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ABSTRACT

Structural Maintenance of Chromosomes (SMC)
proteins are vital for a wide range of processes
including chromosome structure and dynamics,
gene regulation and DNA repair. Eukaryotes have
three SMC complexes, consisting of heterodimeric
pairs of six different SMC proteins along with
several specific regulatory subunits. In addition to
their other functions, all three SMC complexes play
distinct roles in DNA repair. Cohesin (SMC1–SMC3)
is involved in DNA double-strand break repair,
condensin (SMC2–SMC4) participates in single-
strand break (SSB) repair, and the SMC5–SMC6
complex functions in various DNA repair pathways.
SMC proteins consist of N- and C-terminal domains
that fold back onto each other to create an ATPase
‘head’ domain, connected to a central ‘hinge’
domain via long coiled-coils. The hinge domain
mediates dimerization of SMC proteins and binds
DNA, but it is not clear to what purpose this
activity serves. We studied the structure and
function of the condensin hinge domain from
mouse. While the SMC hinge domain structure is
largely conserved from prokaryotes to eukaryotes,
its function seems to have diversified throughout
the course of evolution. The condensin hinge
domain preferentially binds single-stranded DNA.
We propose that this activity plays a role in the
SSB repair function of the condensin complex.

INTRODUCTION

Throughout all kingdoms of life, Structural Maintenance
of Chromosomes (SMC) proteins are responsible for the
faithful inheritance of genetic information. They are
involved in a wide range of vital cellular processes from

cell division to gene regulation and DNA repair, acting as
global organizers and safeguards of the genome. Whereas
prokaryotic genomes encode for only one SMC protein
that exists as a homodimer, eukaryotes possess six differ-
ent SMC proteins that form three distinct heterodimeric
complexes, with the holocomplexes additionally contain-
ing several specific regulatory non-SMC subunits (1).

In prokaryotes, the SMC complex is required for chro-
mosome condensation and segregation (2). In eukaryotes,
the complex containing SMC1 and SMC3, named cohesin,
is responsible for sister chromatid cohesion during mitosis
and meiosis (3). The condensin complex with SMC2 and
SMC4 at its core is required, but not solely responsible for
proper chromosome condensation and segregation during
cell division (4). It seems to organize and maintain the
chromosome scaffold rather than actually establishing it
(5,6), but how it accomplishes this function is still
unresolved. The as yet unnamed SMC5–SMC6 complex
is involved in several DNA repair pathways as well as
homologous recombination in meiosis (7).

Both cohesin and condensin are also involved in gene
regulation (8–13) and DNA repair (14–20). While their
roles are partially overlapping, they seem to be involved
in different DNA repair pathways. Cohesin on the one
hand is specifically recruited to DNA double-strand
breaks (DSBs) in postreplicative cells and promotes
DNA repair from the sister chromatid (17,21,22).
Induction of a single DSB indeed leads to genome-wide
establishment of cohesion independently of DNA replica-
tion (23,24), thus cohesin acts like a safeguard of genome
integrity.

The function of condensin in DNA repair on the other
hand is less well-characterized. Studies in yeast have
implied that condensin has an interphase-specific
function in DNA repair, but they have not clarified
which DNA repair pathway is affected (14,16). There
are, however, indications that condensin is involved in
DNA single-strand break (SSB) repair (25,26). There are
two forms of condensin in vertebrates that differ in their
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non-SMC subunits, but have the same core consisting of
SMC2 and SMC4 (27). Human condensin I was shown to
interact in an interphase-specific manner with the DNA
nick-sensor poly(ADP-ribose) polymerase 1 (PARP1), and
this interaction increased upon SSB damage induction.
While nuclear retention of condensin was enhanced in
the presence of SSBs, this was not the case for cohesin.
Depletion of condensin I compromised SSB, but not DSB
repair.

The interaction between condensin and PARP1 was par-
ticularly strong in S phase, suggesting an involvement
of condensin also in normal DNA replication (25).
Indeed, condensin was found to accumulate at stalled rep-
lication forks in budding yeast (28), and was shown to be
required for the replication checkpoint response after
stalling replication by hydroxyurea treatment in fis-
sion yeast (14). Since it is not known whether
condensin is also found at moving replication forks, its
presence at stalled forks might either be due to its DNA
repair function, or a function in undisturbed DNA
replication.

SMC proteins have a striking domain architecture
consisting of a long antiparallel coiled-coil region with
globular domains at both ends (1,29). Their N- and
C-terminus interact at one end of the coiled-coil to make
up an ATP-binding cassette (ABC)-type ATPase ‘head’
domain to which most of the non-SMC subunits bind.
The ‘hinge’ domain at the other end of the coiled-coil
mediates dimerization of SMC proteins. However, its
function exceeds that of a simple dimerization domain,
as it has previously been shown to bind DNA (30–33).
In case of the Bacillus subtilis SMC protein, ATP
binding to the head domains stimulates DNA binding to
the hinge domains (33), and this in turn stimulates ATP
hydrolysis by the head domains (31,32,34,35). This indi-
cates that the hinge domain is capable of transmitting
structural changes along the coiled-coil region to the
head domains and vice versa.

Structures of two bacterial SMC hinge domains have
been solved to date, namely that of the Thermotoga
maritima SMC hinge (29) and that of the Escherichia
coli MukB hinge (36,37). MukB is a divergent SMC
protein, and its hinge domain is substantially smaller
than that of the T.maritima SMC protein. Nonetheless
the structures of the two hinge domains are quite
similar. Two hinge domain monomers interact with each
other via two interfaces to create a doughnut-shaped
homodimer with 2-fold symmetry. The coiled-coils are
formed intramolecularly and emerge from the same face
of the dimer (29,36,37).

Most investigations focusing on the hinge domain have
so far been conducted with bacterial SMC proteins. To
shed more light on the structure and function of
eukaryotic SMC hinges, we focused our efforts on the
condensin hinge domain from mouse. We solved its
atomic resolution crystal structure and furthermore
studied its DNA binding activity. Interestingly, the
condensin hinge domain preferentially binds
single-stranded DNA (ssDNA), while its interaction with
double-stranded DNA (dsDNA) is non-specific. Taking
into account the data placing condensin in SSB repair

(25), we propose that the ssDNA binding activity of the
hinge domain supports the DNA repair function of the
condensin complex.

