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Abstract: The monitoring of heritage objects is necessary due to their continuous deterioration
over time. Therefore, the joint use of the most up-to-date inspection techniques with the most
innovative data processing algorithms plays an important role to apply the required prevention
and conservation tasks in each case study. InfraRed Thermography (IRT) is one of the most used
Non-Destructive Testing (NDT) techniques in the cultural heritage field due to its advantages in the
analysis of delicate objects (i.e., undisturbed, non-contact and fast inspection of large surfaces) and
its continuous evolution in both the acquisition and the processing of the data acquired. Despite
the good qualitative and quantitative results obtained so far, the lack of automation in the IRT data
interpretation predominates, with few automatic analyses that are limited to specific conditions and
the technology of the thermographic camera. Deep Learning (DL) is a data processor with a versatile
solution for highly automated analysis. Then, this paper introduces the latest state-of-the-art DL
model for instance segmentation, Mask Region-Convolution Neural Network (Mask R-CNN), for the
automatic detection and segmentation of the position and area of different surface and subsurface
defects, respectively, in two different artistic objects belonging to the same family: Marquetry. For
that, active IRT experiments are applied to each marquetry. The thermal image sequences acquired
are used as input dataset in the Mask R-CNN learning process. Previously, two automatic thermal
image pre-processing algorithms based on thermal fundamentals are applied to the acquired data in
order to improve the contrast between defective and sound areas. Good detection and segmentation
results are obtained regarding state-of-the-art IRT data processing algorithms, which experience
difficulty in identifying the deepest defects in the tests. In addition, the performance of the Mask
R-CNN is improved by the prior application of the proposed pre-processing algorithms.

Keywords: infrared thermography; deep learning; mask R-CNN; thermal principles; cultural her-
itage; preservation; monitoring; marquetry; automation
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1. Introduction

Preventive and conservation interventions in cultural heritage are essential tasks to
protect objects of incalculable human value. People’s concern for the cultural heritage
protection goes back several centuries, with the first legislation to protect monuments and
works of art appearing in Europe during the 15th century [1]. Heritage objects provide
cultural, spiritual, and aesthetic satisfaction, and economic benefits both in terms of cultural
consumption and increased employment and income, in addition to being indicators of the
course of human life [2,3].

Therefore, the use of the most up-to-date technologies and the corresponding most
advanced data processing algorithms is necessary to apply the required preventive and
conservation tasks in each specific case under analysis, facing the inevitable object deteri-
oration due to the passage of time. Specifically, inspection technologies must be able to
avoid producing new defects in the whole 3D structure, and (their algorithms) to identify
defects from their initial growth phase, in order to implement prevention tasks. In addition,
both technologies and algorithms should be able to identify the most damaged parts in
order to implement conservation tasks. In case of a late, wrong, or absent intervention, the
damage can be irreversible by leading to an anticipated degradation of the artistic object.

1.1. InfraRed Thermography (IRT) within Cultural Heritage

Currently, InfraRed Thermography (IRT) is defined as one of the most attractive
inspection technologies within cultural heritage [4]. IRT presents the advantageous features
that correspond to a Non-Destructive Testing (NDT) technique, i.e., (i) non-intrusion and
non-damage to the integrity of the object as opposed to destructive techniques, and (ii)
higher objectivity and speed compared to traditional methods [5]. In addition, IRT presents
added advantageous features such as: (i) The non-contact with the heritage object, (ii) the
real time operation, very important for cultural heritage monitoring, (iii) the ability to
analyze any surface regardless of the type of object, (iv) the possibility to monitor many
points of an object at the same time, (v) the capacity to perform large-scale studies of
objects, (vi) the interpretation of the results in two and three dimensions [6,7], and (vii) the
possibility of a qualitative and quantitative analysis [8,9].

IRT is based on the measurement of the radiation emitted by an object in one of the
sub-bands of the InfraRed (IR) spectrum. In cultural heritage, the emitted radiation is
measured by an array of sensors installed inside a camera (called IR camera). These sensors
are sensitive to either: (i) The Long-Wave InfraRed sub-band (LWIR, with a wavelength
range from 7 µm to 14 µm), or (ii) the Medium-Wave InfraRed sub-band (MWIR, with
a wavelength range from 3 µm to 5 µm) [10,11]. Then, the radiation measured by each
sensor is converted into temperature as output data of the IR camera: Radiation is related
to temperature through the Stefan-Boltzmann law [12]. In this way: (i) The lens of the IR
camera is not in contact with the object during the inspection, (ii) the radiation emitted by
the object within the LWIR or MWIR sub-band is measured by the IR camera, converting
it to temperature values in real time, and (iii) a thermal image or a sequence of thermal
images is obtained as final result [13], in which each pixel represents the temperature value
calculated in each of the sensors of the IR camera.

Therefore, a temperature map of an artistic object in one or more instants during a
monitoring campaign can be obtained by IRT. This temperature map represents the thermal
behavior of the object, taking into account: (i) Its surface (passive IRT), or (ii) its surface
and its shallower inner layer (a few centimeters, e.g., maximum of 1.5 cm [14] and 5 cm [15]
for plaster and reinforced concrete objects, respectively), in case of applying a more intense
thermal excitation than that generated by the solar radiation to the object by artificial
heat sources (active IRT) [16]. Moreover, the thermal behavior of a defect is different with
respect to the thermal behavior of its unaltered surroundings in the object under inspection.
The reason is because the defects have different values in their thermophysical properties
compared to the thermophysical properties of the unaltered volume of the object regardless
of the type of defect [17,18]. Thus, the defect position and the defect area can be identified
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and determined, respectively, by searching for anomalous temperature values through
the study of the relative pixel values of the thermal images acquired (qualitative analysis).
In case of depth estimation and thermal characterization of the defect, and even thermal
characterization of the object, the study on the thermal images is rather an analysis of the
pixel values individually instead of a comparison among them (quantitative analysis) [19].

Although the first IR cameras on the market date from 1965 [20], IRT can still be
considered an up-to-date inspection technology due to the continuous evolution of this
technology, including within the cultural heritage field. This evolution concerns both IRT
data acquisition methods, such as the continuous improvement of the IR cameras and
the new forms of thermal excitation (such as induced eddy current, and microwave and
ultrasound excitation), and IRT data processing algorithms. Proof of this are the reviews
by Garrido et al. [10,11] that compile the latest advances in IRT data acquisition methods
and IRT data processing algorithms when inspecting an infrastructure, including heritage
objects, respectively.

1.1.1. IRT Data Processing Algorithms Used within Cultural Heritage (Related Work)

IRT data processing algorithms are needed because raw thermal images usually
present excessive noise that prevents a good qualitative/quantitative study. Such noise
can be caused by one or more of the following phenomena that typically occur on the
surface of an object: (i) Reflection, (ii) shading, and (iii) non-uniform heating or cooling. In
addition, noise is also caused by the IR camera: (i) Vignetting, (ii) spectrometer drift, (iii)
radial distortion, and (iv) fixed pattern noise [21,22]. Therefore, data processing algorithms
applied to thermal images are necessary to mitigate noise and thus maintain the advantages
of IRT described in the previous section.

There are IRT data processing algorithms based on either thermal-based analysis and
physics of heat transfer, or mathematics and analytical procedures within cultural heritage.
In the first group of algorithms, Pixelwise Algorithm for Time-Derivative of Temperature
(PATDT), Partial Least Square Thermography (PLST), Pulse Phase Thermography (PPT),
and Thermography Signal Reconstruction (TSR) are the most advanced algorithms. Using
PATDT, Yao et al. [23] detected the position of several defects with different depths simu-
lating detachments in a panel painting made of poplar wood, Madonna specimen. PATDT
simplifies the defect detection by summarizing the thermal image sequence under study
into one single image. With PLST, Zhang et al. [24] revealed the position of subsurface
defects in two oil paintings with different canvas supports (one made of hemp and nettle,
and the other made of flax and juniper), representing the James Abbott McNeill Whistler’s
Portrait of the Painter’s Mother. Finally, Ibarra-Castanedo et al. [25] and Sfarra et al. [26]
identified the position of subsurface defects present in the object studied in [23] and beneath
decorative surface coatings applying PPT and TSR, respectively.

As for mathematical and analytical algorithms, the most advanced algorithms are
Principal Component Thermography (PCT) and its improved versions (Sparse Principal
Component Thermography (SPCT) and Independent Component Thermography (ICT)),
and Dynamic Thermal Tomography (DTT). Thickett et al. [27] applied PCT to a series of
mediaeval Limoges enamel plaques from the Werner Collection, displayed at Rangers
House, London. PCT results shown the position of cracks with different depths. Using
SPCT and DTT, Sfarra et al. [13] and Vavilov et al. [28] identified the position of a buried
window covered by bricks and plaster over time and three zones of embedded beams
underneath belonging to a heritage bell tower, and revealed subsurface features in ancient
wall frescos, respectively. Finally, Yao et al. [23] also detected the position of the subsurface
defects in the Madonna specimen applying ICT.

It should be noted that PPT, TSR, and DTT allow for simultaneous qualitative and
quantitative analysis, and that there are also self-developed IRT data processing algo-
rithms based on thermal fundamentals for the automatic segmentation and character-
ization of defects in different heritage objects. This is the case with the IRT works of
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Garrido et al. [8,29,30], focused on the surface moisture analysis in materials at differ-
ent scales.

1.2. Deep Learning: A Brief Explanation and State of the Art in Cultural Heritage and in
InfraRed Thermography

A short and condensed but clear and easy-to-read introduction to Deep Learning (DL)
is presented in this section (together with the description of DL applications in cultural
heritage and IRT), in order to understand every detail of the description of the DL model
selected in this work (Section 2). Readers should refer to [31] for a more detailed description
of DL.

DL allows the computer to perform an assigned task in an autonomous and automatic
way, after a learning process of the layers of one of the DL models, by exposing these
layers to the elements of the corresponding input dataset. The layers of a DL model are
assimilated to a neural network where there must be more than one intermediate layer
(hidden layer), apart from the input and output layer in order for the corresponding model
to be considered a deep neural network (i.e., a DL model) and not a simple artificial neural
network [32].

