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ABSTRACT

Single-cell transcriptome sequencing (scRNA-seq)
enabled investigations of cellular heterogeneity at
exceedingly higher resolutions. Identification of
novel cell types or transient developmental stages
across multiple experimental conditions is one of its
key applications. Linear and non-linear dimension-
ality reduction for data integration became a foun-
dational tool in inference from scRNA-seq data. We
present multilayer graph clustering (MLG) as an inte-
grative approach for combining multiple dimension-
ality reduction of multi-condition scRNA-seq data.
MLG generates a multilayer shared nearest neigh-
bor cell graph with higher signal-to-noise ratio and
outperforms current best practices in terms of clus-
tering accuracy across large-scale benchmarking ex-
periments. Application of MLG to a wide variety of
datasets from multiple conditions highlights how
MLG boosts signal-to-noise ratio for fine-grained
sub-population identification. MLG is widely appli-
cable to settings with single cell data integration via
dimension reduction.

INTRODUCTION

High-throughput single-cell RNA sequencing (scRNA-seq)
captures transcriptomes at the individual cell level. While
scRNA-seq is powerful for a wide range of biological infer-
ence problems, perhaps, its most common application thus
far is cell type/stage identification. Specifically, clustering
analysis of scRNA-seq enables identification of cell types
in tissues (1–3), or discrete stages in cell differentiation and
development (4,5) by leveraging similarities in the transcrip-
tomes of cells. Although a plethora of methods, some of
which repurpose existing k-means and Louvain algorithms
for clustering, exist for cell type identification from single

conditions (6), clustering of scRNA-seq data from multiple
biological conditions (e.g. different treatments, time points,
tissues) to elucidate cell types and subpopulation of cells has
not been a major focus.

Joint clustering of scRNA-seq datasets across multiple
conditions entails, in addition to standard normalization,
feature selection, and dimension reduction, a considera-
tion of whether or not data from cells across multiple stim-
uli need to be ‘integrated’ before the downstream analy-
sis of clustering. This is because cell type-specific response
to experimental conditions may challenge a joint analysis
by separating cells both by experimental condition and cell
type. Most notably, Seurat (v3) (7) uses canonical compo-
nent analysis (CCA) (8) to perform data integration for
high dimensional gene expression across conditions. Liger
(9) achieves dimension reduction and data integration si-
multaneously by using penalized nonnegative matrix fac-
torization (NMF) to estimate factors shared across condi-
tions and specific to conditions. ScVI (10) and scAlign (11)
both use deep neural networks to infer a shared nonlin-
ear low-dimensional embedding for gene expression across
conditions. Harmony (12) iteratively performs soft k-means
clustering and condition effect removal based on cluster-
ing assignments. A common theme of these approaches is
that majority of them (Liger, scAlign, scVI and Harmony)
directly yield low-dimensional integrated data for down-
stream visualization and clustering.

While existing methods for joint analysis of scRNA-seq
data (e.g. Seurat, scAlign, and Liger among others) reg-
ularly adapt modularity maximization algoritms such as
Louvain graph clustering (13) with shared nearest neigh-
bor (SNN) graph or shared factor neighborhood (SFN)
graph built with their low-dimensional embeddings of the
data, they vastly differ in their dimension reduction tech-
niques as we outlined above. This leads to documented no-
table differences among these methods (14). To leverage
strengths of different dimensionality reduction approaches,
we develop an integrative framework named multilayer
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graph (MLG) clustering as a general approach that borrows
strength among a variety of dimension reduction methods
instead of focusing on a single one that best preserves the
cell-type specific signal. MLG takes as input a set of low-
dimensional embeddings of all the cells, integrates them into
a shared nearest neighbor graph with analytically provable
improved signal-to-noise ratio, and clusters them with the
Louvain algorithm, which has recorded outstanding per-
formances in benchmarks (15,16) and is also the default
clustering algorithm in many scRNA-seq analysis packages
such as Scanpy (17), Seurat (v2, v3) (7,18) and Liger (9).
MLG framework leverages a key observation that the near-
est neighbor graphs constructed from different dimension-
ality reductions of scRNA-seq data tend to have low depen-
dence. A consequence of this observation, supported by an-
alytical calculations, is that the resulting multilayer integra-
tive scheme yields a combined cell graph with higher signal-
to-noise ratio. We further corroborate this result with com-
putational experiments using benchmark data and illustrate
that MLG clustering outperforms current best practices for
jointly clustering cells from multiple stimuli and preserves
salient structures of scRNA-seq data from multiple condi-
tions. We illustrate this property of MLG clustering with
an application to scRNA-seq data from mouse hematopoi-
etic stem and progenitor cells (HSPCs) under two con-
ditions (with or without a Gata2 enhancer deletion)(19),
and from mouse HSPCs under four conditions (Gif1+/+,
Gif1R412X/R412X, Gif1R412X/−, Gif1R412X/− Irf8+/−) (20). Fi-
nally, we showcase how MLG enables robust analysis of re-
cent SNARE-seq (21) data which generates two data modal-
ities, accessible chromatin and RNA, within the same cells.

MATERIALS AND METHODS

Overview of multilayer graph clustering (MLG)

The MLG clustering algorithm is a general frame-
work that aggregates shared nearest neighborhood graphs
constructed from different linear and non-linear low-
dimensional embeddings of scRNA-seq data (Figure 1A).
It takes as input G sets of low-dimensional embeddings of
the same dataset generated by different dimensionality re-
duction methods, with and/or without data integration for
datasets across multiple conditions. Consequently, it con-
structs and then aggregates SNNs from each of the G em-
beddings and leverages Louvain modularity (13) maximiza-
tion algorithm for the final clustering. Figure 1A depicts the
workflow of the MLG with four existing scRNA-seq low-
dimensional embedding methods as inputs. Here, we con-
sidered dimension reduction with PCA and consensus non-
negative matrix factorization (cNMF) (22) as representa-
tives of low-dimensional embeddings without data integra-
tion across multiple conditions, and Seurat (7) and Liger (9)
as representatives with data integration. Next, we describe
the construction of the SNN graphs in detail.

