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Abstract

The success of antipsychotic drug treatment in patients with schizophrenia is limited by the propensity of these drugs to
induce hyperphagia, weight gain and other metabolic disturbances, particularly evident for olanzapine and clozapine.
However, the molecular mechanisms involved in antipsychotic-induced hyperphagia remain unclear. Here, we investigate
the effect of olanzapine administration on the regulation of hypothalamic mechanisms controlling food intake, namely
neuropeptide expression and AMP-activated protein kinase (AMPK) phosphorylation in rats. Our results show that
subchronic exposure to olanzapine upregulates neuropeptide Y (NPY) and agouti related protein (AgRP) and downregulates
proopiomelanocortin (POMC) in the arcuate nucleus of the hypothalamus (ARC). This effect was evident both in rats fed ad
libitum and in pair-fed rats. Of note, despite weight gain and increased expression of orexigenic neuropeptides, subchronic
administration of olanzapine decreased AMPK phosphorylation levels. This reduction in AMPK was not observed after acute
administration of either olanzapine or clozapine. Overall, our data suggest that olanzapine-induced hyperphagia is
mediated through appropriate changes in hypothalamic neuropeptides, and that this effect does not require concomitant
AMPK activation. Our data shed new light on the hypothalamic mechanism underlying antipsychotic-induced hyperphagia
and weight gain, and provide the basis for alternative targets to control energy balance.
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Introduction

The successful use of antipsychotic drugs such as clozapine and

olanzapine in the treatment of schizophrenia is hampered by their

unwanted obesogenic effect and associated metabolic side effects

[1,2]. It is clear that in a medium to long-term perspective,

metabolic dysregulation predisposes to cardiovascular disease

(CVD) and premature death [3], but even in a shorter perspective,

weight gain may reduce treatment compliance, increasing the risk

of relapse of psychosis [4]. The underlying mechanisms of

antipsychotic-induced weight gain are incompletely understood;

however, their elucidation may identify alternative targetable

pathways controlling energy balance.

Current evidence indicates that antipsychotic-induced weight

gain and lipid disturbances may be explained by the antipsychotics’

hyperphagic effects, linked to lack of satiation as observed in patients

and in animal models [5,6,7,8,9]. The molecular events involved in

antipsychotic-induced hyperphagia remain unclear, but the pro-

pensity of the different antipsychotics to increase food intake and

weight gain is correlated with particular patterns of affinity for

serotonergic, histaminergic and muscarinic receptors in the central

nervous system (CNS) [10]. In particular, antagonism at serotonin

5HT2C and histamine H1 receptors in the hypothalamus seems to

be relevant (for review; see [11]). As a crucial mediator in the control

of energy intake and expenditure, the hypothalamus integrates a

wide array of afferent signals, including hormones such as leptin,

ghrelin and insulin, by modifying the expression of specific

neuromodulators including orexigenic and anorexigenic neuropep-

tides. These include the orexigenic neuropeptide Y (NPY) and

agouti-related peptide (AgRP), and the anorexigenic neuropeptide

precursors proopiomelanocortin (POMC) and cocaine and am-

phetamine-regulated transcript (CART) [12,13,14,15,16,17]. The
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hypothalamus is organized in anatomically discrete neuronal

clusters known as nuclei, with the arcuate nucleus (ARC) considered

the ‘‘master hypothalamic centre’’ for feeding control [16,17]. The

effect of antipsychotic drugs on the expression of appetite-regulating

hypothalamic neuropeptides has been investigated in rodent

models, but with equivocal results. Hypothalamic expression of

NPY was increased by clozapine [18] but decreased by olanzapine

[19] although neither of these studies reported effects on food intake

or weight gain. On the other hand, in other studies monitoring

antipsychotic-induced hyperphagia and weight gain, no transcrip-

tional changes of hypothalamic neuropeptides were found [20,21].