The assigned task to be accomplished by a DL model can be classified into one of
the following strategies: supervised learning [33] or unsupervised learning [34]. If the
objective task is a supervised learning, the DL model must be able to map an input data
(i.e., an element of the input dataset) to an output based on example input-output pairs.
In other words, the layers of the DL model learn according to examples of input–output
pairs (training dataset), trying to obtain the best estimation (if the outputs are continuous
values) or classification (if the outputs are discrete values) taking into account: (i) The
input-output pairs of the training dataset, and (ii) the input–output pairs not used during
the DL model learning process (validation dataset). In this way, the input dataset is split in
two groups during the learning process (training and validation datasets), allowing the
validation dataset to evaluate the DL model after its learning process on the retained input
dataset in order to give more robustness to the DL model in its later use in similar input
dataset and same target task (i.e., to avoid overfitting). However, in unsupervised learning,
the DL model must be able to find natural groupings or structures within the input dataset
(in a process known as clustering) or to reduce the input dataset dimensionality (procedure
known as dimensionality reduction) without example input–output pairs [35,36]. Then,
the task assigned is more specific when it is defined as supervised learning (e.g., estimat-
ing house prices from the values of surface areas, year of construction and location; or
classifying images according to the animal species contained from a dataset acquired in a
protected natural space), and more general when it is defined as unsupervised learning
(e.g., grouping the DNA sequence of different patients in different categories in order to
detect some genetic abnormality; or reducing the information contained in a point cloud
for the elimination of noise and thus obtain a better 3D representation of the environment
under study). It should be noted that there is a third strategy known as reinforcement
learning, where the DL model focuses on finding a balance between exploration (of unex-
plored territory, such as unsupervised learning) and exploitation (of current knowledge,
such as supervised learning) [37].

DL comes from Machine Learning (ML), which is a major subset of AI [38]. Both DL
and ML use the features that describe each element of the input dataset to achieve the
corresponding target task. When the number of features is close to or higher than the
number of elements of the input dataset, a feature extraction process is applied to each
element as an initial step in both DL and ML to prevent overfitting. Specifically, feature
extraction reduces the number of features of each element of the input dataset by creating
a new set of features. ML and DL then rely on the new sets of features to achieve the
corresponding target tasks when the feature extraction process is applied [39].

The advantage of DL over traditional ML comes from the feature extraction process,
in which a DL model performs the feature extraction by learning autonomously the hierar-
chical representation of each element of the input dataset, while a traditional ML model
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uses hand-crafted features. In other words, a DL model first learns by itself an implicit
representation of an element of the input dataset directly along its layers, and then that
model uses the learned representation to achieve the target task in that element. However,
a traditional ML model employs feature extraction and uses the features obtained in a
separate way, in which feature extraction represents an element of the input dataset in a
valid format to achieve the target task. In addition, feature extraction in traditional ML is
usually more complex and requires a more detailed knowledge of the problem domain
compared to DL [40]. Therefore, DL is rather used when feature extraction is necessary
(i.e., for complex problems), and traditional ML is preferred when the number of features
is lower than the number of elements of the input dataset (i.e., for simple problems). Using
DL in simple problems would be meaningless, since DL layers are designed to extract
features first and then rely on them to achieve the target task, and would be unlikely to
outperform traditional ML.

Then, the objective of the learning process of a DL model is to obtain by itself the best
possible representation for each element of the input dataset, i.e., to optimize the feature
extraction process. In this way, the corresponding task would be completely fulfilled
without manual effort. For that, the first hidden layer of a DL model receives the features
of each element of the input dataset (the elements are located in the input layer), receiving
each element sequentially during one iteration (epoch) of the learning process. Then, the
first hidden layer passes a new set of features (i.e., a modified version) of an element to
the next hidden layer, and so on to the last hidden layer (just before the output layer).
For instance, a new set of features can represent the edges of the objects contained in an
image, considering as features of the image each of its original pixel values. In addition, the
modified version depends on the strength of the connection (weight) between the previous
and the next hidden layer. Moreover, there are as many new sets of features as there are
components that form a hidden layer, where each component of a hidden layer has a
specific weight with each component belonging to the previous hidden layer and adding
the set of features obtained with each connection. It should be noted that the weights of
a component that connect to the previous components can be different from each other
and different from the weights of the remaining components belonging to the same hidden
layer. Finally, the output layer groups all the sets of features obtained of an element of the
input dataset along all the hidden layers (set of features ‘x’, ‘y’, ‘z’, etc., known globally as
feature map) into achieving the target task [41].

In supervised learning, a certain estimation or classification is obtained for each
element of the input dataset after one epoch of the learning process of a DL model (known
as forward propagation). That estimation or classification will present an error value,
modifying the weights of the components of the hidden layers of the DL model by itself
(known as backward propagation) before continuing with the following epochs of the
learning process to try to reduce the error presented in each element of the input dataset.
It should be noted that the values of the weights related to one element are the same for
the remaining elements of the input dataset [42]. Therefore, the optimum values of the
weights of a DL model are those which give the minimum overall error. Typically, the
overall error in the estimation or classification is often referred to with the term loss and it
is calculated by the loss function. So, the closer to zero the value of the loss over the course
of the epochs of the learning process is, the better weights and therefore better DL model is
being obtained to fulfil the objective task. It should be noted that the loss function equation
is different for each DL model used, which must represent the design goals by capturing
the properties of the objective task [43].

Figure 1 shows the scheme of a generic deep neural network for classification tasks.
As for the state of the art of DL, the most recent related works within cultural heritage

are shown in Table 1. In IRT, each element of the input dataset can be either a thermal image
or the temperature evolution of a pixel along a thermal image sequence. Regarding the
features of the elements, they would be either each of the temperature values stored in the
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pixels of the thermal images, or each of the temperature values stored in the temperature
evolutions. Table 2 shows the most recent works in IRT related to DL.
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Table 1. Comparative table of the most recent Deep Learning (DL) works within cultural heritage.

Work [Ref.] Main Objective Input Dataset DL Model Result

Dung and
Anh [44]

Development of a
superficial crack

detection and
segmentation method

Concrete crack dataset of
40,000 RGB images of

227 × 227 pixels

KittiSeg network

Overall
classification
accuracy of at

least 97.8%

Cha et al.
[45] Self-developed DL model

Overall
classification
accuracy of

approximately 98%

Gibb et al.
[46]

Concrete crack dataset of
RGB images

Self-developed DL model,
using a Genetic Algorithm

(GA) to optimize the following
parameters of a DL model that

control the structure of the
deep neural network during its

learning process: network
depth, layer size and

hyper-parameters

Overall
classification

accuracy of up
to 89.17%

Hatir et al.
[47]

Development of a
weathering detection

and segmentation
method

8598 RGB images of historical
stone monuments which

contain fresh rock and eight
different weathering types
(flaking, contour scaling,

cracking, differential erosion,
black crust, efflorescence,

higher plants, and graffiti)

Self-developed DL model
Overall

classification
accuracy of 99.4%

Llamas et al.
[48]

Development of a
classification method of

cultural architectural
heritage

More than 10,000 RGB images
and 10 categories of elements
defined (altar, apse, bell tower,

column, dome inner, dome
outer, flying buttress, gargoyle

(and chimera), stained glass
and vault)

Several DL models (Alexnet,
Inception V3, ResNet and

Inception-ResNet-V2)

More than 90% of
overall

classification
accuracy with the

best DL model

Pierdicca et al.
[49]

11 points clouds (2,613,248
points in total) representing

indoor and outdoor scenes of
churches, chapels, cloisters,
porticoes, and loggias. 10

categories of elements defined
(arc, column, door, floor, roof,

stairs, vault, wall, window,
and decoration)

Dynamic Graph Convolutional
Neural Network (DGCNN),
modifying the input layer to

add other meaningful elements
for point cloud in addition to
the X, Y and Z coordinates of

each point, such as the normal
value and color intensity

Overall
classification

accuracy about 80%
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Table 2. Comparative table of the most recent DL works within IRT.

Work [Ref.] Main Objective Input Dataset DL Model Result

Hu et al. [50]
Development of a
superficial crack

detection method

Several thermal image sequences
belonging to different metal

samples, including ferromagnetic
materials with artificial cracks,

non-ferromagnetic materials with
artificial cracks and

non-ferromagnetic materials with
natural cracks

Faster
Region-Convolution

Neural Network
(Faster R-CNN)

Overall probability of
detection of 97%

Duan et al. [51]

Development of a
foreign matter

invasion detection
and segmentation

method

(1) Several thermal image
sequences belonging to two

stainless steel plates with
flat-bottomed-holes that simulate
foreign matter invasions (air, oil

and water), and (2) the
corresponding coefficients

obtained after the TSR application

Self-developed DL
model

Overall classification
accuracy of over 90%
using the coefficients

obtained after the
TSR application

instead of the thermal
images as input

dataset

Ali [52]
Development of a

subsurface damage
detection method

34 thermal image sequences
belonging to different steel
elements of the century-old

Arlington Bridge in Winnipeg,
Canada

Deep Inception
Neural Network

(DINN)

Maximum overall
classification

accuracy of 96%

Yousefi et al. [53]
Development of a
subsurface defect
detection method

Several thermal image sequences
belonging to a steel sample and a
Carbon Fiber Reinforced Polymer
(CFRP) composite plate. The steel

specimen has 7 bottom holes of
various sizes (4 mm to 30 mm) and

depths (3 mm to 9 mm), and the
CFRP plate has several handmade
defects created at different depth

ranges, 0.2 mm to 1 mm

ImageNet-VGG-f

Promising
performance for the

application of heating
and cooling based
active IRT with a

reasonable
computational cost

Bang et al. [54]
Development of a
superficial defect
detection method

Several thermal images belonging
to different composite materials Faster R-CNN

Maximum overall
classification

accuracy of 75%

Luo et al. [55]

Development of a
subsurface debond

defect detection
and segmentation

method

(1) Several thermal image
sequences to the spatial DL model,
and (2) the temperature evolution
at each pixel to the temporal DL
model, from the thermal image
sequences used in (1). Thermal

data belong to regular and
irregular shape CFRP specimens.

VGG-Unet (spatial
DL model) and
3-layer-LSTM

(temporal DL model)

Overall probability of
detection of 66.7%

with the spatial DL
model, and

probability of
detection of up to

100% with the
temporal DL model,

although in some
samples it was 0%

Fang et al. [56]
Development of a
subsurface defect
detection method

Several thermal image sequences
belonging to materials of different

types: CFRP, Glass
Fiber-Reinforced Polymer (GFRP),

Plexiglas (Plexi) and steel

Yolo-v3
Maximum overall

classification
accuracy of 99.8%
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Table 2. Cont.