Let D ∈ R
n×d0 , where n and d0 represent the number of

cells and the dimension of latent factors, respectively, de-
note a low-dimensional embedding matrix. As in Figure 1
A, the matrix D can be obtained from principal compo-
nent analysis (PCA), consensus nonnegative matrix factor-
ization (cNMF) (22) or low-dimensional embeddings from
scRNA-seq analysis packages such as scVI, Liger applied

to scRNA-seq count matrices. For each cell i, let Lk(i) de-
note the set of k nearest neighbors based on Euclidean dis-
tance across the d0 latent factor vectors. An edge is added
to the undirected SNN graph (i.e. Aij is set to 1 in the corre-
sponding adjacency matrix A) between cells i and j if their
number of common neighbors is larger than k�, where � is
a filtering threshold. The parameters k and � determine the
sparsity level of the SNN graph. A large k and small � lead
to a denser graph. While there is no optimal criteria to pick
these parameters, Von Luxburg (23) suggests k = O(n) to
guarantee a connected graph. In the analyses provided in
this paper, we used k = 20 and � = 1/5. We also showed
with our simulation study that clustering accuracy is rela-
tively robust to the choice of k.

Next, given G adjacency matrices {A(g)}, g = 1, ···, G, each
corresponding to an SNN from a low-dimensional embed-
ding, we aggregate them into a union adjacency matrix B as
follows:

Bi j =
{

1 if A(g)
i j = 1 for any g,

0 otherwise.
(1)

MLG then uses this resulting adjacency matrix B for clus-
tering with the Louvain modularity (13) maximization al-
gorithm.

Benchmark datasets

We leveraged three public scRNA-seq datasets, summarized
as (log-normalized) counts and with complementary char-
acteristics, to benchmark MLG (Supplementary Tables S1
and S2). The first dataset, that we refer to as Kowalczyk 1,
profiled transcriptomes of HSPCs among mice of differ-
ent ages (young at 2-3 months and old at 22 months) and
harbored cells from three hematopoietic stages: long-term
(LT)-HSC, short-term (ST)-HSC and multi-potent progen-
itor (MPP) (24). We used this dataset for explicitly illus-
trating how different dimension reduction algorithms op-
erate on scRNA-seq data across multiple conditions. An
extended version of this dataset, labelled as Kowalczyk 2,
included additional LT-HSC and ST-HSC cells from inde-
pendent mice that were profiled months apart from the orig-
inal dataset. A third dataset from the HSPC system (25) in-
cluded the same cell types (LT-HSC, ST-HCS and MPP)
from young and old mice and with and without LPS+PAM
stimuli. This dataset (referred to as Mann) is an example
with two factors at two levels and represents a setting with
four experimental conditions. The third dataset, labelled as
Cellbench (26), included scRNA-seq data of 636 synthetic
cells created from three human lung adenocarcinoma cell
lines HCC827, H1975 and H2228. RNA was extracted in
bulk for each cell line. Then each cell line’s RNA was mixed
in at seven different proportions and diluted to single cell
equivalent amounts ranging from 3.75 to 30 pg.

Aggregation of multiple SNNs boosts signal-to-noise ratio

Next, we define a notion of signal-to-noise ratio for graphs
and show that MLG aggregation of SNNs boosts the
signal-to-noise ratio of the sparse graphs typically found in
scRNA-seq analyses. We base our theoretical analysis on
stochastic block models (SBMs) (27), which are generative
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Figure 1. Multilayer graph (MLG) clustering workflow with an illustration on the Kowalczyk 1 dataset. (A) MLG takes as input G different low-
dimensional embeddings to construct SNN graphs, aggregates the resulting graphs, and applies Louvain algorithm for clustering the aggregated graph.
The two scatter plots on the right visualize the MLG clustering results with a force-directed layout where the cells are labeled with their true labels (left) and
MLG clustering labels (right). (B) Visualization of the PCA, cNMF, Seurat integration and Liger factors with t-SNE coordinates. Cells are labeled accord-
ing to underlying experimental conditions (top row), cell types (middle row), and Louvain clustering assignments from SNN graphs constructed with each
dimension reduction method (bottom row). (C) Adjusted Rand Index (ARI) between true cell type labels and labels from clustering/knn classification.

random graph models that serve as canonical models for
investigating graph clustering and community detection. In
the view of SBMs, cells are represented as vertices in a bi-
nary graph with edges representing similarity between cells.
The cells are assumed to reside in distinct communities de-
termined by cell-type, and this community structure deter-
mines the probability of an edge between cells. We denote
the total number of cells (vertices) by n and the number
of communities (clusters) by K. Let � be a cluster assign-
ment function where �(i) corresponds to the cluster label
for cell i, and ��(i)�(j) denotes the connectivity probability
(i.e. edge probability) between cells i and j. Furthermore,
let �in and �out denote the minimum in-cluster and maxi-
mum out-of-cluster connectivity probability. We define the
signal-to-noise ratio of the SBM as

Ĩ := (θin − θout)2

θin
. (2)

Intuitively, if the difference between the minimum in-cluster
and maximum out-of-cluster connectivity probabilities is
large, it will be easier to distinguish communities from one

another. Furthermore, this intuition is supported by theory,
as Zhang et al. (28) prove that the performance of an op-
timal SBM estimator depends heavily on Ĩ. We provide a
rigorous explication of this theoretical result in the Supple-
mentary Materials Section 1.1.