MATERIALS AND METHODS

Cloning, expression and protein purification

We designed two mouse condensin hinge domain con-
structs of different lengths. The longer construct,
designated mSMC2h4h-l, spans residues 492–680 of
SMC2, and residues 581–766 of SMC4, while the shorter
one, mSMC2h4h-s, contains residues 506–666 of SMC2,
and residues 595–752 of SMC4. DNA fragments encoding
the desired hinge domain constructs were PCR-amplified
from cDNA vectors (SMC2: image ID 30543190; SMC4:
image ID 6841276, imaGenes) and cloned into a modified
bicistronic pET-21b vector (Novagen) carrying a second
ribosome binding site between the SalI and NotI sites. The
smc2 hinge fragment was inserted between the NdeI/
EcoRI sites, and the smc4 hinge fragment was cloned
into the NcoI/XhoI sites to be expressed with the
vector-encoded C-terminal hexahistidine tag. In the long
construct, the SMC2 subunit additionally carries an
N-terminal Strep II tag (38) added via the PCR primer.
Point mutations were introduced into the vectors by
site-directed mutagenesis using the QuikChange method
(Stratagene). All constructs were verified by sequencing.
Expression was carried out in E. coli Rosetta (DE3)

(Novagen). Cultures were grown at 37�C in LB medium
supplemented with the appropriate antibiotics to an
optical density (600 nm) of �0.7, cooled down to 18�C,
and induced with 0.5mM IPTG. Cells were harvested by
centrifugation 20 h after induction. Cell pellets were stored
at �20�C until further use. To obtain selenomethionine-
labelled protein, constructs were expressed in E. coli B834
(DE3) additionally containing the pRARE plasmid
(Novagen) in LeMaster’s medium (39) supplemented
with the appropriate antibiotics and selenomethionine.
Proteins were purified via nickel chelate affinity chro-

matography and gel filtration. All purification steps were
carried out at 8�C. Cells from 2 l of culture were lysed by
sonication in buffer A (25mM Tris–HCl pH 8.0, 300mM
NaCl, 20mM imidazole). The lysate was cleared by
centrifugation and applied to a gravity flow column con-
taining Ni–NTA agarose beads (Qiagen). Nickel chelate
chromatography was performed using buffer A for
washing and buffer B (25mM Tris–HCl pH8.0, 300mM
NaCl, 250mM imidazole) for elution. The eluate was
concentrated in centrifugal filter units (Amicon Ultra,
10 000 MWCO, Millipore) and applied to a Superdex
200 pg 26/60 gel filtration column (GE Healthcare)
equilibrated in bufferC (5mM Tris–HCl pH 8.0,
100mM NaCl, 0.1mM EDTA). Fractions containing
only the heterodimeric SMC2–SMC4 hinge domain were
pooled, and the protein was concentrated to 30–40mg/ml.
Protein concentration was determined using a calculated
extinction coefficient at 280 nm (40). The purification
process was monitored by SDS–PAGE (41).
Concentrated protein was aliquoted, flash frozen in
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liquid nitrogen and stored at �80�C until further use.
Selenomethionine-labelled protein was purified
analogously with the addition of 1mM DTT to all
buffers. TCEP was added to the concentrated protein to
a final concentration of 1mM to prevent oxidation of the
selenomethionine residues.

Small-angle X-ray scattering of protein solutions

To prepare samples suitable for small-angle X-ray scatter-
ing (SAXS) measurements, proteins were additionally
purified via gel filtration on a Superdex 200 column (GE
Healthcare), and concentrated to yield samples in concen-
tration ranges from 2 to 20mg/ml in buffer C. The
flowthrough of the concentration step was used as buffer
reference for SAXS measurements. SAXS data were col-
lected at beamline X33 at EMBL/DESY, Hamburg.
Scattering profiles of BSA and lysozyme were measured
as reference for molecular mass determination. The
ATSAS package (42) was used to process and analyze
data. Theoretical scattering profiles from atomic res-
olution models were calculated and fitted to measured
profiles with CRYSOL. Ab initio models of
mSMC2h4h-l were reconstructed from the experimental
data using the program GASBORp without imposing
any symmetry or other restrictions on possible models.
Ten independently reconstructed envelopes were aligned
and averaged with SUPCOMB and DAMAVER.
Envelope representations were calculated using the Situs
package (43), which was also used to dock atomic resolu-
tion models into the envelope.

Protein crystallization and structure determination

The short mouse condensin hinge construct mSMC2h4h-s
was crystallized by vapor diffusion in the hanging-drop
setup at 20�C. Crystallization was optimized with
selenomethionine-labelled protein. The refined crystalliza-
tion condition contained 15% (w/v) PEG 4000, 5% (v/v)
isopropanol, 20% (v/v) glycerol and 100mM Tris–HCl
pH 8.5. For data collection, crystals were flash-frozen in
liquid nitrogen without additional cryoprotection. Data
were collected at beamline PXI of the Swiss Light
Source (SLS, Villigen, Switzerland). The crystals belong
to space group P21 and contain one molecule each of
the SMC2 and SMC4 subunits in the asymmetric unit
(see Supplementary Table S1 for crystallographic data,
phasing and refinement statistics). The structure was
determined by single-wavelength anomalous dispersion
(SAD) phasing from a peak wavelength dataset of the
selenomethionine-labelled protein crystals. Data were
indexed and integrated using the XDS package (44).
Phases were calculated with AutoSHARP (45). The
model was largely automatically built with ARP/wARP
(46–48) and completed by manual model building in
Coot (49). Initial refinement was carried out with CNS
(50), followed by several rounds of refinement with
phenix.refine (51) and rebuilding in Coot. Refinement
included simulated annealing in initial cycles, individual
atomic coordinate and anisotropic B factor refinement,
and bulk solvent corrections. Solvent molecules were

added with phenix.refine and manually. The Rfree factor
was calculated from 10% of the data which were removed
at random before the structure was refined. The structure
was validated using MolProbity (52) and PROCHECK
(53). The electrostatic surface potential was calculated
with the Adaptive Poisson–Boltzmann Solver (APBS)
(54). All figures were prepared with PyMOL (DeLano,
W.L. The PyMOL Molecular Graphics System. (2008)
DeLano Scientific LLC, Palo Alto, CA, USA.
http://www.pymol.org). Coordinates and structure
factors were deposited at the Protein Data Bank (PDB)
with accession number 3L51.