Work [Ref.] Main Objective Input Dataset DL Model Result

Cheng et al. [57]

Development of a
concrete

delamination
detection and
segmentation

method

Several thermal image sequences
belonging to a bridge deck

Customized DL
model based on the

encoder-decoder
architecture (using

DenseNet and
DenseASPP on the

encoder side)

Maximum overall
classification

accuracy of 51%

Habaibeh et al. [58]

Development of a
method for

predicting future
savings in an

existing building
after a retrofitting

Thermal images and historical
weather data related to an existing

building, which insulation and
solar photovoltaic panels are

introduced

Self-developed DL
model

Heat loss prediction
with an accuracy of

over 82%

Janssens et al. [59]

Development of a
method for

determining the
condition of

machines

Several thermal image sequences
related to the operation of a

rotatory machine
VGG

Accuracy of 95% and
91.67% for

machine-fault
detection and

oil-level prediction

Ornek and Ceylan
[60]

Development of a
healthy and

unhealthy neonate
classification

method

3800 raw thermal images and
11,400 augmented thermal images

belonging to 19 healthy and 19
unhealthy neonates

Self-developed DL
model

Overall classification
accuracy over 99%

(with a 26.29%
increase due to the

use of the augmented
thermal images)

1.3. Motivation

Despite the good results obtained in cultural heritage with the different IRT data pro-
cessing algorithms mentioned in Section 1.1.1, all of them are not automated except [8,29,30].
Automation in the interpretation of the thermal image or thermal images acquired in a
case study is fundamental to minimize the operator’s subjectivity and thus maximize the
accuracy of the inspections [61]. Furthermore, the possibility of online inspections through
an automated interpretation is a high added value in cultural heritage monitoring. So, the
development of automatic IRT data processing algorithms is a good step forward.

Therefore, this paper presents a new method consisting of the automatic detection
of the defect position and its automatic segmentation (i.e., the automatic identification of
the defective area), regardless of the type of defect and both surface and subsurface, from
several thermal image sequences in cultural heritage. Specifically, two heritage objects with
surface and subsurface defects belonging to the same family, marquetry, are analyzed with
a view to serve as an initial procedure for more types of marqueteries and other heritage
objects with the same and new defects in the future.

To this end, one of the most advanced Artificial Intelligence (AI) subset currently
available is introduced in the thermographic monitoring of cultural heritage, i.e., Deep
Learning (DL). According to the state of the art described (Table 2), no work integrating DL
and IRT for the inspection of heritage objects has been presented yet. In addition, with the
purpose of further enhancing the novelty of this paper:

1. One of the latest state-of-the-art deep neural networks for object detection and segmen-
tation tasks in images, regardless of the image spectrum, is used: Mask R-CNN [62].
According to the state-of-the-art described (Tables 1 and 2), Mask R-CNN has neither
been applied yet in cultural heritage, independently of the type of input data, nor
in IRT.
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2. Two automatic thermal image pre-processing algorithms based on thermal funda-
mentals are applied to the thermal image sequences in order to improve the contrast
between defective and sound areas.

In this way, the study presents:

1. One of the most advanced DL models to automatically detect and segment different
features in images. In this case, the positions and areas of defects in thermal images are
determined, while reducing the limitations found with the self-developed automatic
IRT data processing algorithms: (i) The low resolution of the IR cameras, (ii) the
high dependence on the environmental conditions and uniformity of heating/cooling
of the object under study, and (iii) the control of the different mechanisms of heat
transfer [63,64].

2. A better definition of possible defects in each thermal image input to the DL model,
thus increasing the performance (learning process) of the DL model.

Figure 2 describes the structure followed in the next sections of this work.
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2. Deep Learning Model Selected: Mask R-CNN

Mask Region-Convolution Neural Network (Mask R-CNN) is the DL model used
in this work. This recent DL model developed by Facebook AI Research [62] is a simple,
flexible, and general framework for object detection and segmentation tasks in images.
In addition, this DL model outperforms all existing DL models in instance segmentation,
bounding-box object detection, and person key point detection using the Microsoft COCO
dataset [65] as input dataset. The good performance of Mask R-CNN is what led to its
selection as the DL model in this work.

It should be noted that Mask R-CNN classifies and localizes each object drawing a
bounding box in the image (object detection) and classifies each pixel of the image into a
fixed set of categories without differentiating object instances by an image mask (semantic
segmentation). In this way, on the one hand it is possible to detect the positions of both
surface and subsurface defects (object detection), and on the other hand it is possible to
delimit their areas (semantic segmentation) from a thermal image in an automated way.
Moreover, it is also possible to differentiate the defects classified in the same category
among them by combining the two previous functions of Mask R-CNN (object detection +
semantic segmentation = instance segmentation).

As for the architecture, Mask R-CNN is built on top of Faster R-CNN [66], which is
another DL model used in some works described in the Introduction section. Mask R-CNN
consists of two stages, the first stage being identical to the first stage of the Faster R-CNN.
This first stage consists of using another DL model (known as backbone DL model), which
extracts a feature map from each input image (i.e., from each element of the input dataset).
Then, boxes with multiple scales and aspect ratios are applied to the feature map (denoted
as ‘anchor’ boxes), which serve as references to simultaneously predict object bounding
boxes and object scores. Readers should refer to [66] for a better understanding of the
term ’anchor’ box. The prediction process is performed by a Region Proposal Network
(RPN). RPN is a kind of Fully Convolutional Network (FCN), which does not contain
Fully Connected Layers (FCLs) in its architecture unlike the traditional DL models [67]. To
better understand and further detail the first stage of the Mask R-CNN architecture, before
explaining the second stage, convolutional, activation, pooling and upsampling layers are
briefly presented and explained.

A convolutional layer groups the weights between two hidden layers and the hidden
layer that receives the weights. The weights of a convolutional layer are numerical values
that are grouped into a tensor (convolutional kernel) of height x width x depth dimensions.
Each layer of depth of a convolutional kernel determines a different importance of each
part of each element of the input dataset or each part of each component of the hidden
layer placed to the left of the convolutional kernel in question. In addition, a convolutional
kernel has a small height and width (1 × 1 pixel, 3 × 3 pixels, 5 × 5 pixels, and so
on). So, each layer of depth of a convolutional kernel slides over either the element of
the input dataset or the component while performing an element-wise multiplication
between its weights and the covered data of the element or component. This element-wise
multiplication leads to replace the central original value of the covered data by the sum
of the results of the corresponding multiplication (known as convolution). Typically, the
stride of the convolutional kernel is (1,1) for the height and width movement. In short,
the stride parameter dictates how big the steps are for the convolutions when sliding the
convolutional kernel over either the element of the input dataset or the component [68].
Furthermore, extra rows and columns (typically, values equal to zero) are sometimes added
to the edges of the element of the input dataset or the component to slide the convolutional
kernel over the most external data (known as padding) [69]. As for the depth of the
convolutional kernel, the number of versions (sets of features) of an element or component
that passes to the next convolutional layer will depend on the depth value assigned to
the convolutional kernel of that convolutional layer. In summary, a hidden layer has the
same components as the depth value of the associated convolutional kernel. That is, each
receptor component receives the convolution results according to the depth layer of the
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convolutional kernel related to each one (i.e., the weights of a component are the same
for each connection with the components of the previous hidden layer), adding then in
each one all the convolution results obtained. The idea is that the different depths of a
convolutional kernel extract a different set of features from an element of the input dataset
and that these sets of features help to achieve the assigned task. Figure 3 shows an example
of a convolutional layer, adapting illustrations from reference [70].
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the next hidden layer are always the same. In addition, the dimensions of each element of the input dataset must also be
the same.

Moreover, there is usually an activation function and a pooling or upsampling layer
between two consecutive convolutional layers of a DL model. An activation function
layer transforms the range of values of the set of features of a component into a range
that makes a DL model work better. The most commonly used activation function layer
is the Rectified Linear Unit (ReLU), which converts all negative values to 0 [71]. The
pooling layer downsamples each element of the input dataset or component [72], while
the upsampling layer is the opposite of the pooling layer [73]. A pooling layer simplifies
the information contained in the components after the application of the activation layer,
summarizing the sets of features and, consequently, reducing the size of each component
before moving to the next convolutional layer. Two common pooling layers are average
and max pooling layer. The average and max pooling layer averages the values and selects
the maximum value of the values contained in a kernel of certain dimensions (usually
2 × 2) that slides over each set of features of each component, respectively. Meanwhile,
an upsampling layer works by repeating the rows and columns of the set of features of
each component with some weighting (such as bilinear interpolation) before moving to
the next convolutional layer. The pooling layer is required to downsample the detection
of features and helps the DL model learning process to become approximately invariant
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to small translations of the input dataset. Meanwhile, the upsampling layer is necessary
to upsample the features in order to generate an output with the same dimensions of the
element of the input dataset. Then, the upsampling layer is a key layer for DL models that
perform segmentation, such as Mask R-CNN. Figure 4 shows an example of an activation
function layer and a pooling layer, adapting illustrations of the references [70,74], and
Figure 5 shows an example of an upsampling layer, using the bilinear interpolation method
to upsample, adapting illustrations from reference [75].
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Returning to FCLs, there is usually more than one FCL at the end of a DL model. In
fact, FCL is actually the output layer of a DL model, where each set of features obtained
after the pooling or upsampling layer application on the last convolutional + activation
layer of the DL model is an input to the FCL. The reason is because these sets of features
are based on the sets of features that have been extracted by the previous convolutional
layers of the DL model. It should be noted that each set of features obtained from the last
pooling/upsampling layer is flattened into a 1-D vector of length equal to the result of
multiplying the height × width of the corresponding set of features before applying the
FCL. Generally, the first FCL takes each flattened vector and then elementwise multiplies
all the values of one of the flattened vectors with the values of the corresponding weights
assigned to that flattened vector, and adds the result with the corresponding bias values.
The process is repeated with all the flattened vectors. Then, an activation function (typically
ReLU) is applied to each output of the first FCL before moving to the second FLC. In
classification tasks, the last FCL produces a list of class scores. It should be noted that the
number of outputs of the final FCL must be equal to the number of the different classes
defined according to the classification task [76]. Then, a softmax activation function uses
the list of class scores obtained as inputs, converting them into probabilities that sum to
one, where each output of the softmax activation function is interpreted as the probability
of membership for a specific class. The class with the highest probability will be the
class assigned to the corresponding element of the input dataset [77]. Figure 6 shows an
example of FCLs and a softmax activation function application, adapting illustrations from
reference [78].
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Therefore, the difference between FCNs and FCLs lies in the way they operate. The
first uses convolution followed by an activation function layer, pooling layer and/or
upsampling layer, and the second uses multiplication and summation followed by an
activation function to each input. So, RPN obtain lists of class scores as FCLs but by
changing the depth parameter of the convolutional kernels and by applying pooling layers.