We utilize this specific notion of signal-to-noise ratio to
investigate the impact of aggregation. Given adjacency ma-
trices A1 and A2 of two independent SBM graphs on the
same set of cells and their union adjacency matrix B, we use
superscripts to indicate parameters of each graph, e.g., θ

A1
k�

represents the connectivity probability of cells in cluster k
and cells in cluster � in graph A1. In the realm of scRNA-seq
data A1 and A2 are usually quite sparse, i.e., with small θ

A1
in

and θ
A2
in . If we further assume that θ

A1
in = θ

A2
in and θ

A1
out = θ

A2
out,

we arrive at the primary result of this section

Ĩ B ≥ Ĩ A1 × (2 − θ
A1
in − θ

A1
out)

2

2 − θ
A1
in

, (3)

which implies that the signal-to-noise ratio of the aggre-
gated SBM is nearly twice that of either of the base graphs,



e127 Nucleic Acids Research, 2021, Vol. 49, No. 22 PAGE 4 OF 17

A1 and A2. We provide a detailed derivation of this result in
the Supplementary Materials Section 1.1.

This result on improved signal-to-noise ratio due to ag-
gregation is foundational for establishing operational char-
acteristics of MLG. It assumes that the SBMs are both
sparse and independent of one another. As we show in the
Results section, empirical observation also supports this as-
sumption as SNN graphs are sparse, and we see only small
proportions of overlapping edges between SNN graphs of
different low-dimensional projections. In the Supplemen-
tary Materials Section 1.2, we further show that dimen-
sion reduction leads to perturbation in the local neighbor-
hood structure of the full-data (e.g. data prior to dimen-
sion reduction) SNN graph. This, in turn, indicates that
the dependence between SNNs derived from different low-
dimensional projections is weak, and thus the overall as-
sumptions of our result on the benefits of aggregation are
approximately met. This result also explains the empirical
behavior concerning low proportions of overlapping edges
between SNN graphs that we observe across our bench-
marking datasets in the Results section.

Signal-to-noise ratio estimation

For benchmark datasets with true cell type labels, an em-
pirical version of signal-to-noise ratio for a given cell graph
can be calculated as:

SNR = (θ̂in − θ̂out)2

θ̂in
,

where θ̂in stands for the estimated minimum ‘within cell
type’ connectivity probability and θ̂out stands for the esti-
mated maximum ‘out-of-cell type’ connectivity probability.
Let A ∈ {0, 1}n × n denote the adjacency matrix of a cell
graph with n cells from K cell types and let Ck denote the
set of cells in cell type k. Then, θ̂in and θ̂out are given by

θ̂in = min
k∈{1,...,K}

2 × ∑
i, j∈Ck,i< j Ai j(|Ck| × (|Ck| − 1)

) ,

θ̂out = max
k�=�,k,�∈{1,...,K}

2 × ∑
i∈Ck, j∈C�,i< j Ai j(|Ck| × (|C�|)

) .

Details on the execution of different scRNA-seq analysis
methods

PCA. PCA is implemented through the Seurat (ver-
sion 3.1.4) package. Specifically, we used Seurat
function NormalizeData to scale counts with a size fac-
tor of 10,000 and then performed log-transformation while
adding a count of 1 to avoid taking log of 0. The functions
FindVariableFeatures and ScaleDatawere used to
find highly variable features and adjust for technical and bi-
ological effects, respectively. The condition labels and to-
tal gene counts were regressed out with ScaleData for all
simulated, benchmark, and application datasets. The per-
centage of mitochondrial gene counts were also regressed
out for the dataset Johnson20. Each gene is scaled by its
standard error of counts across cells before performing
PCA with the RunPCA function.

cNMF. cNMF is applied through the code provided by
(22) on Github https://github.com/dylkot/cNMF. Count
matrices were provided as input for cNMF. Normalization
and feature selection were carried out within the cNMF
pipeline. The consensus analysis used 50 NMF runs.

Seurat-integration. Following the Seurat tutorial, func-
tion SplitObject was used to split each dataset by
conditions, then FindIntegrationAnchors and In-
tegrateData were applied to integrate gene expression
across conditions. The integrated gene expression matrix
was scaled with function ScaleData. RunPCA was used
to reduce the dimensionality of the scaled and integrated
gene expression matrices.

Liger. Gene expression count matrices were normalized
with the R package rliger(1.0.0) function normal-
ize. Highly variable genes were chosen with select-
Genes. Functions scaleNotCenter, optimizeALS,
quantile norm and louvainCluster were utilized to
scale gene expression, integrate data and cluster cells. We
used the low-dimensional embedding in data slot @H by
scaling it to have row sum of 1 in SNN graph construction
for MLG.

scAlign. Our application followed the tutorial of
scAlign on Github https://github.com/quon-titative-
biology/scAlign. To reduce computation time, we used
PCA factors as input for encoder neural networks.

Harmony. We appliedHarmony through the Seurat work-
flow with the RunHarmony function. nclust parameter
was set to the true numbers of clusters for both the simu-
lated and benchmark datasets.

scVI. ScVI is implemented through the scVI python
package, available at https://scvi.readthedocs.io/en/stable/.
We followed its ‘basic tutorial’ for model training, and used
sample latent factors as input for k-means or Louvain clus-
tering.

Parameters common to all methods. We kept 3000 genes
for all the benchmark scRNA-seq datasets and 2500 genes
for the simulated datasets. We kept 15 latent factors from
all dimension reduction or data integration methods for the
analysis of the benchmark scRNA-seq datasets. We applied
k-means with the R function kmeans and set the numbers
of clusters to the true number of clusters for all the simu-
lated and benchmark datasets. Louvain clustering was ap-
plied through Seurat::FindClusters. The resolution
was chosen through grid search until the target number of
clusters was met. The target number of clusters were set to
the true numbers of clusters for the benchmark datasets.
The numbers of clusters for Johnson20 and Muench20 was
chosen by the eigengap heuristic (23).

Differential expression analysis

Differential expression analysis was carried out with func-
tion Seurat::FindMarkers using the ‘MAST’ algo-
rithm. In the case of multiple conditions per dataset, cluster
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markers were identified with a differential expression analy-
sis of cells from the same condition across different clusters
and the P-value was set to be the smallest among all condi-
tions.

