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Worldwide, gastric cancer (GC) represents the fifth most common cancer for incidence
and the third leading cause of death in developed countries. Despite the development of
combination chemotherapies, the survival rates of GC patients remain unsatisfactory. The
reprogramming of energy metabolism is a hallmark of cancer, especially increased
dependence on aerobic glycolysis. In the present review, we summarized current evidence
on how metabolic reprogramming in GC targets the tumor microenvironment, modulates
metabolic networks and overcomes drug resistance. Preclinical and clinical studies on the
combination of metabolic reprogramming targeted agents and conventional
chemotherapeutics or molecularly targeted treatments [including vascular endothelial
growth factor receptor (VEGFR) and HER2] and the value of biomarkers are examined. This
deeper understanding of themolecularmechanisms underlying successful pharmacological
combinations is crucial in finding the best-personalized treatment regimens for
cancer patients.
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INTRODUCTION

Gastric cancer (GC) is currently the third leading cause of cancer-related death globally and varies
significantly among different geographical areas, despite the overall morbidity and mortality are
declining (1). Surgery is an effective option for the treatment of GC, while patients with advanced
GC lose the best opportunity of surgery due to multiple metastasis (2). Compared with other
primary tumors, GC with multiple metastases has higher tissue heterogeneity, which is caused by
multiple specific gene clusters or gene mutations (3). Therefore, GC displays aggressive behavior
and treatment resistance, bringing great difficulties for the development of molecular targeted drugs
and individualized precise treatment. Moreover, based on the molecular classification of The Cancer
Genome Atlas (TCGA), GC encompasses different molecular subtypes, such as Epstein–Barr virus
(EBV 9%), microsatellite instability (MSI 22%), genomic stable (20%), and chromosomal instability
(50%), and often exhibits a poor and unfavorable prognosis (4).

It has become clear enough that a single cancer hallmark (e.g., self-sufficiency in growth signals,
insensitivity to antigrowth signals, evading apoptosis, limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis) cannot be used to globally define tumor alteration
(5). As early as last century, Warburg found that owing to uninterrupted growth, tumor cells would
reprogram their metabolism production network by circumventing mitochondrial oxidative
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phosphorylation and facilitating aerobic glycolysis to maintain the
normal levels of ATP and NADH (6). Metabolic reprogramming,
including the remodeling of glucose, lipid, glutamine, oxidative
phosphorylation, and mitochondrial respiration (7), plays a pivotal
role in the regulation of gene transcription, DNA damage repair,
and metabolic enzymes, to transmit or release cytokines through
signaling pathways in the tumor microenvironment (TME).
Accumulating evidence indicates that cancer cells may transfer
biologically functional molecules to their surrounding stromal
cells by reprogramming metabolism, which facilitates cancer
metastasis, drug resistance, and immunosuppression (8–10). If
this series of cancer cells disorders are regarded as energy
metabolism alteration, limiting energy currency ATP and redox
currency NADH can be achieved by using small molecule drugs
targeting energymetabolism or cutting off the metabolic pathway of
energy supply. Similar to the Trojan horse effect, by targeting
metabolic changes, we can identify potential new targets for
accurate cancer treatment and design antitumor strategies to
improve the concentration of drugs into cells. Therefore,
metabolic reprogramming has become a promising target in
cancer therapy, including refractory cancers such as GC.

Alterations in amino acid synthesis and catabolism, lipid
biogenesis, and other pathways such as polyamine processing,
are commonly seen in GC (11, 12). However, the development of
GC and TME forms a complex loop, and the specific mechanism
underlying its metabolic reprogramming remains largely
unexplored. The present review outlines recent updates,
addressing how bioenergetic metabolism reprogramming is
involved in GC, aiming to better understand their role in the
GC progression, which might help develop new therapeutic
approaches by targeting GC metabolism.
Frontiers in Oncology | www.frontiersin.org 2
CHARACTERISTICS OF METABOLIC
REPROGRAMMING IN GC