Further detailing the architecture of RPN, each ‘anchor’ box is first mapped to a
lower-dimensional feature by a convolutional layer formed by a 3 × 3 × 256 convolutional
kernel followed by a ReLU layer. Then, the output feature map is fed into two sibling
convolutional layers: (i) One formed by a 1 × 1 × 2 convolutional kernel followed by a
linear activation function, and (ii) the other formed by a 1 × 1 × 4 convolutional kernel
followed by a linear activation function [79]. The first sibling convolutional layer predicts
an object score to the ‘anchor’ box, and the second predicts an object bounding box to the
‘anchor’ box. The object score is the probability of an ‘anchor’ box to represent an object or
not (i.e., background) after applying the softmax activation function as the last step, and the
object bounding box is a refinement of the ‘anchor’ box to better fit the object after applying



Sensors 2021, 21, 750 14 of 44

a regression method as the last step. Then, instead of using the softmax activation function,
a regression method is applied after the second sibling convolutional layer, specifically to
the 4×1 feature map obtained from each ‘anchor box’. These four features of the feature
map represent the percentage change in the position (x,y) of the centroid, in the height
and in the width of the corresponding ‘anchor’ box [66]. It should be noted that if there
are several bounding boxes that overlap too much on the same object, the one with the
highest object score (i.e., the bounding box with the highest probability of representing an
object) is the only one that is not discarded after RPN by applying a technique known as
Non-Maximum Suppression (NMS) [80].

Focusing on the backbone DL model, a Residual Network of 100 convolutional lay-
ers and one FCL (ResNet101)-Feature Pyramid Network (FPN) is the model selected.
ResNet101 [81] is one of the most widely used DL models as feature extractor (without
taking into account the FCL), of which first convolutional layers detect low-level features
(e.g., edges and corners if the element of the input dataset is an image), and subsequent
layers successively detect higher-level features (e.g., car, person, and sky if the element of
the input dataset is an image). ResNet101 works with elements of the input dataset with
1024 × 1024 × 3 dimensions and its convolutional layers are divided into five stages: (i)
First stage, a convolutional layer formed with a 7 × 7 × 64 convolutional kernel followed
by a ReLU and a max pooling layer; (ii) second stage, three blocks and each having three
convolutional layers formed with a 3 × 3 × 64, 3 × 3 × 64 and 3 × 3 × 256 convolutional
kernel, respectively, all followed by a ReLU layer; (iii) third stage, four blocks and each
having three convolutional layers formed with a 3 × 3 × 128, 3 × 3 × 128 and 3 × 3 × 512
convolutional kernel, respectively, all followed by a ReLU layer; (iv) fourth stage, 23 blocks
and each having 3 convolutional layers formed with a 3 × 3 × 256, 3 × 3 × 256 and
3 × 3 × 1024 convolutional kernel, respectively, all followed by a ReLU layer; and (v) fifth
stage, three blocks and each having three convolutional layers formed with a 3 × 3 × 512,
3 × 3 × 512 and 3 × 3 × 2048 convolutional kernel, respectively, all followed by a ReLU
layer. It should be noted that the resulting feature map obtained after the last convolutional
layer of the fifth stage has 32 × 32 × 2048 dimensions. So, the feature map size is reduced
by half and the depth of the feature map is doubled at each stage of ResNet101 thanks to
the max pooling layer and the strides equal to 2 in some convolutional layers [79].

As for FPN [82], this DL model is introduced as an extension of ResNet101 to better
represent the features of the objects of an image at multiple scales. In this way, FPN
improves the feature extractor of ResNet101. For that, FPN is a top-down architecture with
lateral connections forming two different pyramids. The first pyramid takes the feature
map obtained in each output of the stages of ResNet101 (except the output of stage 1).
Then, each feature map is downsampled by a 1 × 1 × 256 kernel convolution, obtaining
high-level features. Subsequently, the second pyramid takes the downsampled feature map
of the output of the last stage of ResNet101 and upsamples it in order to add elementwise
the downsampled feature map of the output of the previous stage. This last result is then
upsampled again in order to add elementwise the downsampled feature map of the output
of the third stage, and so on. All the outputs of the second pyramid are then subjected to a
3 × 3 × 256 convolutional kernel to create the feature maps (in total 4) used by the RPN,
representing low-level features. It should be noted that in addition to applying ‘anchor’
boxes to these four feature maps, they are also applied to a fifth feature map obtained from
a max pooling layer (reducing by half the dimensions) applied to the smallest feature map
of the FPN.

The second stage of Mask R-CNN is different from the second stage of Faster R-
CNN. In addition to applying the bounding box recognition branch to the outputs of
the RPN predicted with a positive object score (RPN outputs known as candidate object
bounding boxes), Mask R-CNN adds a parallel mask prediction branch. The bounding
box recognition branch predicts the final object class (here the type of object is predicted
as opposed to the RPN, which only differentiated between object and background), and
the final object bounding box (with a better fit compared with the RPN outputs), to each
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candidate object bounding box. Meanwhile, the mask prediction branch outputs a binary
mask for each candidate object bounding box.

It should be noted that a mapping operation is applied to the candidate object bound-
ing boxes before the bounding box recognition and mask prediction branches application.
A mapping operation is required in order to map the positive object scores and the object
bounding boxes obtained with RPN onto the corresponding feature maps used as input to
RPN. Otherwise, it would not be possible to apply the bounding box recognition and mask
prediction branches with only the object scores and the values of the centroid position,
width, and height of the object bounding boxes. The standard mapping operation is the
Region of Interest Pool (RoIPool), which rounds down the coordinates of the four corners
of each object bounding box. The boundaries of the ‘anchor’ boxes fit well into the features
maps of input to the RPN. However, it is possible that the boundary of an object bounding
box is dividing the values of the corresponding feature map when mapping, instead of
being bounding as the ‘anchor’ boxes, due to the process of refinement. With the rounding-
down process (known as quantization), the previous problem is solved, and it works well
in object detection tasks (e.g., it is used in Faster R-CNN) [66]. However, it is not the ideal
solution for semantic segmentation. This is because the per-value spatial correspondence
of the object bounding box obtained after the RPN application is not faithfully preserved
due to the rounding down process. Therefore, RoIPool is replaced by Region of Interest
Align (RoIAlign) in Mask R-CNN. The main difference between RoIPool and RoIAlign is
that RoIAlign does not apply the rounding down process. Instead, RoIAlign uses bilinear
interpolation to compute the exact values of the feature maps in the corresponding object
bounding boxes. Specifically, bilinear interpolation is applied at four regularly sampled
locations places within each of the 49 equally divided parts within each object bounding
box (each object bounding box is divided in 7 × 7 parts) and aggregating the different
results using a max or average pooling layer. In this work, bilinear interpolation is only
computed at a single point located in the center of each divided part of the object bounding
box, which is nearly as effective as using four regular sample points. Figure 7 shows a
RoIAlign example from [83].
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Figure 7. Example of a RoIAlign process (source from [83]). The dashed grid represents a depth
layer of a feature map of input to Region Proposal Network (RPN) (each corner represents a different
value), the solid lines represent an object bounding box divided in four parts, and the dots represent
the four sampling points in each divided part. RoIAlign computes the value of each sampling point
by bilinear interpolation from the nearest corners of the dashed grid (see arrows in figure).

Focusing on the architecture of the bounding box recognition and mask prediction
branches, the first branch consists of 2 FCLs with 1024 outputs each. Since the depth of
all the outputs after the FPN application is equal to 256, and each object bounding box is
divided into 7 × 7 parts during the RoIAlign process, all the candidate object bounding
boxes have the same dimensions (7 × 7 × 256). It should be noted that a ReLU layer is
applied after each FCL, and an additional third FCL is applied, which is actually two FCLs
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in parallel to predict the object classes and the final object bounding boxes, respectively. In
this way, the number of outputs of the first parallel FCL (FCL31) is equal to the number
of object classes according to the assigned task, and the other FCL (FCL32) is equal to the
multiplication of 4 (position of the centroid (x,y), weight and height of an object bounding
box) by the number of object classes. Then, a softmax activation function is applied to the
FCL31, and a regression method is applied to the FCL32, to obtain the final object class and
the final object bounding box of candidate object bounding box, respectively [79].

As for the mask prediction branch, an FCN is applied to each final object bounding
box of output of the bounding box recognition branch. The RoIAlign process is again
applied so that the final object bounding boxes contain the corresponding feature maps
used as input to RPN. In this case, each final object bounding box is divided by 14 × 14
parts during the RoIAlign process. Then, the first convolutional layer of the FCN takes as
input a 14 × 14 × 256 final object bounding box, using a 3 × 3 × 256 convolutional kernel
and followed by a ReLU layer. The same convolutional kernel and activation function
layer is used from the second to the fourth convolutional layer. Subsequently, a transpose
convolutional layer is applied, which performs an inverse convolution operation [62]. In
this last layer, a 2 × 2 × 256 convolutional kernel with a stride equal to 2 and a ReLU
layer is used. Thus, with that stride, the transpose convolutional layer allows doubling
the dimensions of a final object bounding box (it is as a type of upsampling layer), instead
of being halved with a convolutional layer. Finally, a convolutional layer with a 1 × 1 ×
number of object classes (according to the assigned task) convolutional kernel is applied
followed by a sigmoid layer that is another type of activation function [79], obtaining a
binary mask for each class and selecting as the final binary mask the binary mask containing
the final object class associated with the corresponding final object bounding box coming
from the bounding box recognition branch [62].

