seasons. A Kruskal–Wallis test is used to examine the scarlet fever incidences
among the four seasons: spring (March to May), summer (June to August), autumn (September to November), and winter (December to February). PM2.5

particulate matter with aerodynamic diameter <2.5μm. PM10 particulate matter with aerodynamic diameter <10μm, SO2 sulfur dioxide, NO2 nitrogen
dioxide, O3 ozone, CO carbon monoxide, Mean Temp mean temperature, RH relative humidity, AP air pressure, WS wind speed. Source data are provided
as a Source Data file.
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of NO2 at lag 0 months. The maximum RR of O3 was 1.14 under
exposure to 198 of O3 at lag 0 months. PM2.5 and PM10 were not
included in the multiple-variables model because of their collinear
relationship with NO2.

Relationship between weather condition and scarlet fever. The
DLNM model further discovered that five of the six meteor-
ological variables (all but air pressure) had a significant associa-
tion with scarlet fever incidence. Two meteorological conditions
showed positive relationships with the disease: monthly sunlight
(r= 0.27) and wind speed (r= 0.24); by contrast, it was inversely
correlated with monthly relative humidity (RH, r=−0.37),

precipitation (r=−0.25), and mean temperature (r=−0.2); see
Fig. 4.

The exposure–response relationship curves showed essentially
linear associations between scarlet fever and lag meteorological
conditions in the DLNM model. In the single-variable model
(Fig. 5e–i), the range of relative risks from 2004 to 2018 was
0.66–2.05 for sunlight, 0.63–1.84 for wind speed, 0.63–2.31 for
relative humidity, 0.00–6.81 for precipitation, and 0.08–5.40 for
mean temperature. In the multiple-variables model (Fig. 6c–g), the
range of relative risks from 2013 to 2018 was 0.68–1.31 for
sunlight, 0.76–1.29 for wind speed, 0.82–1.32 for relative humidity,
0.02–1.26 for precipitation, and 0.20–2.64 for mean temperature.
The maximum RR of sunlight is 1.31 under 328 h at lag 0 months.
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Fig. 3 Changes of spatiotemporal distribution of six air pollutants in China, 2013–2018. a The changes of average annual value of particulate matter of
<2.5 μm (PM2.5) during 2013–2018 in 31 provinces of China. b The changes of average annual value of particulate matter of <10 μm (PM10) during
2013–2018 in 31 provinces of China. c The changes of average annual value of sulfur dioxide (SO2) during 2013–2018 in 31 provinces of China. d The
changes of average annual value of nitrogen dioxide (NO2) during 2013–2018 in 31 provinces of China. e The changes of average annual value of ozone
(O3) during 2013–2018 in 31 provinces of China. f The changes of average annual value of carbon monoxide (CO) during 2013–2018 in 31 provinces of
China. Choropleth maps of average annual value of air pollutants by region. Red means over China guidelines II (issued 2018); Blue: means below China
guidelines II. Depth of color denotes air pollutants concentration. Source data are provided as a Source Data file deposited on a publicly available website
(https://doi.org/10.6084/m9.figshare.12237596.v2).

Table 2 Descriptive statistics for monthly scarlet fever cases and weather conditions in China, 2004–2018 (n= 5580).

Variables Mean SD Min. P25 P50 P75 Max.

No. of scarlet
fever cases

3642 2618 423 1766 2860 4652 12593

Mean temperature (°C)a 13.37 (13.36) 10.87 (10.87) −23.12
(−23.12)

6.16 (6.16) 14.88 (14.88) 22.12 (22.11) 32.00 (32.00)

Relative humidity (%)a 66.03 (66.03) 13.03 (13.04) 27.23 (27.23) 57.53 (57.52) 68.83 (68.84) 76.53 (76.53) 89.45 (89.45)
Air pressure (Pa)a 940.27 94.10 644.76 904.86 984.96 1002.00 1032.20
Precipitation (mm)a 76.90 (76.87) 81.80 (81.68) 0.00 (0.00) 14.94 (14.98) 51.98 (51.98) 114.00 (114.41) 1055.26

(1055.26)
Wind speed (m/s)a 2.13 (2.13) 0.50 (0.50) 0.84 (0.84) 1.78 (1.78) 2.09 (2.09) 2.44 (2.44) 4.10 (4.10)
Sunlight (hours)a 172.59

(172.44)
58.84 (58.70) 11.90 (11.90) 131.95 (131.96) 176.68 (176.51) 215.63 (215.33) 328.57 (328.57)

(.) Values after imputation, SD standard deviation, min. minimum, P25 25th percentile, P50 median, P75 75th percentile, max. maximum.
aThere were a number of missing values in the following variables: mean temperature: 3, relative humidity: 3, air pressure: 3, precipitation: 26, wind speed: 3, and sunlight: 63.
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The maximum RR of wind speed is 1.29 under 4 m/s at lag
0.8 months. The maximum RR of relative humidity is 1.32 under
28% at lag 1.2 months. The maximum RR of precipitation is 1.26
under 398mm at lag 0 months. The maximum RR of mean
temperature is 2.64 under −22 °C at lag 15 months.