In vitro DNA-binding assays

We used DNA oligonucleotide substrates carrying a
6-FAM fluorescence label to monitor their binding to
the mouse condensin hinge domain (Table 1). HPLC-
purified DNA oligonucleotides (Thermo Scientific) were
dissolved in water. DNA concentration was determined
using a calculated extinction coefficient at 260 nm (55).
To anneal oligonucleotides, they were mixed with a
1.1-fold molar excess of the unlabelled oligonucleotide in
40mM Tris–HCl pH 7.5, 100mM NaCl, 10mM MgCl2,
incubated in a thermocycler (Biometra T personal) for
5min at 95�C, and then cooled down to 4�C at a
cooling rate of 0.1�C/s.

Samples for electrophoretic mobility shift assays
(EMSAs) contained 12.5 nM of a DNA substrate and
protein in a 0-, 1-, 2-, 10-, 25-, 50-, 100-, 250-, 500- and
1000-fold molar excess over the DNA in 1�PBS in a total
volume of 20 ml. They were incubated at room temperature
for 30min before addition of 5 ml 50% (v/v) glycerol. The
samples were then loaded onto an 0.5% (w/v) agarose gel
in 1�TB buffer and separated for 2 h at 4V/cm and 8�C.
Gels were scanned on a Typhoon 9400 fluorescence
scanner (GE Healthcare).

Fluorescence quenching titrations were performed in a
Horiba Jobin Yvon FluoroMax-P fluorimeter, using a
1.5ml fluorescence cuvette with a stirring bar, at 20�C
under constant stirring. The titration solution contained
25 nM 6-FAM-labelled DNA substrate (Table 1) in
1�PBS in a starting volume of 800 ml. Protein was
added successively from a concentrated stock solution.
After each addition of protein, the mixture was
allowed to reach equilibrium for 1min before
measuring fluorescence. 6-FAM fluorescence was excited
at 495 nm, and measured at the experimentally deter-
mined emission maximum of the DNA substrate
(between 415 and 418 nm). Excitation and emission
slit width were adjusted so that the signal was in the
linear range of the photon counting multiplier. All mea-
surements were performed in triplicate. Data were
normalized and fitted using a non-linear least squares
fit algorithm with a single-site binding model.
Dissociation constants are the result of global fits to trip-
licates, errors are the standard deviations of dissociation
constants resulting from independent fits to the
three measurements.
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RESULTS

Protein purification, crystallization and structure
determination

To facilitate crystallization, we designed two expression
constructs of the mouse SMC2–SMC4 hinge domain.
The longer construct, designated mSMC2h4h-l (residues
492–680 of SMC2 and 581–766 of SMC4), was designed to
contain a short stretch of coiled-coil at both ends, while
the shorter one, mSMC2h4h-s (residues 506–666 of SMC2
and 595–752 of SMC4), does not contain any coiled-coil
segments. Both constructs were expressed in E. coli, and
the proteins were purified via nickel chelate affinity chro-
matography and gel filtration to yield stable heterodimeric
SMC2–SMC4 hinge domains. We obtained well
diffracting crystals of mSMC2h4h-s in space group P21
with one heterodimer in the asymmetric unit.
Selenomethionine derivative crystals diffracted to 1.5 Å
resolution and allowed us to determine the phases by
SAD. The resulting electron density map was of very
high quality so that �90% of the model could be built
automatically. After several cycles of manual model
building and refinement, the final R factors were 14.3%
for Rwork and 17.3% for Rfree. The final model spans
residues 506–660 of SMC2 and residues 595–752 of
SMC4 including the entire hexahistidine tag, and has
very good geometry. Crystallographic data, phasing and
refinement statistics are shown in Supplementary Table
S1, an example of the initial and refined electron density
can be found in Supplementary Figure S1.

Crystal structure of the mouse condensin hinge domain

The SMC2 and SMC4 hinge subunits assemble into a
heterodimer. Each subunit forms a half-ring structure
with an a-helical core that is bordered by a mixed
b-sheet on both sides (Figure 1A). The b-sheets are
again flanked on the outside by one or two a-helices.
Like the T.maritima SMC (TmaSMC) hinge domain
(29), both subunits consist of two subdomains linked by
a long but ordered loop that passes along the bottom face
of the hinge, i.e. the face on the opposite side of the
coiled-coils (Figure 1A). This loop lies between b-strand
3 and a-helix F of the SMC2 hinge, and between helices F
and G of the SMC4 hinge (see the sequence alignment in

Figure 2 and the topology diagram in Supplementary
Figure S2).
The TmaSMC (29) and the E. coli MukB (36,37) hinge

domains form 2-fold-symmetric doughnut-shaped homo-
dimers via two dimerization interfaces. Unexpectedly, the
SMC2 and SMC4 hinge dimerize via only one interface
and thus do not adopt the expected doughnut-shape
(Figure 1A and B). The subunit interface is made up
largely by two interacting b-strands, namely mSMC2h
b3 and mSMC4h b7, to form a continuous mixed
seven-stranded b-sheet (mSMC2h b1-3+mSMC4h
b4-7). Additional dimer interactions are contributed by
helices aE of mSMC2h and aI of mSMC4h which flank
the b-sheet on the outside (Figures 1A, B and 2,
Supplementary Figure S2).
At the opposite side of the half-rings, the SMC2 hinge