Figure 8 represents the architecture of Mask R-CNN in its simplified version.
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Moreover, the loss function of Mask-RCNN consists of five different terms:

1. RPN_class_loss: The performance of objects can be separated from background via
RPN.
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2. RPN_bounding_box_loss: The performance of RPN to specify the objects.
3. MRCNN_class_loss: The performance of classifying each class of object via Mask

R-CNN.
4. MRCNN_bounding_box_loss: The performance of Mask R-CNN for specifying ob-

jects.
5. MRCNN_mask_loss: The performance of the object segmentation via Mask R-CNN.

When the loss values of these five terms are smaller, the performance of Mask R-CNN
improves, as indicated in the equation below.

Loss Function = RPN_class_loss + RPN_bounding_box_loss + MRCNN_class_loss
+ MRCNN_bounding_box_loss + MRCNN_mask_loss

(1)

Readers should notice that Mask R-CNN follows supervised learning as strategy. Then,
the labelling of each defect area of the marqueteries in the thermal images is performed by
the VGG Image Annotator (VIA) software [84] to get the ground truth of the object classes,
object bounding boxes, and object masks, and thus to compute the total loss value at each
epoch of the Mask R-CNN learning process.

3. Materials and Methods
3.1. Case Studies

The case studies consist of two different marqueteries. The first marquetry (hereinafter
marquetry A) is constituted by a medium-density fiberboard of 3 mm thickness in the
middle layer, and by maple wood of 0.3 and 0.6 mm thickness in the substratum and
the top decorative layer, respectively. The inspected surface, i.e., the top decorative layer,
also has mahogany, wenge, and walnut woods shaping the coat of arms of the Italian
Republic. In addition, three artificial subsurface and one artificial surface defect have
been inserted, as can be seen in Figure 9. Defect A consists of a void crossing the topmost
layers of the medium-density fiberboard, while defects B and C are also voids but crossing
the 3 mm thickness of the medium-density fiberboard and crossing the deepest layers of
the medium-density fiberboard, respectively. As for defect D, it is a putty inserted in the
top decorative layer, i.e., it is the corresponding surface defect. In this way, defects A, B,
and C simulate the honeycombing effect and defect D simulates the resin (pitch) pocket
effect. For detailed information on the manufacturing of this marquetry, see the work of
Sfarra et al. [85].
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Figure 9. Marquetry A (top decorative layer) with the corresponding positions and areas of the defects.

As for the second marquetry (hereinafter marquetry B), it is composed of three layers
as marquetry A. The substratum is made of fir wood, while there is an animal glue in
the middle layer, and the top layer is made of multiple decorative pieces. Thus, the top
layer (the inspected surface) represents a decorative layer as marquetry A with pieces such
as pearl (white tesserae), bovine horn (some brown and black tesserae), and boxwood.
Furthermore, five surface defects (A to E) and two subsurface defects (F and G) are naturally
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produced. The position and area of these defects can be seen in Figure 10; the surface
defects represent missing tesserae, while the subsurface defects are inherent to splittings
positioned at different depths.
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3.2. Thermographic Monitoring and Acquisition Process

The use of artificial heat sources that generate a more intense thermal excitation than
that generated by the solar radiation (active IRT) is necessary in order to produce a higher
thermal contrast in the acquired thermal images. In this way, it is possible to identify the
thermal footprints of possible subsurface defects [86,87].

Then, two FX60 BALCAR photographic lamps are used for the thermal excitation of
each marquetry, which can emit heat in one of the following modes:

• Flash mode/Heat pulse. In this mode, each lamp emits 6.2 kJ of heat for 2 ms (i.e.,
3.1 × 106 W).

• Halogen mode/Heat wave. In this mode, each lamp emits 500 W of heat for a specific
period of time (more than 2 ms).

The two heating modes are applied in each sample so that the temperature distribution
and temperatures reached in the marqueteries are different both during their heating and
cooling down periods. In this way, the learning process of the DL model is enriched when
detecting the positions and segmenting the areas of the defects since the evolution of the
temperature in them will be different with the application of either pulsed heat or waved
heat. Furthermore, it is also proven that a heat pulse better identifies the thermal footprint
of shallow defects, and a heat wave better identifies deeper defects in IRT [88].

The X6900 FLIR IR camera is the IR camera used in this work, with ResearchIR
software to record the thermal images. Table 3 presents the IR camera specifications.

Table 3. Specifications of the InfraRed (IR) camera used.

Model X6900 FLIR

Sensor InSb CCD matrix
NETD <40 mK

Thermal image/pixels 640 (H) × 512 (V)
Intensity resolution 14 bits

Accuracy ±1 ◦C or ±1% of reading, whichever is greater
Spectral range (µm) 3 to 5

Moreover, Figure 11 represents the thermographic experimental setup performed,
showing the relative position among the lamps, the IR camera, and the marquetry. It should
be noted that the same experimental setup is used for both marqueteries.
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Figure 11. Experimental setup performed in marquetry A and marquetry B.

Figure 11 shows that both the lamps and the IR camera are placed in focus on the
inspected surfaces of the marqueteries (reflection mode). The lamps heat the inspected
surfaces because no thermal footprint of any defect has been identified by heating the rear
surfaces of the marqueteries (transmission mode). Table 4 lists the acquisition conditions
that were adjusted in the experiments.

Table 4. Acquisition conditions for the experiments performed.

Experiment 1 2 3 4
Marquetry Marquetry A Marquetry B

Heat generated Pulsed heat Waved heat Pulsed heat Waved heat
Ambient conditions Laboratory (ambient temperature = 22.5 ◦C, relative humidity = 30%)

Camera-to-marquetry
distance/angle with regard to the
perpendicular of the marquetry

73 cm/0◦

Lamps-to-marquetry
distance/angle with regard to the
perpendicular of the marquetry

45 cm/25◦

State of rest/Heating
time/Cooling time 1.33 s/2 ms/8.667 s 1.52 s/10 s/8.48 s 1.1 s/2 ms/18.898 s 1.12 s/20 s/18.88 s

Sampling rate/Number of thermal
images acquired 100 Hz/1000 50 Hz/1000 50 Hz/1000 25 Hz/1000

The acquisition interval has been selected as a compromise between ensuring the
measurement of all the temperature steps that can arise in the marquetry and the minimum
number of thermal images necessary in each experiment. The increase in the heating time in
marquetry B with respect to marquetry A was due to the fact that 10 s heating highlighted no
thermal footprint of any defect. The determination of the cooling time in each experiment
aims to ensure the thermographic monitoring of the period of the transient cooling in
each test.

The thermal images corresponding to the transient cooling are the images of interest
and the only ones used in the processing of each sequence acquired due to the following
two reasons:

1. The presence of the thermal footprint of the lamps in the thermal images acquired
during the heating time.

2. The quasi-invariability of the temperature over time in the thermal images corre-
sponding to the stationary cooling (considering thermal equilibrium between the
marquetry and the ambient), which are redundant images.

With the purpose of selecting the period of transient cooling in each experiment, the
automatic search for the maximum temperature value and the subsequent first relative
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minimum temperature value along the evolution of the mean temperature reached at the
inspected surface is performed. Thus, the end of the heating/start of the transient cooling
is defined by the maximum mean temperature, and the end of the transient cooling/start
of the stationary cooling is determined with the subsequent first relative minimum mean
temperature. Figure 12 shows the transient cooling obtained per test.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 47 
 

With the purpose of selecting the period of transient cooling in each experiment, the 
automatic search for the maximum temperature value and the subsequent first relative 
minimum temperature value along the evolution of the mean temperature reached at the 
inspected surface is performed. Thus, the end of the heating/start of the transient cooling 
is defined by the maximum mean temperature, and the end of the transient cooling/start 
of the stationary cooling is determined with the subsequent first relative minimum mean 
temperature. Figure 12 shows the transient cooling obtained per test. 

 
Figure 12. Selection of the transient cooling both in the marquetry A and marquetry B experiments. 

Since the present work is based on a qualitative analysis (defect position identifica-
tion and defect area segmentation without defect depth estimation and defect - marquetry 
thermal characterization), neither the emissivity, nor the reflected temperature, nor the 
atmospheric attenuation have been compensated for in both the IR camera and the Re-
searchIR software. In addition, the emissivity variation and the last two parameters would 
also be negligible as the different parts of each inspected surface are the same or similar 
regarding their surface properties, and the tests are performed under laboratory condi-
tions, respectively. 

As a representation of some raw thermal images acquired, Figure 13 shows: (i) The 
first thermal image during the resting state at ambient conditions, (ii) the thermal image 
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Since the present work is based on a qualitative analysis (defect position identification
and defect area segmentation without defect depth estimation and defect - marquetry
thermal characterization), neither the emissivity, nor the reflected temperature, nor the
atmospheric attenuation have been compensated for in both the IR camera and the Re-
searchIR software. In addition, the emissivity variation and the last two parameters would
also be negligible as the different parts of each inspected surface are the same or similar
regarding their surface properties, and the tests are performed under laboratory conditions,
respectively.

As a representation of some raw thermal images acquired, Figure 13 shows: (i) The
first thermal image during the resting state at ambient conditions, (ii) the thermal image
corresponding to the end of the heating/start of the transient cooling, (iii) the thermal
image corresponding to the end of the transient cooling/start of the stationary cooling, and
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(iv) the last thermal image of each experiment (with the corresponding temperature scales
in ◦C at the right).
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No thermal footprint of the subsurface defects is appreciated in Figure 13 and only
some surface defects are slightly visible with respect to the first raw thermal image of each
test (column (I)). At the end of the heating/start of the transient cooling, a saturation can
be seen in the thermal images of the 4 experiments, especially in the experiments where
pulsed heat was applied. This is due to the fact that the temperature of the inspected
surfaces has exceeded the saturation limit set in the IR camera when the thermographic
monitoring was performed (column (II)). Fortunately, this phenomenon only occurs at the
initial moment of the transient cooling in each test, with indications of the thermal footprint
of some of the subsurface defects (especially shallower defects with flash mode and deeper
defects with halogen mode) and surface defects (especially with flash mode) at the end
of the transient cooling (column (III)). After the latter period, the thermal footprint of the
defects is diffused due to the reach of the thermal equilibrium between the marqueteries
and the environment (column (IV)). Then, with the series of thermal images corresponding
to the transient cooling state of each test, a better visualization of the thermal footprint of
the maximum possible number of defects is sought with the DL model used in this work,
by means of the automatic identification of the position of the defects and segmentation of
their areas.
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3.3. Automatic Thermal Image Pre-Processing Algorithms
3.3.1. Optimized Gaussian Model for Non-Uniform Background Heating and
Cooling Compensation

This paper uses the new methodology developed by Erazo-Aux et al. [89], published
in 2020. This methodology is an automatic thermal image pre-processing algorithm that
compensates thermally the non-uniform background heating and cooling in thermal image
sequences obtained by active IRT during the heating and cooling periods, respectively.
Although the Mask R-CNN limits the high dependence of the object heating/cooling
uniformity of the state-of-the-art IRT data processing algorithms, this pre-processing is
proposed to improve the contrast between defective and sound areas in the thermal images
of the marqueteries, thus improving the learning process of the Mask R-CNN.