Malignant tumors have the common characteristics of high
metabolism. However, epigenetic changes, tissue origin,
differentiation status, and other internal and external factors
such as oxygen and nutrients in tumor microcirculation result
in a unique metabolic profile that distinguishes cancer cells from
normal cells (Table 1). Reprogramming of the tumor metabolism
includes upregulation of aerobic glycolysis, a strongly enhanced
glutaminyl, and lipid accumulation in tumor cells, potentially
providing energy and structural requirements for the
development of cancer cells (Figures 1A, B) (23). However,
effective stratification strategies and selection of predictive
biomarkers for personalized medicine are currently limited. GC,
as a heterogeneous disease, lacks specific symptoms in its early
stages, leading to a delayed diagnosis with three-quarters of
patients presenting with non-curable advanced disease (24).
Moreover, the energy metabolism reprogramming of GC has its
own characteristics due to the heterogeneity. For instance, six
metabolites (alanine, a-ketoisocaproic acid, proline, glycerin acid,
pantothenic acid, and adenosine) show varying expression levels
between GC cell lines and a normal gastric epithelial cell line (25).
In particular, genome-wide expression profiles have found that an
intestinal subtype of gastric tumors is involved in glucose
metabolism and glutamine metabolism-related gene, and glucose
transport and glucan related to metabolic genes are enriched in the
diffuse subtype of GC (26). Therefore, it is urgently necessary to
integrate clinical, morphological, and molecular data by
identifying key metabolic processes of GC for the patient
stratification for personalized therapy.
TABLE 1 | Biomarker of metabolic reprogramming in GC.

Biomarker Function Locations Impactions in GC Clinical Significance in GC

Aerobic
glycolysis

GLUT 3
(12)

Rate-limiting glucose transport Cytoplasm Infiltration and polarization in GC TAM TNM stage, DFS, OS

ENO1 (13) Catalyzing the conversion of 2-PG
to PEP

Cytoplasm, Cell
membrane

Regulation the stem cell-like
characteristics

Infiltration depth, Stage, OS

GRINA (14) Glutamate Receptor Membrane Enhancing the glycolytic metabolism Histological differentiation, TNM stage,
Metastasis, Vessel invasion, perineuronal
invasion

Glutamine
consumption

SLC1A3
(15)

Glutamate transporter Mitochondria,
Nuclear

Increasing aspartate import in hypoxia Histological differentiation, TNM stage

GGCT (16) Catalyzing the g-glutamyl peptides
to generates 5-oxoproline and free
AAs

Cytosol,
Extracellular
exosome

Inhibition cell proliferation and
inducing apoptosis (17)

Histological grade, LNM, TNM stage

SLC1A5
(18)

Glutamine transporter Plasma
membrane

Inhibition of glutamine synthetase to
reduce GC cell proliferation and
resistance

Local invasion, LNM, TNM stages, Ki-67
expression

Lipid
biosynthesis

SCD-1 (19) Conversion of saturated FAs to
monounsaturated FA

Endoplasmic
reticulum
membrane

Enhancing the tumor growth,
migration, anti-ferroptosis

TNM stage, LNM, OS,

LPCAT1
(20)

Composition of plasma membrane
(21)

Endoplasmic
reticulum
membrane.

The conversion of LPC to PC Tumor depth, LNM, TNM stage

Rev-erba
(22)

Lipid metabolism nuclear receptor Nucleus,
Cytoplasm

The inhibition of proliferation by
reducing glycolytic flux and PPP

TMN stage
Ja
2-PG, 2-phosphoglycerate; PEP, phosphoenolpyruvate; FAs, Fatty acids; AAs, amino acids; LNM, lymph node metastasis; PPP, pentose phosphate pathway.
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Aerobic Glycolysis
Aerobic glycolysis is the process of oxidation of glucose into
pyruvate, followed by lactate production under normoxic
conditions, which promotes glutaminolysis to satisfy the
precursor requirements of nucleic acids (27). The upregulation
Frontiers in Oncology | www.frontiersin.org 3
of glycolysis is mostly due to the increased expressions of
enzymes and transporters involved in glucose uptake, lactate
production, and lactate secretion (28). Figure 1 outlines the
stepwise process of glycolysis, including the substrates and
enzymes of the pathway. The glucose uptake of cells largely
A