The precision-recall analysis was performed based on
gold standard cell type marker genes and cell type-specific
DE genes across conditions, defined as having Bonferroni
corrected P-values <0.01 in the analysis with the true cell
labels. The precision-recall values were reported at cutoffs
of 0.2, 0.1, 0.05, 0.01 and 0.001 for Bonferroni adjusted P-
values in the cell type marker gene and condition DE gene
identification analysis.

Average mixing metric

We utilized the mixing metric proposed in (7), implemented
as function MixingMetric in Seurat, to quantify how
well cells among different groups are mixed. The metric op-
erates by constructing an ordered nearest neighbor list Si for
each cell i with the default number of neighbors set as 300.
It then computes the 5th nearest neighbor of cell i in each
group j, and evaluates its rank in the ordered list Si. The
mixing metric for cell i is the median of these ranks over all
groups. The average mixing metric is the mean of the mixing
metrics for all cells in the dataset. The range of average mix-
ing metric is from 5 to 300. A small average mixing metric
indicates well mixed cells among groups.

Metric for evaluating how well clusters delineate established
lineage markers

In order to evaluate how well different clustering results de-
lineate known lineage-specific marker gene expression, we
considered established lineage marker gene sets {gi }M

i=1 and
cluster labels of the genes for clusters {1, 2, . . . , K}. For each
gene gi, we denoted the cluster in which gi is the most highly
expressed as Kgi . We then performed a two-sample differen-
tial expression test with null hypothesis that the expression
of gi in and out of cluster Kgi are the same, and denoted
the resulting gene-level p-value as pgi . Next, we combined
the gene-level p-values using Fisher’s combined probability
test. The Chi-squared test statistic for this combined test is
defined as

− 2
M∑

i=1

ln (pgi ) ∼ χ2
2M.

Clustering methods resulting in larger Chi-squared test
statistic were considered as delineating the lineage markers
better. Specifically, we used the R package scran (ver-
sion 1.20.1) (29) to conduct the differential expression
test instead of the R package Seurat to avoid truncation
of the small P-values into 0 by Seurat.

Gene set enrichment analysis

Gene set enrichment analysis was carried out with the R
package topGO(version 2.36.0) using the Fisher’s
exact test and elim (30) algorithm.

Simulations

Our two main simulation set-ups are based on the com-
monly used R package Splatter (31) for simulating
scRNA-seq data and an adaptation of the simulation setting
of (22) which takes advantage of Splatter and allows dif-
ferential expression across conditions. In the latter set-up,
the mean gene-expression profile for each cell is a weighted
sum of cell identity gene expression program (GEP) and ac-
tivities GEPs. Here, the cell identity GEP characterizes cell
types whereas the activity GEP represents other sources of
biological variations, like cell cycle effects or responses to
specific stimuli. This set up also mimics the datasets with
multiple cell types under stimuli (e.g., HSPCs from old and
young mouse), that we have utilized in this paper. Specif-
ically, each simulation replication involved the following
data generation process.

1. Simulate base mean expression. For gene w (w = 1,
. . . , W), sample the magnitude of mean expression
λ′

w ∼ Gamma(α, β), the outlier indicator po
w ∼ Ber(πo),

and the outlier factor ψ ′
w ∼ Lognormal(μo, σ o). The

base mean expression for gene w is defined as λw :=
po

wψ ′
wMedianw(λ′

w) + (1 − po
w)λ′

w.
2. Simulate gene expression program (GEP). For gene

w, sample differential expression (DE) indicator pw

∼ Ber(�), DE factor ψw ∼ Lognormal(�, �), and
down regulation indicator pd

w ∼ Ber(πd ). Let ψ̃w :=
ψw1{ψw>1} + 1

ψw
1{ψw≤1}. The DE ratio for gene w is

defined as δw := (1 − pw) + pw pd
w

1
ψ̃w

+ pw(1 − pd
w)ψ̃w.

The GEP is given by G := (
λw × δw

)W
w=1, where W is the

total number of genes. Here, λw and δw denote the base
gene mean and DE ratio of gene w, respectively. This
procedure can be used to simulate identity and activity
GEPs, with slightly different set of parameters (�, �d, �,
�).

3. Simulate mean gene expression for cell type t and condi-
tion c (t = 1, . . . , T, c = 1···C). Following the procedure
in step 2, simulate identity GEP Gidenti ty

1 , . . . ,Gidenti ty
T

and activity GEP Gactivi ty
1 , . . . ,Gactivi ty

A . Given activ-
ity GEP weights {utc

a }A
a=1 for cell type t and condi-

tion c, the cell type and condition specific mean gene
expression is defined as �tc := ∑A

a=1 utc
a G

activi ty
a + (1 −∑A

a=1 utc
a )Gidenti ty

t . Activity GEP weights control the
magnitude of condition effects.

4. Correct for library size. For cell k in cell type t and
condition c, sample the library size for cell k Lk ∼
Lognormal(�l, �l). The mean gene expression of cell k
after correction for the library size is �L

k := �tc

(�tc)T1 × Lk.
5. Correct for biological coefficient of variation (BCV). Let

� be the BCV dispersion parameter, df be the degrees
of freedom of the BCV inverse � 2 distribution. The
BCV for gene w of cell k is sampled through the for-

mula Bk,w = (φ + 1/

√
�L

k,w)(df/χ2
df)1/2. The BCV cor-

rected mean for gene w of cell k is sampled by �∗
k,w ∼

Gamma(1/B2
k,w,�L

k,w B2
k,w).