Recent investigations have also linked antipsychotic drug

treatment to alterations in hypothalamic lipid metabolism. In an

acute study on mice, it was proposed that H1 receptor-mediated

activation of hypothalamic AMP-activated protein kinase (AMPK)

represents an important mechanism of action for antipsychotic-

induced hyperphagia [22]. AMPK, a sensor of energy homeostasis

at the cellular level, integrates metabolic signals and regulates

energy balance via modulation of hypothalamic fatty acid

metabolism within the hypothalamus [15,23,24,25,26]. At the

molecular level, AMPK phosphorylation (activation) in the

hypothalamus leads to phosphorylation (inhibition) of acetyl-CoA

carboxylase (ACC), thus reducing the flux of substrates through the

fatty acid biosynthesis pathway and, most importantly, lowering

levels of malonyl-CoA with resultant orexigenic effects [13,27].

Despite the fact that rodent models of antipsychotic-induced

metabolic disturbances do not consistently recapitulate the human

clinical phenotype, they are still extensively used preclinically (for

review; see [28]). In rats, olanzapine frequently mimics the weight-

promoting effect observed in patients, whereas comparable effects

of clozapine are typically not reproduced in rodents [29,30].

Furthermore, the olanzapine-induced hyperphagia and weight

gain commonly observed in female rats and mice

[29,31,32,33,34,35,36,37] are less robustly demonstrated in male

littermates [29,38,39]. To study potential molecular mechanisms

involved in antipsychotic-induced hyperphagia, we therefore chose

to use female Sprague-Dawley rats subchronically treated with

olanzapine. In addition, acute effects of both olanzapine and

clozapine were investigated in female rats. We demonstrate that

subchronic exposure to olanzapine upregulates the orexigenic

neuropeptides NPY and AgRP and downregulates the anorexi-

genic neuropeptide precursor POMC in the ARC. This effect was

evident in both ad libitum and pair-fed female rats. Notably, despite

weight gain and increases in orexigenic neuropeptides, AMPK

phosphorylation levels were decreased by olanzapine in ad libitum-

fed female rats, suggesting that olanzapine-induced orexigenic

effects and neuropeptide expression changes in the subchronic

setting may be regulated without concomitant AMPK activation.

Results

Effect of acute olanzapine administration on
hypothalamic AMPK phosphorylation

Intracerebroventricular (ICV) injection of olanzapine induced no

clear sedative effects at doses up to 20 mg (evaluated through visual

inspection), whereas a clear, but transient sedative effect was evident

at 50 mg. We observed no effect on food intake, measured 1 h or

24 h after injection, at any of the doses tested (data not shown). It

has been demonstrated that in an acute setting, antipsychotic agents

induce hypothalamic activation of AMPK in rodents when

administered at relatively high doses [22,40]. We therefore

measured the levels of phosphorylated (activated) AMPK (pAMPK)

after ICV injection with 50 mg (the highest dose of olanzapine used

in our experiment). No significant alteration in phosphorylation

status was observed 30 minutes after the olanzapine injection

relative to vehicle-treated controls, although we did see a trend

towards increased levels of pAMPK (133617%, P = 0.17)

(Figure 1a). No significant effect was observed for phosphorylated

acetyl-CoA carboxylase (pACC; 118626%, P = 0.52), a down-

stream target of pAMPK (Figure 1a). In the same experimental

setting, administration of the AMPK activator AICAR induced a

significant increase of both pAMPK (170617%, P,0.01) and

pACC (295654%, P,0.01) (Figure 1b). Similar data were obtained

both for olanzapine and for AICAR 90 minutes after ICV injection

(data not shown). Notably, antipsychotic-induced elevation of

hypothalamic pAMPK levels has consistently been demonstrated

in the acute setting after peripheral injection [22,40]. We therefore

performed an acute IP experiment, where we also included

clozapine at a dose previously shown to induce marked metabolic

changes in peripheral tissues [41]. In order to induce direct drug

effects on AMPK phosphorylation, we chose to use relatively high

doses of both olanzapine (10 mg/kg) and clozapine (25 mg/kg) in

the IP experiment. It should be noted that sedative effects were

evident (by visual inspection) for both drugs, precluding measure-

ments of food intake. Neither clozapine nor olanzapine induced

significant changes in the levels of pAMPK (Figure 2a) or pACC

(Figure 2b), 15 and 30 minutes after injection. Still, a non-significant

trend towards increased pACC levels was observed for both

olanzapine (135610%, P = 0.09) and clozapine (142617%,

P = 0.11) 15 minutes after injection (Figure 2a).