This method analyses the spatial information of each thermal image from an active IRT
experiment (in this case, from experiments 1 and 3 with pulsed heat, and from experiments
2 and 4 with waved heat) to automatically calculate the optimal parameters of a predefined
function. This predefined function is a multivariate Gaussian distribution model, which
models the spatial behavior of the non-uniform background heating or cooling by assuming
that the thermal pattern on the surface of the object under study is a two-dimensional
Gaussian heating or cooling distribution, regardless of the type of heat applied to the object.
Equation (2) presents the multivariate Gaussian distribution model:

Φk(x, θ) = A·e−1/2·(x−µ)T ·Σ−1·(x−µ) (2)

where Φk is the multivariate Gaussian distribution model associated with the k thermal
image of an active IRT experiment, x are the spatial coordinates of the k thermal image,
θ is the vector of the unknown parameters to be calculated, A represents the maximum
magnitude of the multivariate Gaussian distribution model (equal to (2 · π · |Σ|)−1/2), µ
is the mean vector, and Σ is the covariance matrix. θ groups as unknown parameters A, µ,
and Σ, calculating them automatically by using the least-squares method based on the set
of temperature values of the k thermal image.

Once the values of the unknown parameters are calculated, the estimated non-uniform
background heating or cooling model for the k thermal image is obtained, in which the
background thermal compensation results from subtracting the estimated model of the
surface with non-uniform background heating or cooling in the k thermal image. Finally,
the distribution of temperature values of the output k thermal image is interpolated to
maintain its original width (i.e., its original range of temperature values). In this way, it is
possible to compare the learning process of Mask R-CNN using as input dataset either the
outputs after the application of this method or the raw thermal images. As an example,
Figure 14 shows the corresponding outputs of the raw thermal images represented in
Figure 13.

3.3.2. Automatic Segmentation of Thermal Footprints of Possible Defects to Highlight
Defect Areas Segmented

This automatic thermal image pre-processing algorithm is based on the Step 2 of
the methodology proposed by Garrido et al. [8]. The algorithm consists in the search of
inequalities between a thermal image just before it shows thermal footprints of defects
(hereinafter, reference_image) and each subsequent thermal image (hereinafter, next_image)
from a thermal image sequence. The reason for the search for these inequalities is that the
temperature distribution of any defect will have its own Gaussian bell shape. Thus, analyz-
ing the evolution of the surface through the same experiment, the shape of a thermal image
histogram with thermal footprints of defects will be different from the shape of a thermal
image histogram without these thermal footprints. Therefore, the segmentation of defects
is performed with the search for these inequalities. Specifically, the search is automated
by finding intersection points after overlapping the histograms of the reference_image and
the corresponding next_image. The intersection points found in an overlapping histogram
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belong to ends of the Gaussian bells of the thermal footprints of defects present in the
corresponding next_image.
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presence of thermal footprints of defects is null or poor at that initial moment of the tran-
sient cooling. It is null or poor because the heat generated by the lamps during the heating 
period remains as the predominant thermal footprint. Moreover, the thermal images of 
the rest period are not used as reference_image because the thermal conditions of the mar-
queteries in that period are highly different from the conditions in the cooling period (the 
shape of the thermal image histograms between the reference_image and the next_image 

Figure 14. Comparison between raw thermal images and outputs after the application of the optimized Gaussian model.
(I) First thermal image during the resting state at ambient conditions. (II) Thermal image corresponding to the end of the
heating/start of the transient cooling. (III) Thermal image corresponding to the end of the transient cooling/start of the
stationary cooling. (IV) Last thermal image.

The reference_image in this work is the thermal image corresponding to the end of the
heating/start of the transient cooling in each experiment. The reason is that the possible
presence of thermal footprints of defects is null or poor at that initial moment of the
transient cooling. It is null or poor because the heat generated by the lamps during the
heating period remains as the predominant thermal footprint. Moreover, the thermal
images of the rest period are not used as reference_image because the thermal conditions
of the marqueteries in that period are highly different from the conditions in the cooling
period (the shape of the thermal image histograms between the reference_image and the
next_image could be different not because of the presence of the thermal footprints of defects
but because of the different distribution of the temperature in the marqueteries between
being at rest and just after the application of a thermal excitation).

Regarding the next_images, as the defects of the marqueteries are static (i.e., they hardly
change their areas over time, unlike the moisture propagation), one overlapping histogram
is enough for each experiment. Specifically, the overlapping histograms to be applied will
be those that best segment the defects, selecting the best segmentation between flash mode
and halogen mode for each marquetry. Bearing this in mind, the best next_image is the
thermal image corresponding to the end of the transient cooling, segmenting a higher
extension as defects in the halogen mode than in the flash mode in both marqueteries (see
Figure 15). The reasons can be the following:

1. Deeper defects take longer for their thermal footprints to become present in the
thermal images (i.e., their thermal diffusions take longer to reach the surface of the
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marqueteries), while the thermal footprints of shallower and surface defects remain
present due to the short duration of the transient cooling.

2. The segmentation of defects does not improve with the use of thermal images of the
stationary cooling period, since the thermal variability of the marqueteries is quasi-nil
from the end of the transient cooling period and, moreover, the thermal footprints of
the defects fade with the passage of the thermal images.

3. The application of waved heat facilitates the thermal diffusion of defects more than
the application of pulsed heat in both marqueteries (specially the thermal diffusion of
deeper defects).
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pletely segmented in experiment 2 (halogen mode) regarding the marquetry A, and the area of defect A is partially seg-
mented in experiment 4 (halogen mode) regarding the marquetry B. Segmentation results are worse in flash mode (exper-
iments 1 and 3), partially segmenting the defect A regarding the marquetry A, and erroneously segmenting regarding the 
marquetry B. 

It should be noted that a process of erosion and dilation [9] was applied automatically 
after finding the respective intersection points in each overlapping histogram and before 

Figure 15. Segmentation results in each experiment after the application of the pre-processing algorithm explained in
this section. The segmented areas are the yellow areas. Compared to the ground truths, the areas of defects A and B are
completely segmented in experiment 2 (halogen mode) regarding the marquetry A, and the area of defect A is partially
segmented in experiment 4 (halogen mode) regarding the marquetry B. Segmentation results are worse in flash mode
(experiments 1 and 3), partially segmenting the defect A regarding the marquetry A, and erroneously segmenting regarding
the marquetry B.

It should be noted that a process of erosion and dilation [9] was applied automatically
after finding the respective intersection points in each overlapping histogram and before
obtaining the definitive segmenting in each next_image (i.e., before obtaining Figure 15).
The erosion process is applied to eliminate small-size segmented areas, considered as
noise, while the subsequent dilation process is applied to group the closest segmented
areas into one single segmented area. In addition, each segmented area is labelled with a
different index by applying a connecting method [9]. In this way, the smallest segmented
areas that were not eliminated by the erosion process are automatically eliminated by
counting the number of pixels in each segmented area. Figure 16 shows the result of each
intermediate step of this pre-processing in the segmentation that has given the best result
in each marquetry (i.e., in the experiments 2 and 4).
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Figure 16. Result of each intermediate step of the segmentation process of the pre-processing
algorithm proposed in this section.

It should be noted that this pre-processing is applied to the thermal image sequences
obtained after the application of the optimized Gaussian model for non-uniform back-
ground heating and cooling compensation. The reason is that this proposed pre-processing
would segment erroneously if applied to the raw thermal image sequences, due to the
non-uniform background heating and cooling in those thermal images. As an illustra-
tion, Figure 17 shows the segmentation that would be obtained in the raw thermal image
sequences using the same reference_images and next_images.
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Figure 17. Comparison of segmentation results applying the pre-processing proposed in this section on either the outputs
of the optimized Gaussian model or the raw thermal images.

Figure 15 shows the optimal final results to be obtained with Step 2 of the methodology
proposed in [8]. Figure 15 shows that it is only possible to segment the defects with the
most outstanding thermal footprints (i.e., the largest and shallowest defects), although
some of them can only be partially segmented. The segmentation of all the defects is
not possible due to the limitations found with the self-developed automatic IRT data
processing algorithms, commented in the Introduction section. Anyway, it is a useful
method as pre-processing of thermal images before performing the learning process of a
DL model (in this case, Mask R-CNN). It is useful because the segmentations obtained in
the outputs of the optimized Gaussian model allow to highlight those segmented areas
in order to increase the performance of the learning process of the Mask R-CNN. A good
way of highlighting is the use of an intensity transformation operation. Specifically, the
Power-Law/Gamma Transformation is used as intensity transformation operation, which
modifies the histogram of the segmented areas for contrast enhancement by redistributing
the density of probability. Readers should refer to [90] for more information of this intensity
transformation operation. Figure 18 shows the result of the highlighting on the outputs of
the optimized Gaussian model corresponding to the end of the transient cooling of each
experiment. It should be remembered that the best segmentation result of each marquetry
(see Figure 15) is applied to all the corresponding thermal image sequences (i.e., both the
sequence obtained with the flash mode and the halogen mode).

Section 4 compares the learning process of Mask R-CNN obtained using as input
dataset: (i) The raw thermal image sequences, (ii) the thermal image sequences obtained
after the optimized Gaussian model application, or (iii) the thermal image sequences
obtained after the highlighting of the segmented areas on the outputs of the optimized
Gaussian model, showing how the learning process is improved with (ii) and even more
with (iii).
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Figure 18. Result of the highlighting on the outputs of the optimized Gaussian model corresponding to the end of the
transient cooling.