B

FIGURE 1 | Schematic showing a comparative account of normal vs. cancer cell metabolic reprogramming (A). The association between aerobic glycolysis
(Warburg effect) and the glutamine metabolism and fatty acids metabolism. Biomarkers in GC (indicated in green boxes) along with signaling molecules
(orange circles). Next, the mitochondrial dysfunction or phenotypic alteration (B). AA, amino acid; CoA, coenzyme A; ENO1, enolase 1; F-6-P, fructose 6-
phosphate; FA, fatty acids; G-6-P, glucose-6-phosphate; GGCT, glutamylcyclo transferase; GLUT3, glucose transporter3; GRINA, glutamate receptor; GLS,
glutaminase1; HK2, hexokinase2; LDHA, lactate dehydrogenase; LPC, lysophosphatidylcholine; LPCAT1, lysophosphatidylcholine acyltransferase; MUFA,
multiunsaturated fatty acid; PEP, phosphoenolpyruvate; PFK1, phosphofructokinase1; PC, phosphatidylcholine; PFKFB3, phosphofructokinase-2/fructose-2,6
bisphosphatase 3; PKM2, pyruvate kinase2; SFA, saturated fatty acids; SCD-1, stearoyl-CoA desaturase 1; TCA, tricarboxylic acid cycle. Dotted lines indicate
the feed-back inhibition/regulation of some of the glycolytic enzymes by corresponding metabolites.
January 2022 | Volume 11 | Article 745209
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depends on the concentration of membrane transport proteins
collectively known as the glucose transporter (GLUT) family.
Significantly, GLUT 3, acting as a biomarker to determine
prognosis and immune infiltration in GC, not only potentially
contributes to M2 subtype transition of macrophages in the TME
by mediating glucose influx (12) but also is correlated with
higher tumor–node–metastasis (TNM) stage and negative
survival (29). Moreover, glycolytic enzyme Enolase 1 (ENO1),
as a poor prognosis biomarker in GC (13), which is involved in
hypoxia, increases glucose uptake and metabolism via
upregulating GLUT3 and promoting the lactate production
(30). The molecular mechanisms of metabolic reprogramming
in GC have been applied in clinical practice. For example, a study
consisting of 279 patients routinely staged in the absence of
metastases on CT has identified previously unsuspected
metastases in 7% of patients using F-18 fluorodeoxyglucose,
which would likely not have been identified by conventional
staging without PET-CT in 5% (31).

Glutamine
Glutamine, a new energy source for tumor cells, provides
nitrogen and carbon sources that replenish tricarboxylic acid
(TCA) cycle intermediates for the sake of nucleic acids.
Glutamine is first converted to glutamate and ammonium by
glutaminase (GLS). Subsequently, it is catalyzed by glutamate
dehydrogenase (GDH) and converted to a- ketoglutarate (32).
Then, a-ketoglutarate enters the TCA cycle, which provides
energy and macromolecular intermediates, as seen in Figure 2.
The combination of GLS1 and glutamyl cyclotransferase
(GGCT) is highly sensitive and specific for detecting GC,
which is strongly associated with histological grade, lymph
node metastasis, and TNM stage (16). The SLC1 family
(glutamate transporters) plays important roles in providing
cells throughout the body with glutamate for metabolic
purposes (33). For example, the loss of function of SLC1A3
(GLAST) and SLC1A5 (also known as ASCT2 or Na-dependent
Frontiers in Oncology | www.frontiersin.org 4
transmembrane transporter) has been implicated in the
pathogenesis of GC. SLC1A3 is positively associated with the
poor prognosis, and it provides a competitive advantage to GC,
increasing aspartate import under the hypoxic condition (15).
SLC1A5 is correlated with malignant features, such as deeper
local invasion, higher lymph node metastasis, advanced TNM
stages, and higher Ki-67 expression (18). However, the inhibition
of glutamine synthetase remarkably reduces the proliferation and
resistance of GC cells, suggesting that glutamine mediates GC
growth and the therapeutic efficacy of targeted treatment (34).
Interestingly, as a glutamate receptor, the N-methyl D-aspartate-
associated protein 1 (GRINA) is involved in lipid and sterol
synthesis (35), and it also modulates aerobic glycolysis and
promotes tumor progression in GC (14).

Fatty Acids
Fatty acids (FAs, as molecule signals and energy sources, are
important as the basic backbone of many lipids and generally
recognized as part of the metabolic landscape of cancer (36).
The de novo FA synthesis pathway is enhanced to glucose and
glutamine metabolism in tumor cells (Figure 3) (11). Strikingly,
FA metabolisms, FA transport, and fat differentiation-related
signatures are also highly activated in GC (26). Stearoyl-CoA
desaturase 1 (SCD-1), which converts saturated FAs into
monounsaturated FAs, is overexpressed and exhibits the ability
to promote tumor growth, migration, and anti-ferroptosis in
GC (19). Lysophosphatidylcholine acyltransferase 1 (LPCAT1)
is involved in the metastasis and recurrence of GC (20),
especially in converting lysophosphatidylcholine (LPC) to
phosphatidylcholine (PC), which is positively correlated with
tumor differentiation but negatively correlated with tumor depth,
lymph node metastasis, and tumor stage in GC (37).
interestingly, Rev-erba (nuclear receptor subfamily 1 group D
member 1) regulates lipid metabolism nuclear receptor, and it is
not only associated with TMN stages but also its reduction causes
GC progression by augmenting the glycolysis (22).
January 2022 | Volume 11 | Article 745209
FIGURE 2 | TME comprising the tumor cells and various stromal cells in GC. They evade immune surveillance during GC progression by balancing energy
requirements and in TME. Finally, the metabolites of TME impacts cancer-specific or related phenotypes. Apo E, apolipoprotein E; Ado, adenosine; Oxd, oxidation;
PPP, pentose phosphate pathway; ROS, reactive oxygen species; TAM, tumor-associated macrophages.
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Based on the TCGA dataset, a signature consisting of
seven glycolysis genes (STC1, CLDN9, EFNA3, ZBTB7A, NT5E,
NUP50, and CXCR4) is established, demonstrating that an
immunosuppressive TME can lead to poor prognosis in GC (38).
All the above evidence displays different metabolic traits
compared with the tumors from which they originate,
enabling survival and growth in the new TME, and it selectively
and dynamically adapts their metabolism at every step
during the metastatic cascade, which creates a nutrient-rich
microenvironment. These alterations are pivotal to the
development and maintenance of the malignant phenotype of
cancer cells in unfavorable TME or metastatic sites.
METABOLIC ALTERATION IN THE GC
IMMUNE MICROENVIRONMENT