has a four-stranded and the SMC4 hinge a three-stranded
mixed b-sheet (mSMC2h b4-7, mSMC4h b1-3), but these
do not interact in our crystal form (Figure 1A and B). In
fact, the angle between the two subunits is much wider
than in the TmaSMC hinge homodimer (29), the hinge
being thus bent along the intact interface to open up the
ring at the opposite side. Superposition with the TmaSMC
hinge structure reveals the probable reason for this par-
tially open conformation: it seems that the SMC2 hinge is
missing the last C-terminal b-strand that would be the one
to interact with the outermost b-strand of the SMC4 hinge
(b3) to form a pseudo-2-fold symmetric dimer. The
residues that are predicted to make up this b-strand are
part of the crystallized construct, but are evidently disor-
dered. SAXS analysis (see below) suggests that the SMC2–
SMC4 hinge can also adopt a closed, doughnut-shaped
structure which is presumably stabilized by the coiled-coil
domains missing in our crystallized construct. There are
no apparent crystal contacts that could have forced the
hinge domain into this open conformation. We modelled
the expected ‘closed’ conformation by separately
superposing the SMC2 and SMC4 subunit of the mouse
condensin hinge structure with the TmaSMC hinge
domain dimer (Figure 1B). While this model produces
some clashes at the intact interface and therefore
obviously does not perfectly represent the biologically
relevant closed conformation, it does show quite clearly
that the C-terminal b-strand of the SMC2 hinge is indeed

Table 1. Oligonucleotides used for DNA-binding assays

Name Structure Oligonucleotide sequences

30-mer ssDNA 50-6-FAM-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
15-mer ssDNA 50-6-FAM-TTTTTTTTTTTTTTT
30-mer dsDNA strand 1: 50-6-FAM-CCGGAAAGCATCTAGCATCCTGTCAGCTGC

strand 2: 50-GCAGCTGACAGGATGCTAGATGCTTTCCGG
30-mer ds–ssDNA-30 strand 1: 50-6-FAM-CATCCTGTCCGCTGC

strand 2: 50-GCAGCGGACAGGATGTTTTTTTTTTTTTTT
30-mer ds-ssDNA-50 strand 1: 50-6-FAM-CATCCTGTCCGCTGC

strand 2: 50-TTTTTTTTTTTTTTTGCAGCGGACAGGATG
45-mer ds–ss–dsDNA strand 1: 50-6-FAM-CATCCTGTCCGCTGC

strand 2: 50-CCGGAGAGCATCTCG
strand 3: 50-GCAGCGGACAGGATGTTTTTTTTTTTTTTTCGAGATGCTCTCCGG

The 50-end is on the left side for the single-stranded substrates and the top strand(s) of double-stranded substrates. The diamond symbolizes the
6-FAM fluorescence label.
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Figure 1. Overall structure of the mouse condensin hinge domain (construct mSMC2h4h-s, residues 506–666 of SMC2 and 595–752 of SMC4).
(A) Stereo view of the SMC2–SMC4 hinge domain, as seen from the bottom face, i.e. the face on the opposite side of the coiled-coils, colored by
subdomains. The SMC2 subunit is colored in shades of blue, the SMC4 subunit in shades of red, with the N-terminal subdomain shown in the lighter
shade. The long loop connecting the subdomains is shown in dark and light grey for SMC2 and SMC4, respectively. The hexahistidine tag on the
C-terminus of the SMC4 hinge is colored white. (B) The SMC2–SMC4 hinge domain heterodimer as seen from the top face, in the open and closed
conformation. The top panel shows the open conformation found in the crystal structure, the bottom panel depicts the model of the closed
conformation, generated by separately superposing the SMC2 and SMC4 subunits with the T.maritima SMC hinge domain dimer (pdb 1GXL)
(29). The SMC2 subunit is shown in blue, the SMC4 subunit in red and orange for the open and closed conformation, respectively. (C) Superposition
of the SMC2 and SMC4 subunit, shown in stereo. The color scheme is the same as in (A).

Figure 2. Alignment of the hinge domains of SMC1a, SMC2, SMC3 and SMC4 from mouse. Only residues present in the crystallized construct
mSMC2h4h-s are shown for SMC2 and SMC4 (residues 506–666 of SMC2 and 595–752 of SMC4). Numbering of residues is for mSMC2. The
secondary structure of the SMC2 hinge domain is shown above the alignment, that of the SMC4 hinge domain below. a-Helices are displayed as red
rectangles, b-strands as blue arrows. The residues that probably form b8 of SMC2 are invisible in the electron density. The asterisks mark
mSMC2-K566/mSMC4-K657 and mSMC2-K613/mSMC4-K698. In the consensus sequence, lower case letters are used for �50%, upper case letters
for �90% conservation; exclamation mark denotes any one of IV, dollar symbol: any one of LM, hash: any one of NDQE. The alignment was
generated with MultAlin (62).
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missing to close the ring. The structural similarity to the
TmaSMC hinge domain however strongly suggests that
the subunit cores are correctly folded. The rmsd between
the Ca traces of the SMC2 and SMC4 hinge domain and
the TmaSMC hinge (pdb 1GXL) is 2.2 and 2.6 Å, respec-
tively, and the rmsd between the SMC2 and the SMC4
hinge is only 1.8 Å. Most secondary-structure elements
are conserved.

Notable differences in secondary structure between the
TmaSMC and the mouse condensin hinge domain are
found in the SMC4 subunit (Figures 1C and 2,
Supplementary Figure S2). In the mSMC2 and
TmaSMC hinge domain, the N-terminal b-sheet merges
directly into the long loop connecting the subdomains
which terminates in a helix on the outside of the
C-terminal b-sheet (mSMC2h aF). This helix is followed
by a strand of the C-terminal b-sheet (mSMC2h b4). The
mSMC2 and mSMC4 hinges have the same number of
helices, but their F helices do not correspond to each
other and are in completely different positions, flanking
the C-terminal b-sheet in mSMC2h, and the helical core
on the outside surface in mSMC4h. In the mSMC4 hinge,
helix F lies between the N-terminal b-sheet and the con-
necting loop which terminates in helix G of the helical
core, so that the C-terminal b-sheet of mSMC4h consists
of one less strand than that of the mSMC2 and TmaSMC
hinge (provided that the predicted C-terminal b-strand of
mSMC2h is indeed formed).