Cumulative risks at lag 0–15 months. We found that the
cumulative risks at lag 0–15 months of long-term exposure to
ambient NO2 were associated with scarlet fever incidence, and
also found that high O3, low mean temperature, and low wind
speed were associated with an increase in scarlet fever incidence
(Fig. 7). Nonlinear associations were found among sunlight
hours, relative humidity, and precipitation. In addition, NO2 and
O3 are significantly associated with scarlet fever incidence (NO2:
with reference to 40 μg/m3; O3: with reference to 160 μg/m3) with
a cumulative RR of 1.06 (95% CI: 1.02–1.10) and 1.04 (95% CI:
1.01–1.07), respectively, at a lag of 0−15 months by the multiple-
variables model (Supplementary Table 3).

School breaks, demographic effect, and surging effect. We
analyzed the associations between scarlet fever incidence and
behavioral factors, including school closures during the summer
and winter breaks, and population density in each province. First,
we computed the two kinds of average scarlet fever incidence, the
first during summer break (July and August) and winter break
(January and February), and the second for the remaining
months in each province. In Fig. 8, the innermost ring represents
the average monthly incidence when school is in session, and the
outermost ring represents the average monthly incidence during
school summer and winter breaks. It is clearly shown that the
incidence is generally higher in the remaining months, and the
independent t test also shows that the mean difference in the

remaining months is statistically significantly higher than
those during breaks (mean difference: 0.295 per 100,000 popu-
lation, p= 0.005).

Second, we applied DLNM and meta-regression to elucidate
how high and low population density is associated with the risk
of scarlet fever incidence from 2013 to 2018 (Supplementary
Fig. 9a). The predicted curves from meta-regression for the 25th
(red line, population density= 135.7 persons/km2) and 75th
(green line, population density= 480.4 persons/km2) percentiles
of population show there are no significant differences of NO2

risks referenced at the 15th percentile of NO2 concentration
(23.32 μg/m3). In addition, the predicted curves for the 25th (red
line, incidence= 0.2/100,000) and 75th (green line, incidence=
0.7/100,000) percentiles of incidence show there are no
significant differences of PM2.5 and PM10 risks referenced at
the 15th percentile of PM2.5 concentration (30.49 μg/m3) and
PM10 concentration (58.58 μg/m3), respectively (Supplementary
Fig. 9b, c). Third, the predicted exposure–response relationship
in terms of relative risk between precipitation, wind speed, and
sunlight had no significant difference before and after 2011
(Supplementary Fig. 10a–c).

Discussion
Using a 15-year national infectious diseases dataset, meteorological
surveillance, and a 6-year air quality surveillance database, we found
that China experienced an unexplained resurgence of scarlet fever
in 2011, which continued and then peaked in 2018. The monthly
incidence was generally lower in the summer and winter holiday
throughout a year. This study revealed that among the various air
pollutants examined, the risk estimates for NO2 and O3 were the
most robust in the DLNM model. The concentrations of NO2 and
O3, traffic-related pollutants, had low to moderate positive
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correlations with the risk of scarlet fever, and a ten-unit increment
of NO2 and O3 concentration was associated with an increase in
scarlet fever. The risks of scarlet fever are also associated with
meteorological conditions (low temperature, low relative humidity,
low precipitation, high wind speed, and longer sunshine).

In the past 70 years, scarlet fever incidence in China has
undergone four different stages, including a high-incidence period,
declining period, low incidence, and resurgence6. The 2011 upsurge
in cases could represent a return to the upward phase in a cycle of
4–6 phases. We note that the incidence of scarlet fever increased by
two times between 2011 and 2018, and the highest point in the
current cycle (5.67 per 100,000 in 2018) is of greater magnitude
than epidemic increases in the recent three stages’ years. However,
the highest incidence in China was much lower than the incidence
reported in other countries and areas (e.g., 33.2 per 100,000 people
in the UK1; 18.1 per 100,000 people in Hong Kong5,13,20; and 13.7
per 100,000 people in South Korea15). Epidemiological analysis
indicates no change in the spatial and seasonal patterns or demo-
graphic features of cases during pre- and post-upsurge periods2.