6. Generate counts. Sample counts for gene w of cell k
Yk,w ∼ Pois(�∗

k,w).
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In order to make these simulations realistic, we
set the parameters in a data-driven way. Specif-
ically, the parameters of the simulation setting
(α = 1.46, β = 1.48, πo = 0.091, μo = 2.82, σ o =
0.84, μl = 8.95, σ l = 0.45, φ = 0.11,df = 36.57) are
estimated from the Johnson20 dataset with the Splat-
ter package. We considered four settings to explore the
robustness of MLG to different magnitude of condition
effects and its ability to identify rare cell types (condition
specific parameters are summarized in the Supplementary
Table S3). By varying the magnitudes of the stimulus
effect with the weight of the activity GEPs, we evaluated
operating characteristics in the the cases with large (settings
1, 3) and small (settings 2, 4) condition effects. Similarly,
by varying the proportions of cells in simulated cell types,
we assessed performances in cases with both balanced cell
proportions (settings 1, 2) and rare cell types (settings 3, 4).

An additional set of simulations, settings 5-8, are gen-
erated by Splatter, with designs similar to settings 1-4
(Supplementary Table S4). However, the advantage of the
set-up with settings 1-4 is its ability to generate more nu-
anced condition effects than the Splatter simulated ‘batch
effects’. Splatter enables generation of multiple conditions
in the form of batch effects by multiplying gene expression
with a ‘differential expression ratio’. Such an effect tends to
be easy to remove by regressing out the batch labels in the
preprocessing step (Supplementary Figures S5 and S7).

RESULTS

The multilayer graph (MLG) clustering algorithm

We first present a detailed illustration of MLG on the
Kowalczyk 1 dataset (hemotapoitic stem and progenitor
cells from young and old mice). The first and second rows in
Figure 1B depict the two-dimensional visualizations of the
low-dimensional embeddings of the Kowalczyk 1 dataset
with t-SNE (32) labeled by condition and cell types, re-
spectively. The third row presents the Louvain clustering
labels for each embedding. A direct comparison of the
second and third rows illustrates the inaccuracies of each
method for cell type identification. A similar visual illus-
tration of the MLG results is provided in the right most
panel of Figure 1A. To evaluate the performances of these
low-dimensional embeddings independent of clustering, we
followed a supervised approach. We leveraged a k-nearest
neighbor (knn) classifier to classify the cells, and computed
the commonly used metric adjusted Rand index (ARI, (33))
between predicted class labels and the true labels. The ARI
values from the knn classification represent the best achiev-
able performances with these low-dimensional embeddings.
In addition to this, we also quantified the clustering perfor-
mance of each method by ARI (Figure 1C).

The ARIs of the knn classifier with PCA and cNMF fac-
tors are 0.84 and 0.76, whereas the ARI of knn classifier
with Seurat and Liger integrated data are 0.75 and 0.70,
respectively. While PCA and cNMF keep cells from the
same cell type close to each other in their respective low-
dimensional spaces, Seurat and Liger perform similarly well
in aligning data across conditions. However, all four meth-
ods exhibit cell type mix-up and, as a result, none of the

methods have an ARI higher than 0.51 when these low-
dimensional embeddings are clustered (Figure 1C). In the
context of graph clustering, cells are partitioned so that cells
within the same cluster are densely connected, while cells in
different clusters are loosely connected. We observe for this
dataset that, with dimension reduction without data inte-
gration, the clustering algorithm tends to separate cells un-
der different conditions, e.g., old and young LT-HSCs with
cNMF factors. However, after Seurat and Liger data inte-
gration, graph clustering tends to separate MPP cells into
different clusters. To leverage strengths of different dimen-
sion reduction strategies, MLG clustering first constructs
shared nearest neighbor graphs (SNNs) from each of the
low-dimensional embeddings. Then, it aggregates the adja-
cency matrix of the resulting graphs with a union operation
and employs modularity maximization (13) to cluster the re-
sulting graph. By aggregating the SNNs obtained from each
dimension reduction approach, MLG boosts the signal-to-
noise ratio and improves the ARI from individual methods
by 25% to 0.76.

In the following sections, we first provide explicit ex-
amples supporting the analytical underpinnings of MLG
clustering as outlined in the Methods section and demon-
strate how different low-dimensional embeddings can com-
plement each other. We then evaluate MLG clustering on
both simulated and benchmark datasets and compare it
with state-of-the-art methods. Next, we discuss a weight-
ing scheme to enable incorporation of additional low-
dimensional embeddings into MLG and illustrate how this
weighting scheme provides robustness. We showcase MLG
in two separate scRNA-seq applications involving cells
from two (19) and four different conditions (20), respec-
tively. We further discuss how MLG can also be adapted be-
yond the analysis of scRNA-seq to SNARE-seq (21) which
profiles transcriptome and chromatin accessibility from the
same cells simultaneously.

Aggregating signal from shared nearest neighbor graphs of
multiple low-dimensional embeddings boosts the ‘signal-to-
noise’ ratio

A challenging aspect of generating low-dimensional em-
beddings of scRNA-seq data across multiple conditions
is that, different dimensionality reduction methods might
capture different aspects of the data. As a result, graph
representations of the data constructed for downstream
clustering might vary significantly between different lower-
dimensional embeddings. In the HSCs of old and young
mice (Kowalczyk 1 from Figure 1), SNN graphs constructed
from PCA and cNMF factors of the gene expression count
matrix (with and without data integration across condi-
tions) have small proportions of overlapping edges (Fig-
ure 2A). Specifically, SNN graphs from any two low-
dimensional embeddings, except the pair PCA and Seurat-
integration, which also performs PCA as the final dimen-
sion reduction, have at most 30% of their edges overlap-
ping, indicating low dependence between these construc-
tions. One possible reason for this, as we argue analytically
in the Supplementary Materials Section 1.2, is that dimen-
sion reduction alters neighbors of cells. Furthermore, we
also observe that all of the constructions tend to be sparse
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Figure 2. Graph characteristics of SNN graphs and the multilayer graph of the Kowalczyk 1 dataset. (A) Heatmap of the proportion of overlapping edges
between pairs of SNN graphs from different low-dimensional embeddings. (B) Proportion of cell pairs with edges across aggregation of individual SNN
graphs from PCA, cNMF, Seurat and Liger low-dimensional embeddings. The number of layers represents the total number of individual SNN graphs
that harbor edges between the cell pairs. (C) ARI of MLG clustering constructed by pairs of SNN graphs from the low-dimensional embeddings indicated
as the rows and columns. Diagonal entries represent ARIs of SNN graph clustering from individual low-dimensional embeddings. (D) Estimated graph
signal-to-noise ratios of individual SNN graphs and their multilayer graph.

as indicated by the proportion of cell pairs with no edges in
the individual SNN graphs (bar labelled as ‘with no edge’
in Figure 2B).