TME (composed of the tumor cells, immune cells, and
fibroblasts) releases various molecules or activates the
metabolic reprogramming signaling in cancer cells to remodel
surrounding areas (39), contributing to immune escape
mechanisms and drug resistance with GC development (40).
However, altered metabolism is not limited to cellular energetic
pathways. For example, the metabolic programming of immune
cells can affect antigen presentation, ultimately leading to the
alteration of tumor immunity (Figure 2) (41). Especially,
immune-infiltrating cells in the TME can play dual roles,
either promoting or inhibiting tumor growth, in response to
metabolic stresses and external signals.

T Cells
T cells have a natural ability to fight cancer cells in the TME. Yet,
these cancer-fighting T cells are gradually exhausted and lose
immunological memory potential (42). CD4+ T cells (helper T
cells) and CD8+T cells (cytotoxic T cells) are the two broad
Frontiers in Oncology | www.frontiersin.org 5
functional groups of mature T cells (43). First, regulatory T
(Treg) cells, the subsets of CD4+ T cells, are rapidly expanded
upon encountering self-antigens expressed by cancer cells, and
its accumulation in GC can decompose ATP to adenosine, then
induce apoptosis, and inhibit the proliferation of CD8+ T cells,
leading to immune inactivation and evasion (44). In addition,
Treg cells can regulate transcription factor Foxp3 to restrain
PIK3/Akt/mTOR signaling, which diminished glycolysis
metabolism (45). Further research has demonstrated that Treg
cells activate their lipid metabolism to support the survival (46).
In addition, the accumulation of Treg cells in GC also activates
the PI3K/Akt/mTOR pathway, which increases free fatty acids
(FFAs) and generates an immunosuppressive TME, resulting in
resistance to immunotherapy (47). The glycolysis and antitumor
functions of CD8+ T cells can be inhibited by activating STAT3
to drive the FA oxidation (FAO) (48). These findings explain that
the ratio of CD8+ T cells to Treg cells in the GC TME is an
important factor for prognosis and clinical efficacies (49).

Neutrophils
Neutrophils, as an important component of the tumor-
infiltrating immune cells, can release several cytokines [such as
interleukin-1b (IL-1b), tumor necrosis factor alpha (TNF-a),
and interferon gamma (IFN-g)], which is mediated by
multiple mediators, including cytokines, chemokines, lipids,
and growth factors in TME (50). In GC, high-infiltration
neutrophils have been associated with poor prognosis (51).
Especially, neutrophils in GC inhibit the proliferation of CD4+

T cells and form a local immunosuppressive environment
through the programmed cell death 1 (PD-1)/programmed cell
death protein-L1 (PDL−1) pathway (52). They secrete a wide
spectrum of factors, including matrix metalloproteinases and
proinflammatory cytokines, to initiate carcinogenesis (53)
(Figure 2). Neutrophils effectively suppress normal T-cell
immunity and prolong their lifespan, contributing to the
migration of GC (54). In GC, neutrophils are polarized to an
FIGURE 3 | Shift in metabolic networks in GC. The metabolic intermediates of metabolic reprogramming are associated with diverse pathways in the cells inside
and outside. HP, H. pylori; MCT, monocarboxylate channel transporter.
January 2022 | Volume 11 | Article 745209
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N2 phenotype to promote tumor migration (53). Neutrophil is
often discounted as purely glycolytic (55), while oxidative
neutrophils use mitochondrial FAO to produce and suppress T
cells in glucose-restricted TME (56). Evidently, these results
show that targeting the lipid metabolic mechanism of
neutrophils and T cells can synergize with antitumor immunity.