Subchronic administration of olanzapine increases food
intake and body weight

Next, we investigated the effect of subchronic olanzapine

exposure (6 mg/kg/day) on food intake (Figure 3a) and weight

gain (Figure 3b) in female rats. Repeated-measures two-way

ANOVA was performed for daily food intake with treatment (2

groups) and time (6 days, including day 0, when starting the

treatment) as factors. The analysis for six different time points

revealed a significant main effect of the treatment [F(1,21) = 14.27;

p,0.01] and a significant treatment x time interaction effect

[F(5,17) = 5.24; p,0.01]. Each time point was subsequently

analysed using Student’s t-test (since only two treatment groups

were present), revealing that daily food intake was significantly

increased in the olanzapine ad libitum group from day 2 onwards

(p,0.05). Similarly, cumulative body weight gain was analyzed

using a two-way ANOVA repeated measures with treatment (3

groups) and time (6 days) as factors. Both significant main effect

[F(2,45) = 8.15; p,0.01] and significant treatment x time interac-

tion [F(10,82) = 2.52; p,0.05] effect were observed. Olanzapine-

induced body weight gain was significantly increased from control

from day 2 onwards (p,0.05) as determined from one-way

ANOVA analysis, followed by Tukey’s Post-hoc test. Any sedation

caused by the moderately high dose of olanzapine used (6 mg/kg/

day) may potentially have weight-promoting effects. Locomotor

activity was measured only by visual inspection, which is a weakness

in this study. Still, in pair-fed rats offered the same amount food as

control rats, olanzapine exposure did not induce significant weight

gain relative to vehicle-treated controls at any time point (Figure 3b).

These data suggested that the weight-promoting effect of olanzapine

is dependent on its orexigenic effects.

Subchronic administration of olanzapine does not affect
serum leptin, insulin, or adiponectin levels

Antipsychotic-induced weight gain has been suggested to be

related to alterations in leptin, adiponectin and insulin serum

levels [28,42]. In our study, subchronic olanzapine exposure
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did not significantly alter serum levels of any of these

endocrine factors, despite marked hyperphagia and weight

gain (Table 1).

Subchronic olanzapine administration decreases
hypothalamic AMPK phosphorylation

In the subchronic setting, hypothalamic pAMPK levels were

measured after 5 days of olanzapine exposure. Interestingly,

we found that pAMPK levels in the hypothalamus of

olanzapine-treated, ad libitum-fed rats were significantly re-

duced (4263%, P,0.0001) relative to vehicle-treated controls

(Figure 4a). Accordingly, olanzapine reduced the levels of

phosphorylated acetyl-CoA carboxylase (pACC; 7069%,

P,0.05) in ad libitum-fed rats. No significant changes were

observed in pair-fed rats, neither for pAMPK nor for pACC

(Figure 4b).

Figure 1. Effect of ICV olanzapine and AICAR administration on phosphorylation of hypothalamic AMPK and ACC. Western blot
analysis of hypothalamic pAMPK and pACC from rats sacrificed 30 minutes after ICV injection of a) olanzapine or b) AICAR, relative to control rats
(DMSO). Calculations are based on results from 6 rats for each treatment group, run in duplicate. Representative images for the calculated difference
were selected. Each lane (pACC, pAMPK and b-actin) always represents results on the same gel from the same rat. * P#0.05 vs. vehicle. ** P#0.01 vs.
vehicle. *** P#0.001 vs. vehicle.
doi:10.1371/journal.pone.0020571.g001