4. Results and Discussion
4.1. Input Dataset Distribution and Optimization Used for the Mask R-CNN Learning Process

Table 5 shows the distribution of the input dataset used for the learning process of
Mask R-CNN. The distribution is the same for each input dataset with the purpose of
making comparisons among them: (i) Raw thermal image sequences, (ii) thermal image
sequences after optimized Gaussian model application, and (iii) thermal image sequences
after highlighting the segmented areas on the outputs of the optimized Gaussian model.

Table 5. Input dataset distribution for the Mask R-CNN learning process. The selection of the thermal images of the
transient cooling in each experiment for the training and validation datasets is random.

Experiment Marquetry
Number of Thermal Images for the

Training Dataset (% of the
Total Number)

Number of Thermal Images for the
Validation Dataset (% of the

Total Number)
Training/Validation

1 Marquetry A 54 (13.5%) 275 (68.6%)
401 (100%)

35 (35%) 70 (70%)
100 (100%) 401 (80%)/100 (20%)2 221 (55.1%) 35 (35%)

3 Marquetry B 27 (6.7%) 126 (31.4%) 15 (15%) 30 (30%)4 99 (24.7%) 15 (15%)

Moreover, each thermal image has to be resized to 1024 × 1024 and stacked two times
in horizontal sequence to obtain a three-dimensional tensor, since a thermal image only
has one channel. In this way, the thermal images have the correct configuration (three
channels, as the case of RGB images) to be used as elements of the input dataset to the
learning process of the Mask R-CNN (Figure 19).
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Figure 19. Example of an input thermal image, with the configuration required for the learning
process of Mask R-CNN. It should be noted that the thermal images shown in the figures of this paper
are in color in order to better appreciate the temperature value in each zone using the temperature
scales shown in Figure 13 as a reference.

As for the optimization used for the Mask R-CNN learning process, the hyper-
parameters are set to the following values (the same values for each input dataset):

• Training_batch size = size of the training dataset.
• Validation_batch size = size of the validation dataset.
• Epochs = 100.
• Learning rate = 0.001.
• Learning momentum = 0.9.
• Weight decay = 0.1.

These hyper-parameters are the most used and most important in the optimization of
a gradient descent, the technical name of the learning process followed in Mask R-CNN.
Specifically, the full name of the gradient descent is, in this case, batch gradient descent,
because all the elements of the training and validation datasets are used during an epoch,
and not a percentage of them randomly selected [91]. Batch gradient descent is selected
because a good performance of the learning process is given more priority herein than
the computation time. The number of epochs is equal to 100 because it was seen that
the loss value stabilizes near the 100th epoch regarding all the different input datasets
used (Figures 20–28). The learning rate controls how much the DL model has to change in
its weights (and also in its biases in the Mask R-CNN) in response to the estimated loss
at each epoch (typical learning rate value between 0 and 1) [92]. A value of 0.001 was
selected as a balance between the computational time and the search for the optimal set
of weights and biases. The learning momentum smooths the progression of the learning
process of a DL model and can also reduce the computational time. The typical range
is between 0.9 and 0.99, with 0.9 being enough for the present work (thus avoiding an
excessive smoothing) [93]. The weight decay (also known as L2 regularization method)
reduces the overfitting of a DL model during its learning process, thus improving its
performance. Specifically, the weight decay is a penalty for the weights of a DL model in
order to avoid high changes in their values when they are updated at the end of each epoch.
In other words, the weight decay limits the range of the values obtained after changes made
according to the learning rate value. Reasonable values of the weight decay ranging from 0
to 0.1, with 0.1 enough herein (higher weight decay values could cause underfitting) [94].
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Sensors 2021, 21, x FOR PEER REVIEW 31 of 47 
 

training and validation datasets separately in order to give an idea of the goodness of the 
DL model in the: (i) Detection of the positions of defects, (ii) segmentation of the areas of 
defects, and (iii) identification of different defects; in thermal images in which the weights 
and biases are adjusted during the learning process (training dataset) and in thermal im-
ages in which the weight and bias adjustment process is not applied (validation dataset), 
respectively. Thus, it is to be expected that the loss value is lower in the training learning 
curve than in the validation learning curve, but it is fundamental that both curves con-
verge and have loss values close to 0 in order to consider a good performance of the learn-
ing process. 

4.3. 2nd Mask R-CNN Learning Process: Using Thermal Image Sequences Subjected to the Pre-
Processing Algorithms as Input Dataset 

Figures 21 and 22 show the results of the Mask R-CNN learning process using the 
thermal image sequences after the application of the optimized Gaussian model and the 
thermal image sequences after highlighting the segmented areas on the outputs of the 
optimized Gaussian model as input dataset, respectively. 

 
Figure 21. Mask R-CNN learning process result using the thermal image sequences after optimized Gaussian model as 
input dataset. 

 
Figure 22. Mask R-CNN learning process result using the thermal image sequences after highlighting the segmented areas 
on the outputs of the optimized Gaussian model as input dataset. 

With the purpose of better comparing between these different input datasets, the 
training and validation learning curves represented in the two previous figures are put 

Figure 22. Mask R-CNN learning process result using the thermal image sequences after highlighting the segmented areas
on the outputs of the optimized Gaussian model as input dataset.
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mal image sequences after the optimized Gaussian model (input dataset ‘B)’) and the ther-
mal image sequences after highlighting the segmented areas on the outputs of the opti-
mized Gaussian model (input dataset ‘C)’), respectively. After both convergences, the evo-
lutions of the training/validation losses stabilize at values around 0.275/0.322 (using input 

Figure 23. Comparison of the training learning curves obtained using the thermal image sequences after optimized Gaussian
model (‘B)’) and the thermal image sequences after highlighting the segmented areas on the outputs of the optimized
Gaussian model (‘C)’) as input dataset.
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Moreover, having a large input dataset is crucial for a good performance of the learning
process of a DL model. However, only 401 and 100 thermal images are used for the training
and validation datasets, respectively, and this can lead to overfitting. To increase the variety
of the input datasets, some data augmentation techniques are applied. Specifically, none,
some, or all of the following data augmentation techniques can be applied to the thermal
images at each epoch in this work [95]:

• Horizontal flipping (63% of probability to be applied to a thermal image).
• Vertical flipping (63% of probability to be applied to a thermal image).
• Image cropping (90% of probability to be applied to a thermal image, cropping the

image from 0% to 50% of its height and width).

In this way, although the size of the training and validation datasets is not increased,
a certain percentage of thermal images is different between each epoch. In addition, the
weights and biases obtained by Mask R-CCN after its learning process using the Microsoft
COCO dataset [65] as input dataset are used herein as initial weights and biases. This is
known as transfer learning, where a DL model trained for one objective task is repurposed
for a second objective task [96]. In this case, the set of weights and biases of Mask R-CNN
obtained after the object detection, semantic segmentation, and instance segmentation of 300,000
different RGB images with 80 object categories (Microsoft COCO dataset), are used as
initial set of weights and biases for the object detection, semantic segmentation, and instance
segmentation of 501 thermal images (401 to train and 100 to validate, belonging to marquetry
A and marquetry B) with 1 object category (i.e., defect). The reason for using transfer
learning and not an initial set of weights and biases with random values is because transfer
learning accelerates the learning process of a DL model and, therefore, its performance
is improved. Finally, all the layers of the Mask R-CNN are updated during the learning
process (i.e., all the weights and biases are modified at each epoch), since thermal images
are not natural/RGB images like the images from the Microsoft COCO dataset (having to
adapt all the layers as they are grayscale images).
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It should be noted that the implementation of Mask R-CNN was performed in Python,
using TensorFlow and Keras as main libraries. For that, the open source code from [97]
and the resources from the Supercomputing Centre of Galicia (CESGA) have been used as
reference and to train and validate the proposed DL model, respectively. Specifically, the
GPU employed was an NVIDIA Tesla K80.

4.2. 1st Mask R-CNN Learning Process: Using Raw Thermal Image Sequences as Input Dataset

Figure 20 shows the result of the Mask R-CNN learning process using the raw thermal
image sequences as input dataset.

In Figure 20, the corresponding training and validation learning curves are shown.
Both learning curves converge at the end of the learning process (around the 100th epoch),
being this convergence easier to visualize from the logarithmic trends than from the real
evolutions. Moreover, the evolutions of the training and validation loss values stabilize in
the final epochs, around 0.275 and 0.462, respectively (taking into account the loss values of
the last 11 epochs, i.e., from 90th to 100th). The loss calculation is performed for the training
and validation datasets separately in order to give an idea of the goodness of the DL model
in the: (i) Detection of the positions of defects, (ii) segmentation of the areas of defects, and
(iii) identification of different defects; in thermal images in which the weights and biases
are adjusted during the learning process (training dataset) and in thermal images in which
the weight and bias adjustment process is not applied (validation dataset), respectively.
Thus, it is to be expected that the loss value is lower in the training learning curve than in
the validation learning curve, but it is fundamental that both curves converge and have
loss values close to 0 in order to consider a good performance of the learning process.

4.3. 2nd Mask R-CNN Learning Process: Using Thermal Image Sequences Subjected to the
Pre-Processing Algorithms as Input Dataset

Figures 21 and 22 show the results of the Mask R-CNN learning process using the
thermal image sequences after the application of the optimized Gaussian model and the
thermal image sequences after highlighting the segmented areas on the outputs of the
optimized Gaussian model as input dataset, respectively.

With the purpose of better comparing between these different input datasets, the train-
ing and validation learning curves represented in the two previous figures are put together.
The training and validation curves are compared in Figures 23 and 24, respectively.

In Figures 21 and 22, the training and validation curves converge regardless of the
input dataset used. Convergence happens around the 85th and 80th epoch using the
thermal image sequences after the optimized Gaussian model (input dataset ‘B)’) and the
thermal image sequences after highlighting the segmented areas on the outputs of the
optimized Gaussian model (input dataset ‘C)’), respectively. After both convergences, the
evolutions of the training/validation losses stabilize at values around 0.275/0.322 (using
input dataset ‘B)’) and 0.235/0.317 (using input dataset ‘C)’), respectively. Figures 23 and 24
represent in a more direct way the improvement of the performance of the Mask R-CNN
learning process by using input dataset ‘C)’ instead of input dataset ‘B)’, specifically in
the lower number of epochs required for the training and validation curves convergence
(5 epochs less) and in the lower training and validation loss values after the convergence
(0.04/0.005 less). In addition, the logarithmic trends in Figures 23 and 24 show that the
training learning curve using input dataset ‘C)’ is always below the training learning curve
using input dataset ‘B)’ after the 20th epoch. As for the validation learning curves, the
validation learning curve using input dataset ‘C)’ is always below in all the epochs. While
focusing on the real evolutions, the training and validation curves are smoother using the
input dataset ‘C)’ than the input dataset ‘B)’.