Tumor-Associated Macrophages
Tumor-associated macrophages (TAMs) include antitumor M1-
like (M1-TAMs) or protumor M2-like (M2-TAMs) TAMs (57).
Upon stimulation by IFN-g or lipopolysaccharide (LPS),
macrophages are polarized in the M1 phenotype, whereas M2
polarization can be achieved via incubation with IL-4 and IL-13
(58–60). The metabolic alterations of macrophage polarization
can determine the phenotype and function of TAMs in
promoting the cancer progression. Conversely, cancer cells can
also utilize metabolic byproducts to manipulate TAMs to their
benefits (61). For example, M2 macrophages are triggered by
GC-derived mesenchymal stromal cells, promoting metastasis
and EMT (62). Further research has found that M2 macrophage
polarization fromGC, involving the JAK2/STAT3 signaling pathway,
is attenuated by blockading the secretion of IL-6/IL-8 (63). Most
likely, M2 macrophages modulate lipid metabolism by deriving
apolipoprotein E and then remodel the cytoskeleton to support
migration in GC (64, 65). Especially, M2 macrophage can
exacerbate the FA b-oxidation and promote the 5-fluorouracil (5-
FU) chemoresistance in GC (66). The lipid restores the activity and
substantially enhances the phagocytosis of TAMs, leading to
promoted cytotoxic T-cell-mediated tumor regression in GC (67).
In addition, miR-130b, the correspondent of the M2-TAMs in GC
(68), is associated with lipid metabolism and 5-FU resistance and
even can activate PI3K (69–71), which is potentially a new
chemotherapeutic target by interfering immune cell metabolism in
TAMs. Since TAMs have a high degree of plasticity, M2
macrophages can be repolarized to M1-TAMs. Therefore,
reprogramming TAMs into antitumor activity is a new cancer
treatment strategy.

Cancer-Associated Fibroblasts
Cancer-associated fibroblasts (CAFs), a protective barrier of the
tumor, activate metabolically reprogrammed TAMs (72, 73) and
block T-cell penetration into tumor nests by secreting
transforming growth factor beta 1 (TGF-b1) (74). It is
nourished by TGF-b1, which then strongly promotes the
metabolic switch from oxidative phosphorylation to aerobic
glycolysis in highly metastatic GC (75, 76). Further studies show
that the CAFs facilitate vasculogenic mimicry formation via
metabolic pathways PI3K (77), which exacerbates the
chemotherapeutical efficacy and prognosis of GC (78). MiR-149
links IL-6 to mediate the crosstalk between tumor cells and CAFs,
leading to the enhanced epithelial-to-mesenchymal transition and
stem-like properties, which alters the metabolism and allows GC
cells to spread throughout the body (79, 80).

Helicobacter pylori Infection
PersistentHelicobacter pylori infection is well-known to affect the
inflammatory TME and promote GC carcinogenesis (81). In
Frontiers in Oncology | www.frontiersin.org 6
addition to involving inflammatory activation, H. pylori
participates in various cell types, including immune cells, gastric
epithelium, glands, and stem cells (82). H. pylori activates,
polarizes, and recruits macrophages to sustain a continuous
supply of proinflammatory and protumorigenic cytokines [such
as IL-1, IL-6, IL-1b, TNF-a, macrophage inflammatory protein-2
(MIP-2), and inducible nitric oxide synthase (iNOS)] (83), and
inevitably, they alter the metabolism as key contributors to
immune evasion. The above-mentioned studies involved
harnessing metabolic byproducts and hijacking the functions of
tumor-infiltrating immune cells, favoring an immunosuppressive
phenotype (84), which impacts many malignancy features,
including the expansion and survival of tumor cells, metastasis,
and angiogenesis (85). These findings provide a rationale for
metabolically targeting the TME, which may assist in improving
tumor responsiveness to immune checkpoint blockade (ICB)
therapies. Therefore, whether the dysregulated metabolism of
TME is a cell-intrinsic program or competition with GC cells
for limited nutrients needs to be further discussed.
METABOLIC NETWORKS IN GC

The progression of GC involves a shared set of metabolic
reprogramming pathways, which produce excess lactic acid to
reduce the pH value in TME and acquire metabolic adaptations
(Figure 3) (86, 87). This metabolic alteration in GC switches from
oxidative phosphorylation to glycolysis concerned promoting EMT,
tumor angiogenesis, and the metastatic colonization of distant
organs, resulting in regulation of the invasion-metastasis cascade
(80). In addition, some pathogens, such asH. pylori, furthermediate
an inflammatory environment and trigger the oncogenic pathway,
leading to DNA damage in gastric mucosal epithelial cells,
continuous accumulation of intracellular abnormal metabolites,
and eventually malignant transformation (88, 89).