Figure 2. Effect of IP olanzapine and clozapine administration on phosphorylation of hypothalamic AMPK and ACC. Western blot
analysis of hypothalamic levels of a) pACC or b) pAMPK in rats following IP injection of vehicle (ctrl) olanzapine (olanz; 10 mg/kg), clozapine (cloz;
25 mg/kg). Protein levels were normalized against b-actin as the endogenous control. Statistical calculations were based on results from n = 6 rats in
each control group. * P#0.05 vs. vehicle. ** P#0.01 vs. vehicle. *** P#0.001 vs. vehicle.
doi:10.1371/journal.pone.0020571.g002
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Subchronic olanzapine treatment increases mRNA
expression of AgRP and NPY and decreases POMC in the
ARC

The observation that pAMPK levels were reduced in the

subchronic experiment was inconsistent with a role of AMPK

activation in olanzapine-induced hyperphagia. We therefore assayed

the expression of key ARC neuropeptides involved in the control of

food intake by using in situ hybridization analysis, considered the most

suitable and robust approach for quantitative mRNA studies in the

hypothalamus. In line with the elevated food intake observed in ad

libitum-fed rats, olanzapine treatment increased mRNA levels of the

orexigenic neuropeptides NPY (147618%, P,0.05; Figure 5a) and

AgRP (12769%, P,0.05; Figure 5b) and reduced mRNA levels of

the anorexigenic POMC (71610%, P,0.05) in the ARC (Figure 5c)

Similar results were observed in pair-fed rats that had not gained

weight, with a marked increase in NPY (160612%, P#0.01) and

AgRP (143612%, P#0.05) and reduced levels of POMC (7668%,

P#0.05). Overall, these data suggest that the changes in neuropep-

tides do not represent secondary effects of olanzapine-induced

hyperphagia. The expression level of the anorexigenic neuropeptide

precursor CART did not change significantly in any of the

olanzapine-treated groups (Figure 5d).

Discussion

In this study, we investigated acute and subchronic effects of

olanzapine exposure on hypothalamic AMPK as well as

subchronic effects on satiety-regulating neuropeptides in female

rats. In accordance with olanzapine-induced hyperphagia and

increased body weight in the subchronic setting, we observed

increased mRNA expression of the orexigenic neuropeptides NPY

and AgRP, and decreased expression of the anorexigenic

neuropeptide precursor POMC in the ARC. Interestingly, these

changes were also observed in pair-fed rats, with restricted food

intake and no weight gain, demonstrating that the olanzapine-

induced transcriptional changes were primarily caused by

antipsychotic treatment and did not occur secondary to alterations

in feeding pattern and weight changes. Contrary to our initial

hypothesis, we found that olanzapine reduced phosphorylated

levels of AMPK, suggesting that hypothalamic AMPK activation is

not the primary mechanism mediating olanzapine-induced

neuropeptide expression and thus hyperphagia and weight gain

in the subchronic setting. With respect to our acute experiments,

no significant effect on AMPK phosphorylation status was

observed.

It has been proposed that the molecular mechanisms underlying

the appetite-stimulating effects of antipsychotic drugs may involve

H1 receptor-mediated activation of hypothalamic AMPK [22].

This was supported by a recent study demonstrating AMPK

activation in the hypothalamus of male rats following intravenous

injection of olanzapine [40]. In our acute experiments, we

observed a subtle trend towards increased levels of pAMPK after

an acute ICV olanzapine injection and elevated pACC after an

acute IP olanzapine injection. However, no accompanying

measurements of food intake and body weight were reported in

the aforementioned acute study [22]. In our acute study, the

relatively high drug doses induced sedative effects, which

potentially blunted hyperphagic effects.