4.4. Comparison between the Different Mask R-CNN Learning Processes

Similar to Figures 23 and 24, the following figures (Figures 25–28) compare the training
learning curves and validation learning curves between using the raw thermal image
sequences (input dataset ‘A)’) and the thermal image sequences after optimized Gaussian
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model (input dataset ‘B)’), and between using the raw thermal image sequences (input
dataset ‘A)’) and the thermal image sequences after highlighting the segmented areas on
the outputs of the optimized Gaussian model (input dataset ‘C)’).

From the figures above and from the figures shown in Sections 4.2 and 4.3, the
following points are reached:

1. The performance of the Mask R-CNN learning process is better using the thermal
image sequences after optimized Gaussian model than using the raw thermal image
sequences, due to:

a. The lower number of epochs required for the training and validation curves
convergence (from 100 to 85, 15 epochs less).

b. The lower training and validation loss values after the convergence using the
thermal image sequences after optimized Gaussian model, compared with the
last 11 epochs using the raw thermal image sequences (from 0.275/0.462 to
0.275/0.322, 0/0.14 less).

c. The training and validation learning curves using the thermal image sequences
after optimized Gaussian model are always below in all the epochs (observing
the logarithmic trends).

d. The training and validation learning curves are smoother using the thermal im-
age sequences after optimized Gaussian model (observing the real evolutions).

2. The performance of the Mask R-CNN learning process is even better using the ther-
mal image sequences after highlighting the segmented areas on the outputs of the
optimized Gaussian model (see the improvement in Section 4.3) than using the raw
thermal image sequences, due to:

a. The lower number of epochs required for the convergence of the training and
validation curves (from 100 to 80, 20 epochs less).

b. The lower training and validation loss values after the convergence using the
thermal image sequences after highlighting the segmented areas on the outputs
of the optimized Gaussian model, compared with the last 11 epochs using the
raw thermal image sequences (from 0.275/0.462 to 0.235/0.317, 0.04/0.145 less).

c. The training and validation learning curves using the thermal image sequences
after highlighting the segmented areas on the outputs of the optimized Gaussian
model are always below in all the epochs (observing the logarithmic trends).

d. The training and validation learning curves are smoother using the thermal
image sequences after highlighting the segmented areas on the outputs of the
optimized Gaussian model (observing the real evolutions).

4.5. Comparison between the Detection and Segmentation Results Obtained by the Best Mask
R-CNN Learning Process and by Some of the State-of-the-Art IRT Data Processing Algorithms

This section shows how the results of the position detection and area segmentation of
each defect existing in the two marqueteries are better: (i) With the latest state-of-the-art
DL model for object detection and segmentation tasks in images (Mask R-CNN), using
the results of its best learning process (i.e., using the thermal image sequences after the
application of the two thermal image pre-processing algorithms presented herein as input
dataset), than (ii) using state-of-the-art IRT data processing algorithms. Figure 29 shows the
results that would be obtained with some state-of-the-art IRT data processing algorithms,
while Figure 30a–c) shows the corresponding detection and segmentation results of the
Mask R-CNN using the set of weights and biases obtained at the end of the best learning
process in the validation dataset. It should be noted that another set of weights and biases
could be used from the convergence of the training and validation learning curves (i.e.,
from 80th epoch), since the training and validation loss values are stabilized. This set of
weights and biases is applied in the validation dataset to see the robustness of the DL model
in thermal images that have not been used during the weight and bias adjustment process.

The Average Precision (AP) is a popular metric in measuring the accuracy of the
object bounding boxes predicted in each element of the input dataset. For that, this object
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detection metric computes the average precision value for recall value over 0 to 1. Readers
should refer to [98] for more information. The precision and recall parameters are also
used to measure the segmentation performance of a DL model, together with the F-score
parameter. The corresponding equations are as follows:

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F-score = 2(Precision·Recall)/(Precision + Recall) (5)

where TP, FP, and FN are the True Positives, False Positives, and False Negatives of the
segmentation results, compared with the corresponding ground truths, respectively. It
should be noted that the reason for using F-score is that this performance metric takes into
account both the precision and recall parameters, thus being the most representative.
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Figure 30. (a) Defect position detection metric applying the set of weights and biases obtained in the best Mask R-CNN
learning process in the validation dataset. (b) Defect area segmentation metric applying the set of weights and biases
obtained in the best Mask R-CNN learning process in the validation dataset. (c) Visual result of the worst, intermediate and
best defect position detection and defect area segmentation applying the set of weights and biases obtained in the best Mask
R-CNN learning process in the validation dataset.
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Comparing Figures 29 and 30, the deepest defects are not identified with the state-of-
the-art IRT data processing algorithms (defect C in marquetry A, and defects G and F in
marquetry B). However, with the methodology proposed in this work, the detection of the
positions of the defects (Table 6) and the segmentation of the areas of the defects (Table 7)
in the marqueteries are successful and automated as an added value. The worst detection
and segmentation results are generally obtained at the beginning of the transient period
in each experiment, since the thermal footprints of the defects are not very noticeable yet,
although in the marquetry B in halogen mode, the worst results are towards the end of the
transient period probably because there would begin to be signs of the diffusion of the
thermal footprints of the defects. Finally, all the detections and segmentations made were
predicted with a 100% probability of defect (and then 0% probability of background).

Table 6. Detection results obtained.

Marquetry A Marquetry B
Flash mode Halogen mode Flash mode Halogen mode

AP 100% (except in one thermal image in halogen
mode with 50%) Near 86% 100% (except in two

thermal images near 86%)
mean AP 97.07%

Table 7. Segmentation results obtained.

Marquetry A Marquetry B
Flash mode Halogen mode Flash mode Halogen mode

Precision Between 98% and 100% (except in one thermal image in marquetry A in halogen mode with near 91%)
mean Precision 99.28%

Recall Between 80% and 90% Near 93% (except in one
thermal image near 53%) Near 60% Near 90% (except in two

thermal images near 60%)
mean Recall 84.95%

F-score
Between 90% and 97% (except in one thermal image
with near 90% and near 67.5% in flash and halogen

mode, respectively)
Near 75% Near 95% (except in two

thermal images near 70%)

mean F-score 91.04%

5. Conclusions

This work introduces DL in the thermographic monitoring of cultural heritage for
the automatic detection of the defect positions and the automatic segmentation of the
defect areas, regardless of the defect type and defect depth. For that, two different types of
marquetry have been used as heritage elements, the first with one surface defect (simulating
the resin pocket effect) and three subsurface defects (simulating the honeycombing effect),
and the second with five surface defects (representing different missing tesserae) and
two subsurface defects (simulating detachments). As for the monitoring, two different
experiments have been applied to each marquetry, one heating the marqueteries with
pulsed heat (pulsed thermography) and the other heating the marqueteries with waved heat
(step-heating thermography). The thermal images belonging to the transient cooling period
have been selected as the thermal images of interest in each experiment due to the higher
presence of the thermal footprints of the defects than in the thermal images belonging to
the heating period and the stationary cooling period.

As an added value, the latest state-of-the-art DL model for object detection and
segmentation tasks in images has been selected in this work: Mask R-CNN. This DL model
makes it possible to detect the position of the different defects by bounding boxes (object
detection) and to segment the areas of the defects by binary masks (semantic segmentation),
with a certain probability that they are really defects and not background. By combining the
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bounding boxes and the binary masks obtained, the differentiation between the different
defects as different instances is also achieved (instance segmentation). Moreover, in addition
to the typical optimization methods used to improve the performance of a DL model during
its learning process (appropriate values of the hyper-parameters, data augmentation,
and transfer learning), two automatic thermal image pre-processing algorithms based
on thermal fundamentals have also been applied to the thermal image sequences used
for the learning process (input dataset) of the Mask R-CNN. Both thermal image pre-
processing algorithms improve the contrast between defective and sound areas, the first
one by compensating the non-uniform background heating and cooling, and the second
one by highlighting the segmented areas obtained in the outputs of the previous pre-
processing algorithm that represent the total or partial area of the defects with the most
outstanding thermal footprints. The purpose is to demonstrate how it is possible to improve
the performance of DL models applied to thermographic data by combining them with
thermal fundamentals.

The results obtained from the learning process of Mask R-CNN were promising in
two aspects:

1. In being able to automate the interpretation of the acquired thermal images with
a high percentage of success in the detection and segmentation of defects. With
the state-of-the-art IRT data processing algorithms, the identification of the deepest
defects of the marqueteries is not possible, neither with non-automatic algorithms
(such as PCT, SPCT, and TSR) nor with self-developed automatic algorithms (without
using DL).

2. In the reduction: (i) In time (epochs), (ii) in object detection, semantic segmentation, and
instance segmentation errors (loss), (iii) and in learning instability (learning curve); us-
ing the resulting thermal images after the application of the proposed pre-processing
thermal image algorithms instead of using the corresponding raw thermal images.

In summary, this work takes the first step in the use of DL models for the inspection
of cultural heritage with thermographic data, using one of the best DL models currently
available and even improving its performance by using algorithms that exploit the thermal
information contained in the thermal images. The robustness of the DL model trained in
this paper will probably be acceptable when applied to other types of marqueteries and
other heritage objects with the same and/or different defects. The reason for this is that:
(i) Two different experiments have been performed on each marquetry (pulsed thermography
and step-heating thermography), (ii) both marqueteries have materials commonly used on
decorative surfaces of heritage objects, and (iii) several types of defects with different sizes
are located at different positions and depths. In any case, future research will continue
with the joint application of DL and IRT data pre-processing algorithms in thermographic
monitoring of cultural heritage. Especially, future research will be based on the analysis
of the same and/or other defects in more types of marqueteries and other artistic objects
in order to: (i) Classify between different types of defects (and not only classify between
defect and background), and (ii) train a DL model with a higher variety of defects and
objects towards a more robust learning. Finally, the automatic estimation of the defect
depth is another point to be considered.
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