HIF-1a/ROS
The physiological gastrointestinal luminal epithelium is hypoxic
(90), and tissue hypoxia induces metabolic reprogramming and
may result in malignant transformation of gastric mucosal
epithelial cells (91). Moreover, it even induces resistance to
chemoradiotherapy, leading to therapeutic failure (92). Hypoxia-
inducible factor-1 alpha (HIF-1a) controls the production of
reactive oxygen species (ROS) in oxygen concentration, which
supports the adaptation of tumor cells and mediates lactic acid
efflux by the monocarboxylate channel transporter (MCT) to
promote macrophage polarization in a hypoxic TME (93). In
addition, insulin treatment induces glucose uptake and enhances
the expression of GLUT1, which is accompanied by the apoptotic
effect due to HIF-1a inhibition (94). MiR-186 is involved in the
CAF formation (95), which regulates glucose uptake and lactate
production via HIF-1a (96, 97). Approximately 70% of cases of
H. pylori infection are involved in GC progression, which is
responsible for persistent oxidative stress and DNA damage.
Ultimately, HIF-1a promotes metabolic adaptation in a hypoxic
environment (98). The cytotoxin-associated protein A (CagA)
protein, one of the most important virulence factors of H. pylori,
January 2022 | Volume 11 | Article 745209

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bin et al. Metabolic Reprogramming in Gastric Cancer
is localized in the mitochondria, where it subsequently results in a
hypoxic condition in gastric epithelial cells and increases the HIF-
1a activity (99). Then, the crosstalk between ROS and HIF-1a
induces macrophage polarization via the Akt/mTOR pathway,
which affects the progression of gastric lesions and state of
infection (100).

PI3K/Akt/mTOR
The PI3K/Akt/mTOR pathway is frequently activated in
promoting GC aggressiveness (101). It involves enhanced aerobic
glycolysis (102) and then reshapes the immunosuppressive
TAMs (103). Akt, as downstream of PI3K, is an important
driver of the tumor glycolytic phenotype, which stimulates
ATP production to increase GLUT expression and membrane
translocation, phosphorylates key glycolytic enzymes, and
thereby stimulates the signal transduction of the mTOR
pathway (104). Especially, the PI3K/Akt pathway is
significantly activated after H. pylori infection in tumor cells
(105). Further studies indicate that CagA protein reduces cellular
amino acids, and bolstering amino acid pools prevents mTOR
inhibition (106). Moreover, CagA protein activates the PI3K/Akt
pathway, induces glucose metabolism, and promotes GC cell
proliferation (107). It has been reported that miR-133a blocks
the autophagy to ruin the abnormal glutaminolysis via the Akt/
mTOR pathway, further inhibiting the growth and metastasis of
GC (80, 108). Moreover, the A2a adenosine receptor promotes
the GC Warburg effect by enhancing PI3K/Akt/mTOR pathway
in hypoxic TAMs (109, 110).

JAK/STAT
Janus kinase-signal transducer and activator of transcription
(JAK/STAT) signaling, as the upstream of HIF-1a (111, 112),
regulates survival and immunosuppression of GC cells and
sustains inflammation in TAMs, including tumor cell
recognition and tumor-driven immune escape (113–115), and
it is essential in the activation of macrophages, natural killer
(NK) cells, and T cells (116, 117). However, efforts to develop
therapeutic STAT3 inhibitors have thus far been unsuccessful
(118). Activated STAT3 upregulates energy metabolism by
translocating mitochondria, which is critical for glutamate-
induced cell proliferation (119). Under hypoxic conditions,
STAT3 physically interacts with programmed cell death
protein-L1 (PD-L1) and facilitates its nuclear translocation,
enhancing the macrophage-derived TNFa-induced tumor
necrosis in vivo, and correlates with chemotherapeutic drugs
(120). Especially, H. pylori disrupts lipid rafts via JAK/STAT and
thereby reduces cholesterol levels in infected gastric epithelial
cells, allowing the bacteria to escape from the host inflammatory
response (121). Infiltrated macrophages can release STAT3 to
induce PD-L1 expression in GC, which helps tumor cells escape
from cytotoxic T-cell killing and promotes the proliferation of
tumor cells (122). Given that interference with STAT3 activity is
an amplified signaling cascade by targeting these cytokines; it
curbs the growth of GC and augments antitumor immunity (123).