Based on the recently established orexigenic effects of

hypothalamic AMPK activation [15,23,25] and the previously

suggested role of increased AMPK phosphorylation in antipsy-

chotic-induced weight gain [22], it was somewhat unexpected that

hypothalamic pAMPK levels and its molecular substrate pACC

were reduced in our experimental setting. It is counterintuitive

that AMPK does not mediate the hyperphagic and weight-

promoting effects of olanzapine, and we speculate that AMPK

phosphorylation may have been stimulated by olanzapine in the

Figure 3. Food intake and body weight following subchronic administration of olanzapine. a) Daily average food intake in groups of rats
(n = 8) exposed to olanzapine or vehicle by gavage (b.i.d) for 5 consecutive days. Rats were fasted over night and sacrificed in the morning on day 6.
b) Cumulative weight gain in groups of rats (n = 8) treated with vehicle or olanzapine for 5 consecutive days. Total relative weight gain (mean6SEM),
relative to treatment day 0 was as follows: control 3.061.8 g, olanzapine ad libitum 10.861.6 g, olanzapine pair-fed 1.261.4 g. * P#0.05 vs. vehicle.
** P#0.01 vs. vehicle. *** P#0.001 vs. vehicle.
doi:10.1371/journal.pone.0020571.g003

Table 1. Leptin, adiponectin and insulin plasma levels in
control and olanzapine (ad libitum and pair-fed) treated rats.

ctrl olanz pair-fed olanz ad lib

Leptin (ng/ml) 1.7360.19 1.4460.14 1.9460.26

Adiponectin (mg/ml) 7.9660.79 8.2960.56 7.6360.85

Insulin (ng/ml) 0.4460.04 0.3660.02 0.4160.02

Data are expressed as mean6SEM.
doi:10.1371/journal.pone.0020571.t001
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very short term (at initial time points) both in the acute and

subchronic experiments, but that the elevation was not sustained

at the time of dissection, around 20 hours after the last drug dose

in subchronically treated rats. The reduction of pAMPK levels

after subchronic olanzapine treatment was most pronounced in ad

libitum-fed rats, which may suggest the involvement of negative

feedback mechanisms triggered by increased body weight rather

than a direct drug effect. Additionally, sedative effects may

contribute to the weight gain observed in the hyperphagic

olanzapine-treated ad libitum rats. However, the lack of significant

weight gain in olanzapine-treated pair-fed rats strongly suggests

that weight-inducing effect of sedation alone is unlikely.

The transcriptional changes of the appetite-regulating neuropep-

tides observed in our subchronic experiment are in accordance with a

recent study in which acute ICV administration of olanzapine

increased hypothalamic expression of both NPY and AgRP [40].

However, the expression of the anorexigenic POMC was not affected

by olanzapine in this acute study, in contrast with our observation

that POMC expression is reduced. In another subchronic study with

an experimental design resembling ours, no effect was observed on

the expression of hypothalamic neuropeptides after 7 days of

olanzapine treatment in female rats, despite marked hyperphagia

and weight gain [20]. These discrepancies are probably related to

differences in experimental setup, including different drug doses

(2 mg/kg/day versus 6 mg/kg/day in our study), the number of

hours between the last drug dose and sacrifice, the duration of fasting

before sacrifice, and particularly the use of real-time PCR analysis

instead of the more sensitive in situ hybridization when assessing

neuropeptide expression levels in specific neuronal populations. In

this sense, in situ hybridization is a more suitable technique for

studying neuropeptide expression, particularly relevant for neuro-

peptides expressed in more than one hypothalamic nucleus. This is

the case of NPY, which is expressed both in the arcuate (ARC) and

the dorsomedial nuclei (DMH), with ARC expression predominantly

relevant in terms of feeding control [43,44].

Additionally, our findings suggest that regulation of antipsychotic-

induced appetite-controlling neuropeptides may occur without

concomitant AMPK activation. This is supported by the aforemen-

tioned acute study by Martins et al. [40], demonstrating that

hypothalamic AMPK activation by olanzapine occurs independently

of food intake and without detectable neuropeptide expression

changes following intravenous injection. Indeed, former studies have

demonstrated that regulation of food intake and hypothalamic

neuropeptides does not necessarily depend upon AMPK phosphor-

ylation status. For instance, we previously showed that the anorectic

effect of the drug tamoxifen is exerted by modulation of ARC

neuropeptides through an AMPK-independent mechanism [24].