Leveraging these empirical observations and recent ad-
vancements in stochastic block models, we show in the Sup-
plementary Materials Section 1.1 that aggregating two suf-
ficiently sparse graphs with independent edges by taking
union of their edges leads to a graph with amplified ‘signal-
to-noise’ ratio. Here, as we presented in the Methods sec-
tion, we are using a notion of ‘signal-to-noise’ that refers
to difference in connectivity of cells that are within the
same cluster (i.e. cell type/stage) versus that are in differ-
ent clusters. Figure 2C presents ARI values of MLG clus-
tering based on pairs of SNN graphs (off-diagonal entries)
and those of clusterings based on individual SNN graphs
(diagonal entries). We observe that all the 2-layer MLG
applications have improved clustering performance com-
pared to SNNs from individual low-dimensional embed-

dings (e.g. Liger alone achieves an ARI of 0.35 whereas
MLG with Liger and PCA low-dimensional embeddings as
its two layers achieves 0.71). As expected, since the SNN
graphs constructed with PCA and Seurat have more over-
lapping edges (56%), their 2-layer MLG results in the least
improvement in ARI with a value of 0.57 compared to 0.48
and 0.49 with PCA and Seurat alone.

A majority of cell pairs (88%) do not have edges in any of
the four layers of the SNN graph constructed from aggre-
gation of PCA, cNMF, Seurat-integration, and Liger SNN
graphs (Figure 2B). This is due to sparsity of individual
SNN graphs. Furthermore, about 67% percent of the cell
pairs with edges, have edges in only one layer, suggesting
that different dimension reduction methods are capturing
distinct features of the data. Aggregating the four layers
with union operation increases the signal-to-noise ratio to
three times of any single SNN graph layer (Figure 2D). A di-
rect impact of this is increased clustering accuracy by MLG
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compared to clustering of SNN graphs from individual low-
dimensional embeddings. In fact, MLG clustering almost
achieves the accuracy of supervised knn classifiers (0.76 ver-
sus 0.80, Figure 1C).

Increased ‘signal-to-noise-ratio’ by MLG aggregation trans-
lates into significant improvements in clustering accuracy and
stability in computational experiments

To systematically evaluate the ability of MLG in improv-
ing clustering performance over clustering with individual
graphs from specific low-dimensional embeddings, we con-
ducted simulations from the settings described in Materials
and Methods. We present here detailed results from setting
1 which is an adaptation of the general simulation setting
from (22) where cell types exhibited condition specific ef-
fects. We generated multiple simulation replicates (100 for
simulation settings 1 & 2 and 50 for settings 3-8), where each
replicate included a total of 2500 cells from three cell types
and across two conditions.

We considered four different dimension reduction pro-
cedures for MLG: PCA and cNMF, which do not per-
form comprehensive data integration, Seurat and Liger
both of which perform data integration for cells from dif-
ferent conditions. We varied the apparent parameters of
each method such as the numbers of PCA and NMF com-
ponents and numbers of neighbors in the construction of
SNN graphs. To compare with the MLG clustering, we ap-
plied both k-means and Louvain clustering on the SNN
graphs constructed by the individual low-dimensional em-
beddings from these methods. Furthermore, we employed a
supervised k-nearest neighbor classifier to establish the best
achievable clustering performance for each graph in terms
of ARI.

We first assessed the level of dependence between the
SNN graphs constructed from these four low-dimensional
embeddings across the simulation replicates and observed
that the majority of the cell pairs were connected only in
one of the SNN graphs. Specifically, only 3.6% of the pairs
connected in at least one layer were common to all 4-layers
(Figure 3A), a level comparable to 5.7% in the Kowalczyk 1
benchmark dataset (5.7% is calculated by ‘with edge in four
layers’ as a percentage of all pairs with edge in at least one
layer in Figure 2B). Furthermore, the estimated signal-to-
noise ratios of each graph supported the signal boost by
MLG (Figure 3B). Figure 3D summarizes the ARI values of
supervised knn, Louivan and k-means clustering with each
individual low-dimensional embedding as a function of the
numbers of PCA/cNMF components across the simula-
tion replicates. We observe that MLG provides a median in-
crease of 13%, 9%, 34% and 55% in ARI compared to Lou-
vain clustering of individual PCA, cNMF, Seurat and Liger-
based low-dimensional embeddings, respectively (first row
of Figure 3D). Improvement in ARI by the MLG cluster-
ing with the Louivan algorithm is even higher (median levels
of 85%, 9%, 80% and 45%) compared to k-means cluster-
ing of the low-dimensional embeddings by each of the four
methods (first versus second rows of Figure 3C). Further-
more, MLG yields accuracy levels that are comparable to
those of best knn accuracy in a supervised setting by these
four methods (third row of Figure 3D). Since both the di-

mension reduction methods and SNN graph construction
depend on key parameters such as the numbers of latent
factors and numbers of neighbors, we varied these param-
eters in a wide range and observed robustness of MLG to
the choice of these two parameters (Figure 3C, D).