Although these studies have proven many substantial
crosstalks and numerous links in metabolic activities, how to
Frontiers in Oncology | www.frontiersin.org 7
allow cells to maximize growth and proliferation and activate
chronically in cancer remains unknown. Beyond doubt, the
precancerous lesions of gastric epithelial cells have abnormal
metabolic energy, and there is a cross-relationship with the
pathways mentioned above. Therefore, it seems to be more
valuable to trace the heterogeneity of primary lesions and the
changes in metabolic enzymes in the tumor progression. In
addition, drugging a specific metabolic circuitry associated with
malignancy may ultimately be efficient only on a fraction of GC
cells, operating as selective pressure and favoring the rapid
emergence of resistant cells.
THE STRATEGIES OF METABOLIC
REPROGRAMMING IN GC

Nowadays, systemic chemotherapy is still themainstay of treatment
for advanced GC. A majority of patients do not benefit from
monotherapy, such as 5-FU, due to frequent relapses caused by
chemotherapy-resistant cancer clones. Therefore, the 5-year overall
survival rate is only 20%–35% (124–126). Accumulating evidence
showed that tumor cells, in order to adapt various toxic stimuli in
the TME, are involved in the mechanism of self-defense or drug
resistance, including enhancing DNA damage repair capacity,
increasing efflux of drugs via upregulated resistance-associated
proteins, and upregulating antiapoptotic proteins. However,
this series of activities require a large amount of ATP supply
(127). Therefore, metabolic reprogramming contributes to
chemoresistance. The proposed metabolic mechanisms of drug
resistance involve mainly in the increase in glucose and glutamine
demand, glutaminolysis and glycolysis pathways activity,
promotion of reduced nicotinamide adenine dinucleotide
phosphate (NADPH) from the pentose phosphate pathway,
activation of FAO, and upregulation of ornithine decarboxylase
for polyamine production (128). Moreover, several genes are
associated with metabolic reprogramming and drug resistance,
such as GLUT1, LDHA, GAPDH, MCAM, and FAO (129–132).

Currently, recurrent therapeutic resistance presents revolutionary
claims, and targeting the metabolic reprogramming, such as
glycolytic inhibitor, could be a strategy of Trojan Horse, which
highlights the novel combinational trials and their preclinical
rationale. A combination of glycolysis inhibitor and 5-FU can
synergistically enhance the cytotoxicity of resistant GC cells (133).
Glycolysis negatively affects survival outcomes of metastatic GC
patients treated with paclitaxel-ramucirumab therapy (134).

Molecularly Targeted Drugs
Human epidermal growth factor receptor 2 (HER2), an
oncogenic tyrosine kinase, is overexpressed or amplified in
12%–20% of GC (135). Several strategies have been developed
directly against HER2. However, drug resistance remains a major
unresolved clinical problem (136). KU004, a HER2 inhibitor,
inhibits the Warburg effect by the PI3K/Akt signaling pathway
and suppresses hexokinase II (HK2), which mediates antitumor
effect (137). Especially, the PI3K/Akt pathway induces targeted
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HER2 drug resistance in GC (138, 139). A glycolysis inhibitor
MK2206 diminishes the trastuzumab resistance in HER2(+) GCs
by attenuating the Warburg effect (139). Moreover, GATA6, the
downstream of STAT3 (140), is involved in GC metabolic
reprogramming, which may contribute to trastuzumab resistance
(141). Further results indicate that Rhodium (III) complex 6, an
effective STAT3 inhibitor (142), may be beneficial for targeting
HER2 treatment of GC.

Aerobic glycolysis leads to the accumulation of lactate, which
induces angiogenesis, an important process underlying tumor
growth and metastasis (143). Ramucirumab, a vascular
endothelial growth factor receptor (VEGFR) inhibitor, has
shown limited benefits to GC due to metabolism activity (144).
A further study suggested that glycolysis can negatively affect
survival outcomes of metastatic GC patients treated with
ramucirumab systemic therapy (134). Apatinib, another
competitive inhibitor of VEGFR2, effectively suppresses
glycolysis (145) and even induces the lipid metabolism in GC
(146). The 2-deoxy-D-glucose, an inhibitor of glycolysis, can
significantly reduce its angiogenic sprouting in tumor (147).
PFKFB3 (glycolytic enzyme) not only regulates abnormal
glycolytic metabolism in GC (148), and its inhibitors, PA-1
and PA-2, are potential antiangiogenic properties (149).
Therefore, VEGFR inhibitor can be one of the cornerstones
against angiogenesis therapies in GC subtypes, which represents
an attractive therapeutic strategy to improve the efficacy of anti-
GC treatments.