Also in line with our observations, recent findings have challenged the

notion of a positive correlation between hyperphagia and AMPK

activity, as demonstrated by reduced AMPK activation in hyper-

phagic, hyperthyroid rats [25] and by resistin-induced AMPK

activation despite the anorexigenic effects of this hormone [45].

Furthermore, in the long-term setting, the orexigenic action of ghrelin

is not mediated by increased AMPK activity and is also independent

of neuropeptide tone [46], contrary to observations made in the acute

setting [23,25]. In fact, it was recently proposed both by us and by

others that in long-term altered nutritional conditions, AMPK-

induced changes in hypothalamic fatty acid metabolism may not play

a key role in feeding control. In accordance with this hypothesis, it has

been suggested that hypothalamic fatty acid metabolism could be a

regulatory mechanism maintaining energy homeostasis in starvation

[23,47,48,49].

In summary, we show in this study that subchronic olanzapine

exposure in female rats induces alterations in the expression of

satiety-controlling neuropeptides in the ARC of hyperphagic rats,

indicating that antipsychotic-induced weight gain may be

mediated via changes in ‘‘classical’’ appetite-regulating neuropep-

tides. Of note, altered neuropeptide expression levels were also

evident in food-restricted rats that did not gain weight,

demonstrating that the olanzapine-induced changes are not

secondary to changes in body weight and/or feeding patterns. In

addition, we demonstrate that phosphorylation levels of AMPK

are reduced by subchronic olanzapine exposure, suggesting that

the role of AMPK in long-term antipsychotic-induced weight gain

Figure 4. Effect of subchronic olanzapine administration on phosphorylation of hypothalamic AMPK and ACC. Western blot analysis
of hypothalamic pAMPK and pACC from rats following an over night fast after 5 consecutive days of administration by gavage (b.i.d) with a)
olanzapine (ad libitum fed) or b) olanzapine (pair-fed), relative to control rats. Calculations are based on results from 6 rats for each treatment group,
run in duplicate. Representative images for the calculated difference were selected. Each lane (pACC, pAMPK and b-actin) always represents results on
the same gel from the same rat. * P#0.05 vs. vehicle. ** P#0.01 vs. vehicle. *** P#0.001 vs. vehicle.
doi:10.1371/journal.pone.0020571.g004
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may be less robust than anticipated in previous acute studies.

Overall, these data provide new insight into the hypothalamic

mechanism underlying antipsychotic-induced hyperphagia and

weight gain and provide a rationale for the search for alternative

therapeutic targets to control energy balance.

Materials and Methods

Animals
All experiments were carried out in accordance with the

guidelines of the Norwegian and Spanish Committees for

Experiments on Animals. In accordance, experiments performed

in Norway were approved by the Norwegian Committee for

Experiments on Animals (Forsøksdyrutvalget, FDU), following

standardized application through the animal facility at Haukeland

University Hospital with ID 20092167. In the same way, all

procedures performed in Spain were also approved by the

University of Santiago de Compostela Institutional Bioethics

Committee, the Xunta de Galicia (Local Government) and the

Ministry of Science and Innovation with ID PS09/01880. Female,

outbred Sprague-Dawley rats (Mollegaard, Denmark and the

University of Santiago de Compostela Animal House) weighing

Figure 5. Effect of subchronic olanzapine administration on appetite-regulating neuropeptides. Expression levels of the appetite-
regulating neuropeptides in the arcuate nucleus following 5 days of treatment (b.i.d) with vehicle (ctrl), olanzapine with food restriction (olanz pair-
fed) or olanzapine with free access to food (olanz ad libitum). Calculations are based on results from groups of rats (n = 8) from each treatment group
fasted over night and killed in the morning on day 6. Representative images demonstrating the calculated differences were selected. Delineated areas
are shown at higher magnification at the bottom. * P#0.05 vs. vehicle. ** P#0.01 vs. vehicle. *** P#0.001 vs. vehicle.
doi:10.1371/journal.pone.0020571.g005

Olanzapine and Hypothalamic AMPK and Neuropeptides
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between 230 g and 250 g on the first day of treatment were

housed individually under standard conditions with an artificial

12:12 hrs light/dark cycle under constant 48% humidity. Animals

were allowed free access to tap water and fed with standard

laboratory chow during the experimental periods, as described

below.