Simulation setting 2 explores the case when the condition
effect is relatively small (Supplementary Figure S2, with
an average between conditions mixing metric of 13.4) and,
therefore, data integration is not required. The MLG re-
sult with only two layers (PCA and cNMF) is presented
in Supplementary Figure S1. There is an average of 15%
and 11% increase in ARI over Louvain clustering using
only PCA and cNMF factors (Supplementary Figure S1D).
The clustering performance is also robust over a wide range
of numbers of latent factors and numbers of neighbors
(Supplementary Figure S1C, D). Simulation settings 5 & 6,
with similar designs to settings 1 & 2, are generated using
Splatter (Supplementary Figure S5) and include con-
dition effects that can be captured and removed by PCA.
In these settings, MLG and PCA have better performances
than cNMF, Seurat and Liger (Supplementary Figure S6).
In addition to simulations investigating large and small con-
dition effects (settings 1, 2, 5 and 6), we also assessed the
impact of rare cell types (settings 3 & 4, Supplementary Fig-
ure S3; settings 7 & 8, Supplementary Figure S7). We used
both the Adjusted Rand Index (ARI) and probability of
identifying rare cell types as performance metrics. For each
simulated dataset, a method is deemed to successfully iden-
tify the rare cell type if the corresponding results included
a cluster with more than 80% of its cells coming from the
rare cell type. Then, the probability of identifying a rare cell
type for a method is the average rate of rare cell type identi-
fication across all simulated datasets. As depicted in Supple-
mentary Figures S4 and S8, MLG presents advantages over
other methods in ARI and yields a rare cell types identifi-
cation probability comparable to its best composite layer.

MLG clustering outperforms other methods in recovering
known biological signal

We next compared MLG clustering to state-of-the-art
scRNA-seq dimension reduction and data integration
methods on the benchmark datasets with cells from mul-
tiple conditions and ground truth cell type labels, namely
Kowalczyk 1, Kowalczyk 2, Mann and Cellbench (Figure 4).
These datasets exhibit different levels of difficulty for clus-
tering based on the average mixing metric (7), which ranges
from 5 to 300 and quantifies how mixed different group of
cells are (Figure 4 A). The separations between conditions
are relatively small in datasets Kowalczyk 1, Kowalczyk 2,
Cellbench, indicating that condition specific responses of
cells do not dominate over their cell type-specific expres-
sion programs, and are markedly large in Mann with av-
erage mixing metrics of 10.3, 12.0, 13.7 and 27.0, respec-
tively. In contrast, separations between cell types are low
in Mann and high in Cellbench, with average mixing met-
rics of 41.8 and 278.7, respectively. This exposition of con-
dition and cell type separation levels indicate that Cell-
bench is the easiest to cluster and Mann is the hardest. In
these benchmarking experiments, we extended the set of
methods we considered to include Harmony integration,
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Figure 3. Simulation results for the ‘large-condition-effect’ setting. (A) Proportions of cell pairs with edges across different numbers of layers of MLG
constructed from SNN graphs of PCA and cNMF, Seurat, and Liger (with 20 neighbors in SNN graphs and 10 latent factors in low-dimensional em-
beddings). The boxplots depict the proportions across all the simulation replicates. (B) Estimated signal-to-noise ratios of SNN graphs constructed from
different low-dimensional embeddings and their multilayer graph across all the simulation replicates (with 20 neighbors in SNNs and 10 latent factors in
low-dimensional embeddings). (C) Louvain clustering accuracy of SNN graphs as a function of numbers of neighbors in SNN graph construction (with
10 latent factors in low-dimensional embeddings). (D) Adjusted Rand index comparison of Louvain and k-means clustering of SNN graphs from different
low-dimensional embeddings and their MLG as a function of number of latent factors in the low-dimensional projections (with 20 neighbors in SNN
graphs). ARI values of supervised knn classifiers for individual SNN graphs are provided as reference.

scVI batch correction, and scAlign integration in addition
to PCA and cNMF dimension reduction, Seurat integra-
tion, Liger integration. We performed both k-means cluster-
ing with the latent factors estimated from these dimension
reduction/data integration methods and also Louvain clus-
tering with graphs constructed from their low-dimensional
embeddings (with package default weighted SNN for Seu-
rat, package default SFN graph for Liger, unweighted SNN
graphs for all other methods). As an overall measurement
of the difficulty of the clustering task, we performed super-
vised knn classification using SNN/SFN graphs and ob-
served largely similar supervised knn accuracy from differ-
ent low-dimensional embeddings (Figure 4B) (with scAlign
on Cellbench and Mann datasets as notable exceptions). The
accuracies of k-means and Louvain clustering with graphs
from individual low-dimensional embeddings are markedly
lower than their corresponding knn classifiers for datasets

Kowalczyk 1, Kowalczyk 2, and Mann. Harmony, Seurat
and PCA perform well for Cellbench which is an easier
dataset in terms of clustering since the separation between
the cell types is large (Figure 4A). MLG clustering outper-
forms the alternatives across all datasets with a minimum
of 13% and a maximum of 64% increase in ARI. Each clus-
ter identified by MLG has a dominating cell type, as de-
picted in Supplementary Figure S12. Furthermore, as ap-
parent from the Louvain clustering results of individual
low-dimensional embeddings in Figure 4B, MLG does not
require each individual SNN graph it aggregates over to
perform well. For example, while Seurat, Liger, PCA and
cNMF have individual ARIs of 0.35, 0.11, 0.10, 0.00, re-
spectively, by combining SNN graphs resulting from these,
and boosting signal-noise-ratio, MLG outperforms their in-
dividual performances with an ARI of 0.51 for the Mann
dataset that appears to be the most challenging to cluster.
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Figure 4. Evaluation with benchmark datasets. (A) Average mixing metric between cell types (x-axis) and conditions (y-axis) for the four benchmark
datasets. The mixing metric ranges between 5 and 300, with larger values indicating large separation between the groups (e.g. cell types or conditions).
(B) Louvain and k-means clustering accuracy of different methods across the benchmark datasets. Supervised knn classification for SNN graphs from
each low-dimensional embedding is provided as a measure of the difficulty of the clustering task. (C) Comparison of the 4-layer MLG (PCA, cNMF,
Seurat-integration, Liger) with the 2-layer MLG (PCA, cNMF) across the benchmark datasets.