The SMC2–SMC4 hinge interface explains dimerization
specificity of eukaryotic SMC proteins

Most intersubunit contacts are formed by hydrophobic
interactions, supported by few hydrogen bonds
(Figure 3). It has long been unclear how eukaryotic
SMC proteins specifically assemble into defined

heterodimers (e.g. SMC1–SMC3, SMC2–SMC4), while
prokaryotic SMC proteins form homodimers. Taking a
closer look at the interface, the reason for dimerization
specificity is revealed. While most residues contributing
to the interaction are conserved or replaced by similar
residues within the subfamilies SMC2/SMC3 and
SMC1a/SMC4 (56), the few non-conservative exchanges
are apparently enough to make wrong pairing impossible.
For SMC2/SMC3, good candidate residues for
dimerization specificity within the N-terminal interface
are K570R571R572 of SMC2 which are replaced by
P582G583E584 in SMC3 (Figure 2). These residues are
placed in an otherwise conserved region, hence it is very
likely that they are in similar positions in the SMC2 and
SMC3 tertiary structures. Looking at the dimerization
interface, it is immediately obvious that the PGE
sequence in SMC3 would not be able to form the same
interactions with SMC4 as the KRR sequence in SMC2
(Figure 3). For example, SMC2-R572 forms a hydrogen
bond with the backbone oxygen of SMC4-G740. The
shorter glutamate side chain in SMC3 could not support
this interaction. Between the SMC4 and SMC1a
C-terminal interface residues there is only one non-con-
servative exchange, namely SMC4-T723 for SMC1a-R626

(Figure 2). Again, this residue is situated in an otherwise
conserved region. Assuming that it therefore adopts a
similar position in SMC1a as in SMC4, the arginine side
chain would clash with K561 of SMC2, thus making it
impossible for SMC1a to dimerize with SMC2. SMC3
on the other hand has a small threonine residue in place
of SMC2-K561, so that the SMC3 interface can
accomodate the large side chain of SMC1a-R626.

Solution scattering analysis shows that the condensin
hinge domain can also adopt a closed conformation

To acquire structural information about the conformation
of the condensin hinge in solution, we measured SAXS
profiles of both the short and the long hinge domain con-
struct (Figure 4A). The best data were obtained with
protein concentrations of 8 and 20mg/ml for the short
and long construct, respectively. While the short construct
showed a slight tendency to aggregate at high concentra-
tions, the long construct did not show any such signs even
at 20mg/ml, thus yielding data of very high quality with
little noise even at higher values of the scattering vector.
The molecular mass determined from the scattering inten-
sity extrapolated to zero angle confirms that both con-
structs exist as heterodimers in solution. We compared
the observed scattering profiles with SAXS profiles
calculated from the crystal structure and the model of
the closed conformation (Figure 4A). The observed
profile of mSMC2h4h-s matches perfectly with the
profile calculated from the crystal structure. This means
that the crystallized construct mSMC2h4h-s adopts the
same open conformation in solution as in the crystal.
Hence, this conformation is not produced by crystal
contacts.
The long construct mSMC2h4h-l, on the other hand,

clearly exhibits a different conformational state. The
SAXS profiles suggest that this construct has the

Figure 3. Stereo view of the interface between the SMC2 and SMC4
hinge. Residues contributing to the subunit interaction are shown as
stick models with carbon atoms color blue and dark red for the SMC2
and SMC4 subunit, respectively, nitrogen: dark blue, oxygen: light red,
and selenium: orange. The surrounding residues are depicted as thin
lines in light blue for SMC2, and rose for SMC4. Hydrogen bonds are
represented by dashed blue lines. The 5.5 Å distance between
SMC2-K561 and SMC4-T723 is indicated by a dashed green line.
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expected closed conformation, as its scattering profile
more closely resembles that of the closed than that of
the open conformation (Figure 4A). We calculated 10
independent ab initio envelope reconstructions of the
long construct. Due to the high data quality, there is a
hint of the hole in the hinge heterodimer ring even in
the averaged low-resolution envelope (Figure 4B). The
stalk that sticks out on one side of the globular protein
is big enough to contain 20–25 residues of an ordered loop
or coiled-coil (Supplementary Figure S3). The construct
mSMC2h4h-l is 14 residues longer than mSMC2h4h-s at
all ends, and the SMC2 subunit additionally carries an
N-terminal Strep II tag (eight residues). It is therefore
most likely that the stalk consists of a short stretch of
coiled-coil plus the Strep II tag of the SMC2 subunit
(see Supplementary Figure S3 for an exemplary
superposition of a crystal structure of a Strep II tag
onto the stalk), while the ends of the SMC4 subunit are
flexible in solution. Superposition of the open and closed
conformation of mSMC2h4h-s onto the SAXS envelope
shows a clearly better fit for the closed conformation. The
open conformation does not completely fill the envelope
whilst still projecting outside it, whereas the closed con-
formation nicely fills the globular part of the envelope.
DNA binding data also imply that the long construct
has two intact dimer interfaces (see below). Thus, we
conclude that the long construct mSMC2h4h-l adopts
the expected closed conformation.

The condensin hinge domain preferentially binds ssDNA

Previous work has demonstrated that the SMC hinge
domain can bind DNA (30–33), but because of the
purely qualitative nature of the assays performed in
these studies, the specificity for different DNA substrates
could not be unambiguously determined. To learn more
about the potential role of the condensin complex in SSB
repair, we quantitatively analyzed different DNA
substrates for binding to the mouse condensin hinge
domain. Sequences and structures of the DNA substrates

used can be found in Table 1. The short construct
mSMC2h4h-s binds DNA only very weakly and
non-specifically (Supplementary Figure S4 and data not
shown), probably due to its partially open conformation
or the lack of the transition into the coiled-coil region
which might harbor additional DNA binding sites. The
long construct mSMC2h4h-l, however, which adopts a
closed conformation and contains a short stretch of the
coiled-coil regions, binds DNA quite efficiently and shows
interesting differential affinity towards different DNA
substrates.