Globally, air pollution contributes substantially to disease bur-
den, and is the fifth leading global risk factor for public health21,22.
China’s government has implemented policies and plans to reduce
air pollution and its adverse effects on public health in the past23.
The air quality of most regions has been improving since 2013,
and the national annual mean PM2.5 concentrations decreased by
77.76% (from 70.51 μg/m3 to 39.66 μg/m3) between 2004 and
2018. However, the high baseline levels of pollution and its sub-
sequent health effects will persist. In our study, we found the
annual levels of PM2.5 and PM10 were over the air quality standard
(GB 3095-2012), and the concentration exceeded it in 24 of the 31
provinces. The most affected areas were in the north, in particular
in high-altitude areas of China. The difference in geographical
distribution of air pollutants was caused by population size and
density, pollution sources, environmental policies and plans, etc.

This study investigated the possible causes of the scarlet fever
upsurge, focusing on air pollutants. We found that among the six
air pollutants examined, the risk estimate for NO2 was the stron-
gest. High NO2 exposure is linked to higher scarlet fever incidence
in high-latitude areas and during peak scarlet fever season. A novel
contribution of this study is that the finding of a cumulative risk
estimate for O3 also had a linear exposure–response relationship
with scarlet fever incidence. The risk estimate for NO2 found in this
study was consistent with earlier findings from Beijing17. NO2

primarily gets in the air from the burning of fossil fuels, in
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particular vehicular fuels for cars, trucks, buses, etc. in China.
Ozone is primarily formed by nitrogen oxides (NOx) and volatile
organic compounds (VOCs) interacting with sunlight. It is also
highly related to traffic-related exhaust emissions. Scientists are
trying to explain the biological mechanisms underlying the asso-
ciation between NO2 air pollution and scarlet fever. One possible
mechanism is that both short- and long-term exposure to elevated
concentrations of NO2 irritate airways in the human respiratory
system and potentially increase susceptibility to respiratory infec-
tions17. Sly et al.24 reported that the influences of NO2 on the
respiratory system were much higher in children, due to their
immature immune systems and lungs, higher breathing rates, a
greater extent of mouth breathing, and more outdoor activities.
However, future patient-level and mechanistic research should be
done to prove the NO2 effect on the respiratory system.

Our study demonstrated effects of meteorological variables on
scarlet fever during the pre- and post-upsurge periods. Specifi-
cally, in this study, it was found that the average monthly tem-
perature showed no significant effect on scarlet fever during
2004–2010, while it became a statistically significant factor
starting in 2011, contrary to a previous study in Hefei, China25.
The contradictory results might be explained by the different
study population characteristics and the meteorological factor
levels. Different temperature profiles in the high- and low-
temperature regions led to different temperature distributions on
the thermal response curve, and finally resulted in different effects
on scarlet fever. Only when mean temperatures were closer to
suitable temperatures (2.8–10.6 °C in high-altitude areas and
13.6–18.1 °C in low-altitude areas) for pathogens did the inci-
dence increase. The unexpected mechanism behind this could be
that sudden temperature changes could affect the health of the
respiratory epithelium at the tissue level and impair the immune
system, which might add to the risk of some respiratory diseases,
especially for children, who are susceptible to scarlet fever26,27.

Our study also established that low relative humidity might have
promoted the outbreaks of scarlet fever in 2011, a finding similar to
a past study in England and Wales in the nineteenth century and
recent studies in Hefei and Beijing of China17,19,25. Relative
humidity might affect the ability of GAS to produce toxins and
enzymes. It might also influence the spread of GAS through the
vehicle of transmission. High relative humidity causes small
respiratory droplets to take on water, which decreases the time of
the pathogen floating in the air18. Relative humidity is also sig-
nificantly related to airborne bacterial concentrations due to its
importance to microorganism growth28. Furthermore, S. pyogenes
may survive better and be more active in dry weather than wet
conditions17. During the eighteenth century, scientists indicated
there were positive relationships between rainfall and scarlet fever
prevalence throughout Europe, Great Britain, and the US, but that
observation is not consistent with our results29. These meteor-
ological effects on the incidence of scarlet fever might partly
account for the bacterial determinants changing from emm12 to
emm1 in China during 2013–201430.