Immunotherapy
The cancer-immunity cycle (CIC) comprises a series of events
that are required for immune-mediated control of tumor growth.
Interruption of one or more steps of the CIC enables tumors to
evade immunosurveillance. However, attempts to restore
antitumor immunity by reactivating the CIC have had limited
success thus far. The suppressive activity of Treg cells is mediated
by several proteins present on the cell surface, such as the
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and
PD-1 (150), which induces cellular senescence and suppresses
responder T cells through mediating accelerated glucose
consumption (43). Immunotherapy, targeting the PD-1/PD-L1
and anticytotoxic lymphocyte antigen 4 (CTLA4) pathway,
collectively named immune checkpoint inhibitor (ICI), by
blocking Treg-mediated immunosuppression, derives durable
remission and survival benefits for GC (151, 152). However,
50% of MSI-high GC are intrinsically resistant to PD-1 therapies
(153). It is likely that continuous exposure to PD-1 antigen,
which induces metabolic reprogramming of the T cell, induces
T-cell exhaustion (154, 155). Diclofenac, a non-steroidal drug,
turns out to inhibit the lactate transporters MCTs and improve
T-cell killing, which improves the efficacy of anti-PD1 therapy
(156). 6-Diazo-5-oxo-l-norleucine, a small molecule glutamine
analog, increases infiltration of CD8+ T cells and sensitizes
tumors to anti-PD1 therapy (157). Moreover, EBV-associated
GC cells are treated with JAK2 inhibitor, PI3K inhibitor, and
mTOR inhibitor, which arrests G0/G1, promotes the
proliferation of T cells, and reduces the PD-L1 expression (158).
Frontiers in Oncology | www.frontiersin.org 8
CTLA-4 represents a crucial immune checkpoint, the
blockade of which can potentiate antitumor immunity.
Limiting Treg cell metabolic competition in the TME may
increase the effectiveness of immunotherapy (159). Especially,
the effect of CTLA-4 blockade on the destabilization of T cells is
dependent on T-cell glycolysis. Metformin is associated with
decreased expression CTLA-4 of Treg cells, which induces
glycolysis (160). Telaglenastat (CB-839), a potent GLS
inhibitor, comminates with anti-PD1 or anti-CTLA4
antibodies, then increases tumor infiltration by effector T cells
and improves the antitumor activity of these ICIs (161).
Therefore, the combinational use of ICIs together with
metabolic treatments to alleviate metabolic stress may improve
the efficacy of immunotherapy.

Natural Compounds
Natural compounds, targeting the components of mitochondria,
modulate metabolic abnormalities that are a consequence
of immune cell dysfunction (162, 163). For example,
salazosulfapyridine blocks cystine/glutamate exchange activity
and mitigates the supply of cysteine to increase intracellular ROS
production, thereby increasing the effect of anticancer drugs,
such as cisplatin. Especially, its combination with 2-deoxyglucose
significantly inhibits cell proliferation (164). Crocin, one of the
main bioactive compounds of saffron, not only inhibits the EMT,
migration, and invasion of GC cells through HIF-1a signaling
(165) but also protects against malignant transformation by
altering mitochondrial function (166, 167). The above-
mentioned results show that natural compounds have great
potential in regulating metabolic reprogramming. However,
there are many kinds of natural compounds and different
molecular pathways, and it is still necessary to establish a huge
database and screen GC cell lines with metabolic phenotype for
further studies.

To sum up, several metabolic inhibitors designed to target
these pathways have been advanced into preclinical trials
(Table 2). Anticancer effect or resistance can be revered by
innovative anticancer treatments targeting metabolism.
Depending on tumor type, not all patients benefit from
metabolic reprogramming treatment and clinical responses,
and the outcome on GC progression can be either positive or
negative. Therefore, understanding the mechanisms of metabolic
reprogramming can be a necessary tool to identify combinations
of drugs that elude resistance and allow a better response for
the patients.
CONCLUSION

Historically, the numerous metabolic reprogramming advances
in distinguishing tumors from adjacent, non-malignant tissues
and targeting these phenotypes indicate potential clinical
applications. However, most cancer metabolism research has
focused on phenotypes of clinically detectable tumors or
experimental models derived from them, and the metabolic
reprogramming of cancer cells is much more complex than
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first observed. Moreover, most metabolic changes are neutral or
only slightly modify cancer cell fitness under stress (171). Certain
pathways are essential for the progression of selected cancers and
can be exploited therapeutically, and understanding GC
metabolism and identifying liabilities require a sophisticated
view of how metabolic phenotypes evolve.

The development of anticancer drugs in GC presents some
challenges. First is the identification of accurate biomarkers that
can predict the response to anticancer therapy. The second
challenge is that metabolic reprogramming has emerged as a
druggable target across GC, and the clinical development of
combinatorial approaches should focus on how to maximize the
efficacy. Third, most of the previous metabolic reprogramming
studies to this point have been focused on alterations in the
metabolism of glucose, glutamine, and lipid, while metabolic
reprogramming also utilizes a great variety of other
microelements (126). Taken together, understanding gene
alterations in metabolic reprogramming is extremely important
not only for GC diagnosis and prognosis but also for the
development of potential targeted therapy. We should expand
the research direction from the perspective of energy
metabolism reprogramming.
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