We performed EMSAs with 6-FAM-labelled DNA
substrates (Supplementary Figure S4). The results
suggest a qualitatively different binding behavior
towards ssDNA and dsDNA. ssDNA was shifted
upwards of the well, that is, the protein–ssDNA
complex migrated towards the cathode, suggesting that
the protein is so positively charged that even the
complex with a 30-mer ssDNA oligonucleotide still has a
surplus of positive charge. In fact, the long mouse
condensin hinge construct has a theoretical isoelectric
point of �9.3, and positively charged residues are
distributed all over the surface of the protein (Figure 6).
While a 30-mer dsDNA substrate was also bound, the
EMSAs implied that it was bound much more weakly
than the ssDNA substrate of the same length
(Supplementary Figure S4). Also, the protein–dsDNA
complex did not migrate towards the cathode, but
remained in the wells. Thus, EMSAs are not the method
of choice to quantitatively analyze DNA binding.

We therefore performed fluorescence quenching titra-
tions to get a better picture of the DNA binding activity
of the mouse condensin hinge, exploiting the fact that
binding of 6-FAM-labelled DNA to the mouse condensin
hinge leads to quenching of 6-FAM fluorescence. The
resulting titration curves are not only a means to
quantify the affinity towards different DNA substrates
with great accuracy, but also contain information about
the binding mode. All measurements were performed at
physiological salt concentrations. Inclusion of Mg2+ in

Figure 4. Small-angle X-ray scattering analysis of the mouse condensin hinge domain. (A) SAXS profiles of the short and long construct in solution
in comparison with profiles calculated from atomic resolution models. The scattering profile of the long construct mSMC2h4h-l is shown in black,
the profile of the short construct mSMC2h4h-s in blue. The calculated scattering profiles of the atomic resolution models of mSMC2h4h-s in the
open and closed conformation are shown in red and orange, respectively. (B) Solution envelope reconstruction of the long construct mSMC2h4h-l,
superimposed with the atomic resolution models of mSMC2h4h-s in the open (top left) and closed conformation (bottom right). The SAXS envelope
is shown as grey mesh, the atomic resolution models are depicted in cartoon representation with the SMC2 subunit colored blue, and the SMC4
subunit colored red in the open and orange in the closed conformation.
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the assay buffer did not have any influence on DNA
binding by the condensin hinge (data not shown). As
can be seen in Figure 5A, the binding to dsDNA does
not reach saturation even at a 1000-fold excess of
protein and cannot be fitted using a simple binding
model. This non-saturation behavior shows that the
mouse condensin hinge binds dsDNA non-specifically.

We therefore conclude that non-specific binding
produces such large protein–DNA aggregates that they
cannot enter the gel matrix and remain in the wells in
EMSAs.
On the other hand, the mouse condensin hinge domain

binds all DNA substrates tested that are at least partially
single-stranded specifically and with high affinity
(Figure 5A and Table 2). We used oligo(dT) as ssDNA
substrate because it does not form intramolecular base
pairing or stacking interactions and is a model substrate
to study ssDNA binding specificity (57). All titration
curves obtained with partially or completely single-
stranded substrates could be fitted using a single-site
binding model, meaning that one hinge heterodimer
binds one DNA molecule. The 30-mer ssDNA substrate
is bound with a dissociation constant of 0.45±0.04mM.
A 15-mer ssDNA substrate is still bound specifically,
albeit with an �10-fold higher dissociation constant
(Kd=3.21±0.14 mM), suggesting that �15 nucleotides
constitute the minimal binding length. We presumed that
the condensin hinge might fall off the ends of this short
oligonucleotide, while it would not so quickly dissociate
from the twice as long 30-mer ssDNA substrate. To test
this hypothesis, we designed 15-mer ssDNA substrates
that are ‘capped’ on one or both ends by a 15-mer
dsDNA stretch. Indeed, the 30-mer ds–ssDNA substrate,
where one end is capped, is bound twice as strongly as the
15-mer ssDNA. Dissociation constants were found to be
the same within the range of error, regardless of whether
the ssDNA stretch was a 30 or 50 overhang
(Kd=1.55±0.05 mM for 30-mer ds–ssDNA-30,
1.77±0.08 mM for 30-mer ds–ssDNA-50). This rules out
specific recognition of a particular ssDNA–dsDNA tran-
sition by the condensin hinge. Since the fluorescence label
is on the 50-end of the short 15-mer strand (Table 1), it is
close to the ssDNA stretch in the 30-mer ds–ssDNA-30

substrate and far away from it in the 30-mer ds–
ssDNA-50 substrate. Titrations with these two substrates
also showed that only the ssDNA stretch is bound, as the

Figure 5. Fluorescence quenching titrations. One representative titration curve of each triplicate measurement is shown. Solid lines represent fits
according to a single-site binding model. (A) Titrations of different DNA substrates with the long mouse condensin hinge domain construct
mSMC2h4h-l wt. DNA substrates are: filled circles, 30-mer ssDNA; open circles, 45-mer ds–ss–dsDNA; filled triangles, 30-mer ds–ssDNA-30;
open triangles, 15-mer ssDNA; filled diamonds, 30-mer dsDNA. The titration with the 30-mer dsDNA substrate could not be fitted with a
simple binding model. For clarity, the titration with the 30-mer ds–ssDNA-50 substrate is not shown. For structures and sequences of the DNA
substrates see Table 1. (B) Titrations of the 30-mer ssDNA substrate with mSMC2h4h-l and three point mutants. Proteins are: filled circles,
mSMC2h4h-l wt; filled triangles, mSMC2hK566E4h-l; open circles, mSMC2hK566E4hK657E-l; open triangles, mSMC2hK613E4hK698E-l. All titrations
were performed with 25 nM of the 6-FAM labelled DNA substrate in 1�PBS at 20�C in a Horiba Jobin Yvon FluoroMax-P fluorimeter.