We found that the incidence of scarlet fever clearly decreased
during the school holidays in winter (January–February) and
summer (July–August) compared to when school was in session in
China during 2013–2018. However, a clear upturn was observed
once the new school year started. We observed a similar pattern in
each subsequent year and in different provinces. Previous studies
have indicated similar results. For example, Liu et al.2 also
observed that the incidence of scarlet fever decreased substantially
during school holidays in China during 2004–2016; Lee et al.31

also reported that scarlet fever incidence in Hong Kong during
2005–2015 was 32−42% lower in the week following the start of
school holidays. Other childhood respiratory infections have also
shown low incidence during periods of school closure32. This

suggests that school is probably a major transmission site for
scarlet fever, because children increase their social contacts sub-
stantially there, and children are most susceptible to GAS1. Thus,
school children are the population at greatest risk, and school is
the highest-risk site. In response to the prevalent risk of scarlet
fever, school-based control measures could be particularly
important in scarlet fever control, including not allowing students
with relevant symptoms to attend school, symptom monitoring,
and school closures and delayed opening in the event of outbreaks.

Several empirical studies have confirmed the ability of school
closures to mitigate the spread of respiratory infectious diseases,
including scarlet fever, coronavirus disease 2019 (COVID-19),
influenza, and so on33,34. Due to the COVID-19 pandemic in 2020,
we preliminarily explored the association of NO2 levels with scarlet
fever between January 2019 and March 2020, covering the pre-
pandemic and COVID-19 pandemic period. The time series figures
of incidence and NO2 are listed in Supplementary Fig. 11. Com-
pared to the past first-quarter months (January–March) from 2013
to 2019, during which the average incidence rate was 0.28 per
100,000 population, the COVID-19 epidemic period rate was 0.18
per 100,000 in Q1, 2020. The average concentration of NO2 was
37.6 in Q1 from 2013 to 2019 and was 24.3 in Q1, 2020. The
significant reduction in scarlet fever incidence might be attributable
to several factors, including lockdown of cities with restricted
movement, decreased NO2 emissions, lower transmission risks and
exposure risks due to self-isolation in the home, low hospital visits
and consultation, and/or lower diagnosis and confirmation.

Some limitations of our study should be noted. First, we could
not get air pollutants data for 2004–2012, since construction of
the national air quality surveillance network did not begin until
2013. Second, social and economic status, available health ser-
vices, and hygiene were not quantified precisely due to unavail-
ability of data. Third, this study was performed based on monthly
data, which means that the acute effect of meteorological and air
pollutants on scarlet fever could not be investigated. Fourth, we
did not analyze the effect of air pollutants and weather conditions
on scarlet fever cases by GAS emm type. Fifth, this is an ecological
study, and we cannot infer the effect of individual exposure levels
from provinces’ air pollution and meteorological conditions
across large geographical areas on the risk of infection. This study
can only elucidate the associations among air pollutants,
meteorological conditions, and scarlet fever incidence in China by
considering the temporal lagged effects. However, current evi-
dence cannot justify any causal relationship between air pollution
and scarlet fever upsurge. We further scrutinize the potential
direct and indirect roles of air pollutants in facilitating the
transmission of scarlet fever. Incorporating individual-level risk
factors and the socio-economic environment into the risk model
is warranted for future research.

In conclusion, our research shows scarlet fever cases continued
to occur in China at elevated incidence rates for 8 consecutive years
after a resurgence in 2011, but with decreased incidence in summer
and winter school holidays each year. Based on 6 years of ecolo-
gical data, we found that long-term exposure to NO2 and O3 is
associated with scarlet fever resurgence in China, even at con-
centration ranges well below China’s present annual mean limit.
This effect was increased by low temperature, low precipitation,
and relative humidity, as well as high wind speed and longer
sunshine. These findings strengthen the hypothesis that air pollu-
tion is a factor in the sudden rise of scarlet fever around the world.

In the future, we should search for more evidence by further
assessing the impact of NO2 concentration and school closures on
scarlet fever incidence because of the dramatic changes in NO2

levels during the COVID-19 epidemic in China. We suggest that
it is also necessary to develop school-based control measures
including a school symptoms surveillance and early-warning
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system, as well as air pollution surveillance in the whole of China.
Finally, we suggest encouraging public health workers to consider
NO2 and O3 risks when combatting the increasing scarlet fever
trend, especially in high-latitude areas of China. A comprehensive
approach is necessary to decrease the burden to society of this
childhood infectious disease.