Drugs
Olanzapine was dissolved in 0.1 M hydrochloric acid (HCl) and

pH was adjusted to 5.5 using 0.1 M sodium hydroxide (NaOH).

Stock solutions of 1.5 mg/ml were prepared and ,0.5 ml of this

solution was administered to the rats via gavage, twice daily (the

actual volume was corrected for variation in body weight so that

for each rat, each of the two daily doses was 3 mg/kg). For IP

experiments, both olanzapine and clozapine solutions were

prepared the same way, with the appropriate concentrations.

For ICV injections, olanzapine and AICAR were dissolved in

DMSO, which was used as vehicle.

Acute experiments
Female rats had free access (ad libitum) to food and tap water

throughout the experiment. Rats were acutely administered with

olanzapine, either by intracerebroventricular (ICV) injection or by

intraperitoneal (IP) injection. In the ICV experiment, cannulae

were surgically implanted in rats as previously reported

[23,24,25,50]. After 3 days of recovery, rats were injected ICV

with vehicle (DMSO, 10 ml), olanzapine (50 mg) or the AMPK

activatior 5-aminoimidazole-4-carboxamide-1-d-ribofuranoside

(AICAR; 50 mg) and sacrificed after 30 or 90 minutes. In the

intraperitoneal (IP) experiment, female rats were sacrificed 15 or

30 minutes after administration of vehicle (saline), olanzapine

(10 mg/kg) or clozapine (25 mg/kg). Whole brain was dissected

out, frozen immediately on dry ice and stored at 280uC until

processed.

Subchronic experiment
Female rats were exposed to either vehicle (saline) or olanzapine

(3 mg/kg), administered twice daily (total daily dose: 6 mg/kg) by

gavage (9 a.m. and 3 p.m.) for 6 days, and sacrificed on day 7 after

an overnight fast. The dose used is relatively high as compared to

other studies, but has been shown to robustly induce hyperphagia

and weight gain in mice [51] as well as in rats in our laboratory

(unpublished results). In order to explore whether olanzapine

could induce metabolic alterations independent of weight gain, we

also included a pair-fed olanzapine-treated group in which the

animals received an amount of food corresponding to that

consumed by the control group during the previous 24 hours.

To avoid binge eating, the pair-fed animals received 1/3 of the

relevant amount of chow at 9.30 a.m., and the remaining 2/3 at 3

p.m. each day. Food intake and weight were measured daily for

each animal. The last drug dose prior to sacrifice was administered

18–20 hours prior to decapitation. All animals were fasted from 9

p.m. on the day prior to euthanasia, with dissection starting at 9

a.m. the following day. Prior to decapitation, animals were

anesthesized using isoflourane. Like in the acute experiment,

whole brain was dissected out from all animals, frozen immedi-

ately on dry ice and stored at 280uC until processed. The brains

were either used for in situ hybridization analysis (half of the

animals) or western blot analysis (other half).

Serum insulin, leptin and adiponectin measurements
Truncal vein blood was collected in EDTA tubes, left on ice for

30 minutes and centrifuged at 3,000 rpm for 10 minutes. Serum

was transferred to pre-cooled Eppendorf tubes immediately after

centrifugation and stored at -20uC. Serum insulin, leptin and

adiponectin levels were assessed by means of a double-antibody

radioimmunoassay (Linco Research, USA), as previously de-

scribed [23,25,46]. All samples were assayed in duplicate within

one assay, and the results were expressed in terms of the insulin,

leptin or adiponectin standards.