Figure 6. (A) Electrostatic surface potential of the mouse condensin
hinge domain. Positively charged regions are colored blue, negatively
charged regions red, and neutral regions white. The panels, from top
left to bottom, show the top face, the view from the side onto the
closed interface, and the bottom face. (B) Lysine residues in the
mouse condensin hinge domain. The structure is depicted looking
onto the closed interface. The backbone of the condensin hinge is
shown in cartoon representation in white, lysines are shown as stick
models in green. Lysine residues mutated to glutamate in the point
mutants SMC2-K566E/SMC4-K657E and SMC2-K613E/SMC4-K698E
of mSMC2h4h-l are colored blue and purple, respectively.
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absolute change in fluorescence intensity during the titra-
tion was half as big when the label was far away from the
ssDNA stretch as when it was close to it. Capping both
ends of the 15-mer ssDNA results in a 5-fold tighter
binding with respect to the uncapped 15-mer ssDNA
(Kd=0.66±0.02 mM), hence the condensin hinge binds
the 45-mer ds–ss–dsDNA substrate almost as tightly as
the 30-mer ssDNA substrate. This suggests that the
hinge domain is held in place on the ssDNA stretch by
the dsDNA caps, making it less likely to dissociate.
Although at least two protein molecules should theoreti-
cally fit onto the 45-mer ds–ss–dsDNA substrate, data
could be fitted very well with a single-site binding model,
giving further proof that in partially double-stranded and
partially single-stranded substrates only the ssDNA
stretch is bound by the condensin hinge.
Having shown that the mouse condensin hinge

preferentially binds ssDNA, we wanted to characterize
this binding more closely. We therefore made three
lysine-to-glutamate point mutants of the long construct
mSMC2h4h-l using site-directed mutagenesis: a single
mutant mSMC2hK566E4h-l, and two double mutants,
mSMC2hK566E4hK657E-l, and mSMC2hK613E4hK698E-l.
The first combination of lysine residues (SMC2-K566/
SMC4-K657) was chosen because this is the only lysine
residue that is highly conserved among SMC proteins
from all species (Figure 2). The second combination was
chosen due to the position of these lysine residues in the
structure. While SMC2-K566/SMC4-K657 are at the
C-terminus of a-helix E, the helix capping off the dimer
interface, SMC2-K613/SMC4-K698 are �90� removed
from the dimer interface, in the short loop connecting
helices G and H, on the outside surface of the hinge
domain (Figures 2 and 6B). Additionally, they are posi-
tioned in a region of the protein where the electrostatic
surface potential is almost neutral, whereas there is a
cluster of positively charged residues around the dimer
interface (Figure 6A). All point mutant constructs
behaved like the wild-type construct mSMC2h4h-l
during purification. To confirm that the mutations do
not disturb the protein fold, we measured SAXS profiles
of all three mutant proteins which matched the profile of
wild-type mSMC2h4h-l, although the mutant proteins,
especially mSMC2hK613E4hK698E-l, displayed a higher
tendency to aggregrate than the wild-type protein
(Supplementary Figure S5).
EMSAs showed a reduction of the non-specific dsDNA

binding for the single mutant and even more dramatically
for both double mutants (Supplementary Figure S4), but
results with the 30-mer ssDNA substrate were less clear.
This is likely to be due to the fact that EMSAs are unsuit-
able to reveal subtle differences in binding strength
(10-fold and less), as our data show. Fluorescence
quenching titrations of the 30-mer ssDNA substrate with
the mutant proteins clearly demonstrate a reduction in
affinity as compared to wild-type (Figure 5B and
Table 2). The effect of the mutations is additive, since
the dissociation constant for the single mutant
mSMC2hK566E4h-l is half as big as that of the correspond-
ing double mutant. Both double mutants have roughly the
same affinity towards the 30-mer ssDNA, it is reduced

7- to 8-fold as compared to wild-type. The mutations
also reduce specificity of binding, as the titrations show
a contribution of non-specific interaction. Especially for
the double mutants, the binding does not saturate
completely, and data could only be fitted up to a
500-fold excess of protein over DNA.

DISCUSSION

To learn more about the mechanism of eukaryotic SMC
proteins, we determined the structure of a eukaryotic,
heterodimeric SMC hinge domain from the mouse
condensin complex, and quantitatively analyzed its
DNA binding activity and specificity.

Our structure shows that the SMC hinge domain fold is
conserved from prokaryotes to eukaryotes. Although the
SMC2–SMC4 hinge heterodimer adopts an open confor-
mation in our crystals, dimerizing via only one of the two
expected interfaces, the subunit cores themselves resemble
other SMC hinge domains already described (29,36,37).
Interestingly, the SMC2 hinge is more similar to the
prokaryotic SMC hinge (29) than the SMC4 hinge. The
structural features of the SMC4 hinge that are different
from its bacterial counterpart might be involved in specific
functions of the condensin complex which the prokaryotic
SMC complex does not have. Since these structural
features are exposed on the outer surface of the SMC4
hinge, they could constitute a binding interface for an
interaction partner like Cti1/C1D, a protein that was
found to interact with the SMC4 hinge domain in fission
yeast (16) and is implicated in DNA repair functions
(58,59). Further research is clearly necessary to find out
whether condensin also interacts with C1D in higher
eukaryotes, and if so, whether it does this via the SMC4
hinge domain.

The open conformation that we observe in our crystals
might be caused by the SMC2–SMC4 hinge domain con-
struct being too short for the second dimerization inter-
face to be stable, but it is also possible that it represents a
functional intermediate during assembly of SMC
complexes or their action on DNA. The SMC2–SMC4

Table 2. Dissociation constants of complexes of the mouse condensin

hinge with different DNA substrates

Protein construct DNA substrate Kd (mM)

mSMC2h4h-l wt 30-mer ssDNA 0.45±0.04
15-mer ssDNA 3.21±0.14
30-mer dsDNA n.d.
30-mer ds–ssDNA-30 1.55±0.05
30-mer ds–ssDNA-50 1.77±0.08
45-mer ds–ss–dsDNA 0.66±0.02

mSMC2hK566E4h-l 30-mer ssDNA 1.80±0.08
mSMC2hK566E4hK657E-l 30-mer ssDNA 3.26±0.58
mSMC2hK613E4hK698E-l 30-mer ssDNA 2.95±0.30

The titration curves from the fluorescence quenching titrations were
fitted using a single-site binding model. Dissociation constants Kd are
the result of global fits to triplicate measurements, errors are the
standard deviations of dissociation constants resulting from indepen-
dent fits to the three measurements. For structures and sequences of the
DNA substrates see Table 1. n.d., not determined.
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hinge heterodimer is stable although one dimer interface is
disrupted, indicating that one intact interface suffices for
dimerization. This observation is in close agreement with
mutational studies of the bovine cohesin hinge domain
(30). The intact interface between the SMC2 and SMC4
subunit in our structure also offers an explanation as to
how dimerization specificity of SMC proteins is created.
Comparing the interacting residues with the correspond-
ing residues in SMC1a and SMC3, we found that some of
these residues would either clash with, or not be able to
interact with the interface residues of the ‘wrong’ partners.