Methods
National Notifiable Infectious Disease Surveillance System (NNIDSS). After
the severe acute respiratory syndrome (SARS) outbreak in 2003, the Chinese
government established a real-time NNIDSS for 39 infectious diseases, covering a
population of 1.3 billion in China35. These illnesses are divided into three classes
(A, B, and C) according to the disease severity. All these diseases must be reported
in a specified timeframe35. Scarlet fever is defined as a class B notifiable infectious
disease based on criteria issued by the Ministry of Health of the People’s Republic
of China2. All probable, clinically diagnosed, and confirmed scarlet fever cases must
be reported within 24 h of diagnosis online to this system2.

Case definitions and classification. Scarlet fever was divided into probable,
clinically diagnosed, and confirmed cases, and all these are based on diagnosis
according to WS282-2008 and GB15993-1995 promulgated by the Health Ministry
of China. For more details, see Supplementary Table 4.

Long-term exposure definition. One-year exposure to six air pollutants’ con-
centration (particulate matter of <10 μm (PM10) and <2.5 μm (PM2.5), carbon
monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) was
defined as an indicator of long-term exposure according to China’s National
Ambient Air Quality Standard (GB 3095-2012).

Data source and collection of case data. Four sources of data were combined to
be collected throughout China. The first was obtained from the official website of
the National Health Commission of the People’s Republic of China (http://www.
nhc.gov.cn/jkj/s3578/202004/b1519e1bc1a944fc8ec176db600f68d1.shtml) and
health commissions at the province level. The second was the Chinese open access
notifiable infectious disease report database (available from the Chinese Public
Health Science Data Center). The third was from the Notifiable Infectious Disease
Surveillance System (NNIDSS) covering the period from January 1, 2004 to
December 31, 2018. Fourth, population data were from the National Bureau of
Statistics of the People’s Republic of China and are updated at the end of every year.
The spatial distribution of average population sizes in 2018 is shown in Supple-
mentary Fig. 12. The lowest population size was 3,370,741 persons in the Tibet
Autonomous Region, and the highest was 111,689,642 persons in Guangdong
Province. There were a total of 655,039 scarlet fever cases across 31 provinces during
2004–2018. We extracted data on scarlet fever, including the number of cases,
incidence, and patient data stratified by onset date (month and year) and province.

Meteorological and air pollution data source. From January 1, 2013 to
December 31, 2018, monthly air pollutant data in each province, including mean
PM2.5, PM10, NO2, SO2, CO, and O3, were obtained at 1498 National Air Quality
Monitoring Stations in China (http://106.37.208.233:20035/) (Supplementary
Fig. 13a). From January 1, 2004 to December 31, 2018, monthly meteorological
data in each province were collected from the National Meteorological Information
Center (http://data.cma.cn/wa). Monthly meteorological data are fully automated
from 756 sites enclosed in meteorological monitoring stations in China, as shown
in Supplementary Fig. 13b.

Exposure assessment. The basic temporal unit of meteorological conditions and
air pollutants is month here. When we fit the DLNM36, we see the relative risks at
different values or concentrations at different lag months. The maximum number
of lagged months is determined by finding the smallest quasi-Bayesian information
criterion (QBIC) in a multivariate distributed lag nonlinear model (MVDLNM).
Finally, the maximum number of lagged months is set at 15. The long-term
cumulative risk here also means cumulative 15 months of risk.

Statistical analysis. In the descriptive analyses, mean, standard deviation, quar-
tiles (P25, median, P75), minimum, and maximum were used to describe the dis-
tribution of incidence of scarlet fever, air pollutants, and meteorological variables.
The comparisons of incidence before and after the epidemic surging in 2011 were
conducted by z test for a Poisson distribution. The statistical level of all these
analyses was set at 0.05 in two-tailed tests.

The final 12 included factors were all in monthly average form, and were NO2,
ozone (monthly average of daily maximum 8-h average of ozone), PM2.5, PM10,
SO2, CO, mean temperature, relative humidity, air pressure, precipitation amount,
wind speed, and sunlight hours. During 2014–2018, there were some missing
values for meteorological variables, including mean temperature (n= 3), relative

humidity (n= 3), air pressure (n= 3), precipitation (n= 26), wind speed (n= 3)
and sunlight hours (n= 63). Thus, we used the Kalman smoothing method to
impute the values by R package imputeTS (https://cran.r-project.org/web/
packages/imputeTS/index.html). The descriptive statistics before and after
imputing are summarized in Tables 1 and 2.