In situ hybridization
Coronal hypothalamic sections (16 mm) were cut on a cryostat

and immediately stored at 280uC until hybridization. We used

specific oligos for detection of AgRP, NPY, CART and POMC

mRNAs. These probes were 39-end labeled with 35S-adATP using

terminal deoxynucleotidyl transferase (Amersham Biosciences,

UK). We performed in situ hybridizations as previously published

[24,25,52]. Similar anatomical regions were analyzed using the rat

brain atlas of Paxinos & Watson [53]. The slides from all

experimental groups were exposed on the same autoradiographic

film. All sections were scanned and the specific hybridization

signal was quantified by densitometry using the ImageJ software

(National Institute of Health, USA). We determined the optical

density of the hybridization signal and subsequently corrected by

the optical density of its adjacent background value. A rectangle,

with the same dimensions in each case, was drawn enclosing the

hybridization signal over each nucleus and over adjacent brain

areas of each section (background) as previously described

[24,25,52]. For the in situ analysis we included 8 animals per

experimental group. We used between 16 and 20 sections for each

animal (4–5 slides with four sections per slide). The mean of these

16–20 values was used as the densitometry value for each animal.

Western blotting
Dissected hypothalami were homogenized in lysis buffer and

centrifuged at 12000 g for 10 minutes at 4uC. 40 mg of total

protein from each sample were separated on SDS-PAGE gels and

blotted onto PVDF membranes. PVDF membranes were blocked

with 5% BSA in 0.1% TBST prior to incubation with primary

antibody at 4uC overnight, followed by incubation with secondary

antibody at room temperature for one hour, as previously

described [23,52]. The primary antibodies used were: pACCa-

Ser79 (Upstate, USA), pAMPKa-Thr172 (Cell signalling Technol-

ogy, USA) and b-actin (Abcam, UK). Signal intensity measure-

ments were performed using the ImageJ software (National

Institutes of Health, USA).

Statistical analysis
Food intake in the subchronic experiment was analyzed by two-

way ANOVA repeated measures with treatment (2 groups; control

and olanzapine ad libitum fed) as between-subject variable and

time (6 days) as within-subject variable. Body weight changes was

analyzed using the same method, with treatment (3 groups;

control, olanzapine ad libitum fed and olanzapine pair-fed) and

time (6 days) as factors. When a significant interaction effect from

the two-way ANOVA was obtained, Student’s t-test or one-way

ANOVA, followed by Tukey’s post-hoc test, was used to analyze

statistical significance for each time point. All data are expressed as

mean6SEM. All tests were conducted with PASW Statistics

Version 18 (PASW statistics; SPSS, USA) software. A significance

level of P = 0.05 was used.
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44. López M, Tovar S, Vázquez MJ, Williams LM, Diéguez C (2007) Peripheral

tissue-brain interactions in the regulation of food intake. Proc Nutr Soc 66:

131–155.

45. Vazquez MJ, Gonzalez CR, Varela L, Lage R, Tovar S, et al. (2008) Central

resistin regulates hypothalamic and peripheral lipid metabolism in a nutritional-

dependent fashion. Endocrinology 149: 4534–4543.

46. Sangiao-Alvarellos S, Varela L, Vazquez MJ, Da Boit K, Saha AK, et al. (2010)

Influence of ghrelin and growth hormone deficiency on AMP-activated protein

kinase and hypothalamic lipid metabolism. Journal of neuroendocrinology 22:

543–556.

47. Andrews ZB, Liu ZW, Walllingford N, Erion DM, Borok E, et al. (2008) UCP2

mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals.

Nature 454: 846–851.

48. Varela L, Vazquez MJ, Cordido F, Nogueiras R, Vidal-Puig A, et al. (2011)

Ghrelin and lipid metabolism: key partners in energy balance. Journal of

molecular endocrinology 46: R43–63.
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