The interaction between the two subunits is strong
enough to withstand some structural rearrangements, as
the interface remains intact despite the hinge being bent
open along the interface axis, leading to a wider angle
between subunits than in the closed conformation. Our
data therefore provide additional evidence for the struc-
tural flexibility of the hinge domain, a quality that is
probably very important for the dynamic interactions of
SMC proteins with DNA (32,60,61). The open conforma-
tion we observe would at first glance seem to suggest that
the hinge domain could indeed open up to allow DNA to
enter into the intra-coiled-coil space, as has been proposed
(60). While we do not want to rule out this possibility, the
space between the SMC2 and SMC4 subunits in our
crystal structure is not big enough to accomodate a
DNA double helix, and the charge distribution on the
inner surface of the hinge domain would rather repulse
than attract DNA (Figure 6A). In fact, the observed
charge distribution with only one strongly basic patch
argues for a preference for ssDNA over dsDNA.

It has been demonstrated that the transition into the
coiled-coil region is necessary for DNA binding by the
cohesin hinge, but not for its dimerization (30). Similar
results were obtained in a previous study of the BsSMC
protein (31), and we found this to be true for the mouse
condensin hinge domain as well. In our experiments, the
construct without coiled-coil regions bound to DNA only
very weakly and non-specifically, whereas the construct
carrying a short stretch of coiled-coil bound ssDNA
strongly and specifically. Our structural data show that
in the construct without coiled-coil regions only one
dimer interface is intact, while the longer construct has
both expected dimer interfaces. Taken together, these
results suggest that the transition into the coiled-coil
region does not directly participate in DNA binding, but
rather confers structural stability to the hinge domain,
especially to the basic patch at the dimer interface which
is essential for DNA binding.

The effects of our lysine-to-glutamate mutants of the
condensin hinge domain in DNA-binding assays imply
that ssDNA wraps around the outer surface of the hinge
domain, and all positively charged residues contribute to
binding. In spite of prokaryotic SMC proteins also
showing a preference for ssDNA over dsDNA, as has
been observed previously with the B. subtilis SMC
(BsSMC) hinge domain (31–33,35), their DNA binding
surface is likely to be different. While the outer surface
of the condensin hinge domain is neutral-to-positively
charged (Figure 6A), the TmaSMC hinge has a
neutral-to-negatively charged outer surface, and only its

inner surface is positively charged with the basic patch at
the interface also being less pronounced (29). The DNA
binding activity of the TmaSMC hinge has never been
studied, but due to the strong sequence conservation it is
probably quite similar to that of the BsSMC hinge
domain, or conversely, the surface charge distributions
of both hinge domains are probably quite similar. In
studies of the BsSMC protein (32), the authors found a
complete disruption of dsDNA binding when the
conserved lysine residue K565 (corresponding to
mSMC2-K566/mSMC4-K657) was mutated to glutamate,
whereas ssDNA binding seemed to be only modestly
affected. Only mutation of three consecutive lysine
residues (K666–K668) to glutamate, that are part of the
same basic patch at the dimer interface as K565, resulted
in a complete loss of dsDNA as well as ssDNA binding
(32). Our own studies suggest that prokaryotic SMC hinge
domains bind DNA with lower affinity than the condensin
hinge domain, whilst always having a preference for
ssDNA (unpublished data). In prokaryotic SMC
proteins, the DNA is therefore probably bound only by
the basic patch at the hinge domain dimer interface.
Interestingly, studies of the BsSMC protein also suggest
that the prokaryotic SMC hinge domain interacts with
dsDNA and ssDNA in mechanistically distinct manners
(32,33), as our results show the eukaryotic condensin
hinge domain does.
What could be the function of the ssDNA binding

activity of the condensin hinge domain? We propose
that this activity might support the SSB repair function
of the condensin complex. In higher eukaryotes, PARP1
recognizes single-strand breaks and facilitates
base-excision repair (BER) (26). There are two BER
pathways, short- and long-patch BER (26). Short-patch
BER repairs single-nucleotide gaps, employing DNA
polymerase b and DNA ligase IIIa. Long-patch BER on
the other hand requires the action of FEN1, DNA
polymerase d/e (or b) and DNA ligase I to repair gaps
of up to 12 nucleotides length, and is additionally
stimulated by PARP1 and PCNA (26). In addition to its
interaction with PARP1, upon SSB damage induction
condensin was found to interact with the BER scaffold
protein XRCC1 as well as FEN1 and DNA polymerase
d/e (25), suggesting it is involved in long-patch BER. The
ssDNA binding activity of the condensin hinge domain
might tether it to the damage site and might help to
organize the DNA structure for repair. This function
might also be important during normal DNA replication
which transiently produces ssDNA stretches, as suggested
by the replication checkpoint defect of condensin mutants
(14), and the accumulation of condensin at stalled repli-
cation forks (28). Lower eukaryotes like yeast do not
possess PARP1, therefore condensin must have a slightly
different function in DNA repair in these organisms
(14,16). However, it is likely that condensin participates
in SSB repair in lower eukaryotes as well, and possibly
even in prokaryotes, since prokaryotic SMC hinge
domains also preferentially bind ssDNA (31–33). It is con-
ceivable that ssDNA binding has been enhanced during
the evolution from prokaryotic SMC proteins to
condensin while genome size increased and DNA repair

Nucleic Acids Research, 2010, Vol. 38, No. 10 3463



pathways consequently became more and more
sophisticated.
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