In order to reduce the confounding effects and avoid collinearity in the models,
we used two approaches for analyzing the data. First, we used pairwise complete
observations to compute the Pearson’s correlation coefficients among scarlet fever
incidence, meteorological variables, and air pollutants. We found PM2.5 (r= 0.8,
p≤ 0.001) and PM10 (r= 0.7, p ≤ 0.001) were highly correlated with NO2. Thus, we
did not treat PM2.5 and PM10 as our covariates in the MVDLNM. Second, we
observed the effects from air pollutants and weather variables by single-variable
and multiple-variable analysis. This comparison can help identify whether the
effects are modified by other variables.

In the single-variable model, in addition to the air pollutants or meteorological
conditions of interest, we further adjusted the temporal trend, quantile groups for
average incidence and incidence in the previous month.

In the multiple-variable model, the variables added in MVDLNM were to
control the significant confounders including NO2, O3, sunlight, wind speed,
relative humidity, precipitation, mean temperature, temporal trend, the indicator
variable of summer and winter breaks, quantile groups for average incidences and
incidence in the previous month.

The overall cumulative association is composed of the sum of risks from different
extents of exposure experienced within lag 0–15 months37. In order to compute the
two cumulative effects of NO2 and O3 with linear exposure–response relationships,
we calculated the cumulative relative risk (RR) and 95% confidence interval (CI) to
express the strength of association between every 10 μg/m3 of NO2 and O3 and the
corresponding risks of scarlet fever38. The reference values based on China’s
guidelines II of NO2 and O3 are 40 and 160 μg/m3, respectively.

Subgroup analyses were conducted on how selected air pollutants were
associated with scarlet fever incidence by high/low population density and high-/
low-incidence areas, and how selected meteorological variables were associated
with scarlet fever incidence by comparing before and after the epidemic’s surge in
2011. We first used DLNM39 to compute the associations between scarlet fever
incidence at lag 0 months and both selected air pollutants and meteorological
variables. The predicted reference was set at the 15th percentile of concentration or
values. Then, we used meta-regression40 by R package to summarize the exposure–
response relationship in each province by predicting the 25th and 75th percentiles
of population density and average incidence rate, and stratifying for time periods
(before and after 2011). Finally, parameters from the meta-regression were used to
predict exposure–response relationships of relative risks by subgroups.

The package “dlnm”41 (version 2.3.9, https://cran.r-project.org/web/package/
dlnm/index.html) is used to specify the cross-basis for the quadratic spline for air
pollutants and meteorological variables and to predict and plot the results of a fitted
model. The DLNM can help compute the relative risk of scarlet fever incidence at
different levels of air pollutants or meteorological factors on different days.

First, we defined the cross-basis matrices. The cross-basis for air pollutants is
specified through using the function lin, and those for the meteorological variables
are specified by B-spline using the function bs from the package SPLINES in R
software (version 3.6.0, https://www.rdocumentation.org/packages/splines/
versions/3.6.0). Regarding the space of lags, we evaluate time lag ranging from 0 to
15 months. The maximum lag is determined by QBIC, mentioned previously. The
knots for the spline for lags are placed at equally spaced values on the log scale of
lags, using the function lognots. The prediction values here are centered at the
median of each air pollutant and meteorological variable.

In order to visualize the exposure concentration and the incidence rates in each
province, we used ArcGIS (ArcMap, version10.3; ESRI Inc., Redlands, CA, USA) to
display the risk maps and also used spatial statistic Gi* to compute the spatial
hotspots of the average scarlet fever incidence from 2004 to 2018. In addition, we used
ring maps42 to compare the average incidence in each province during summer (July
and August) and winter breaks (January and February) and the remaining months.

Sensitivity analysis. For a sensitivity analysis, the choice is reduced to the iden-
tification of the optimal number and location of knots for the natural spline. Here
we rely on a QBIC. The selected model has the minimum value of the sum of the
QBIC in all 31 provinces. We use AIC to select the degree time variable. The model
includes a natural cubic spline of elapsed time with one degree of freedom per year
to control for long-term trends for air pollutants and meteorological variables in
each province.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The dataset used in this study has been deposited in a publicly available website (https://
doi.org/10.6084/m9.figshare.12237596.v2). The additional files required to perform this
study are available from the corresponding authors upon request. Source data are
provided with this paper.
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