PAGE 11 OF 17 Nucleic Acids Research, 2021, Vol. 49, No. 22 e127

We leveraged these benchmark datasets to further in-
vestigate the impact of different low-dimensional meth-
ods aggregated by MLG. Figure 4C displays the ARI val-
ues of 2-layer MLG which aggregates over only PCA and
cNMF and 4-layer MLG which also aggregates over low-
dimensional embeddings from data integration with Seurat
and Liger. Empirically, when condition separation, as mea-
sured by the average mixing metric and also visualized by
tSNE or UMAP visualizations of the data prior to integra-
tion, is low as in Kowalczyk 1, Kowalczyk 2 and Cellbench
datasets, the two MLG strategies perform similarly; how-
ever, for datasets with larger separation between conditions
(Mann), MLG benefits significantly from aggregating over
low-dimensional embeddings from data integration.

MLG strategy is robust to imbalanced cell type representa-
tions across conditions

When considering scRNA-seq datasets across multiple con-
ditions, a key challenge is the ability to identify distinct cell
types in cases with varying levels of representation of cell
types under different conditions. Among the benchmark
datasets we considered, Kowalczyk 1 and Mann have rel-
atively balanced cell types in different conditions. Specif-
ically, in the Kowalczyk 1 dataset, the three different cell
types (LT-HSC, MPP, ST-HSC) vary at proportions of
(0.17, 0.18, 0.18) and (0.16, 0.16, 0.15) among the old and
young mice, respectively. Similarly, in the Mann dataset, the
three different cell types (LT-HSC, MPP, ST-HSC) vary at
proportions of (0.11, 0.02, 0.09), (0.12, 0.05, 0.12), (0.04,
0.03, 0.07) and (0.10, 0.10, 0.14) among the old-no-stimuli,
old-stimuli, young-no-stimuli and young-stimuli mice con-
ditions, respectively. Taking advantage of these balanced
datasets, we conducted a computational experiment to in-
vestigate performance under imbalanced cell type represen-
tations across the conditions. Specifically, we subsampled
‘old MPP’ cells in Kowalczyk 1, and ‘old-stimuli-MPP’ cells
in Mann, at proportions 0, 0.10, 0.25, 0.50, 0.75 and 1 of the
original size, where 1 corresponded to the original dataset.
Figure 5A reports the mean, 5, and 95 percentiles of the
ARI values across 20 sub-sampling replications for the 2-
layer MLG (PCA and cNMF), 4-layer MLG (PCA, cNMF,
Seurat, Liger) and Louvain and k-means clustering with
PCA, cNMF, Seurat, Liger, Harmony latent factors. For
Kowalczyk 1, 2-layer MLG outperforms other methods and
is robust to the imbalance of the cell types between condi-
tions. PCA and cNMF can accommodate the small sepa-
ration between conditions of this dataset without any ex-
plicit data integration (Figure 4B). However, methods uti-
lizing data integration are affected by the misalignment of
cells, which in turn reduces their clustering accuracy (Seu-
rat, Liger). The 4-layer MLG is also relatively robust to
cell type imbalance despite its aggregation over Seurat and
Liger, and outperforms clustering with all individual low-
dimensional embeddings in accuracy and stability. Since the
Mann dataset has larger separation between conditions, ag-
gregation over only methods without data integration (2-
layer MLG) results in similarly poor performance as PCA
and cNMF. In contrast, the 4-layer MLG, by aggregating
over data integration methods Seurat and Liger in addition
to PCA and cNMF, has the highest ARI. Compared to the

balanced case (labeled as 1 in Figure 5A), 4-layer MLG suf-
fers from accuracy loss because of mis-aligned cells in inte-
gration; however, it still performs better than using just one
layer of integrated data.

MLG clustering across multiple stimuli leads to more power-
ful downstream differential expression analysis

We evaluated the impact of improvement in clustering ac-
curacy by MLG clustering on the downstream analysis of
identifying marker genes of individual cell types and cell
type-specific differentially expressed (DE) genes across con-
ditions. We first generated ‘gold standard’ marker genes and
lists of differentially expressed genes using the true labels of
the cells in the benchmark datasets (Materials and Meth-
ods). Next, we identified cluster-specific marker genes and
lists of DE genes across conditions using the cluster as-
signments obtained with MLG clustering and the alterna-
tive methods used for the benchmark datasets. We eval-
uated whether more accurate separation of the cell types
by MLG leads to marker and DE gene identification that
aligns better with the gold standard sets with precision-
recall (PR) curves (Figure 5B for the Kowalczyk 1 datasets,
Supplementary Figures S10, S11 for the Kowalczyk 2 and
Mann datasets). Overall, MLG exhibits better PR values for
both cell type marker and condition DE gene identification
across multiple datasets. More specifically, MLG is the only
method with moderate to high precision-recall in identify-
ing cell type marker genes for ST-HSC, whereas all other
methods perform poorly in identifying marker genes spe-
cific to this cell type (Figure 5B).

A weighting scheme enables robust incorporation of addi-
tional composite layers to MLG

We have considered four scRNA-seq dimension reduction
methods to provide composite layers for MLG based on
(i) how well they are already adapted by the community
(PCA, Seurat); (ii) the type of dimension reduction they em-
ploy (NMF based cNMF and Liger in addition to PCA);
and (iii) whether or not they have built in data integration
(Seurat, Liger). The second reasoning is based on our an-
alytical result (Supplementary Materials Sections 1.1, 1.2)
that aggregating results from different dimension reduction
methods that lead to sparse and independent shared nearest
neighbor graphs improves the signal-to-noise ratio. We also
evaluated construction of MLG with scVI, Harmony, and
scAlign, and decided not to utilize these methods in con-
structing MLG. Harmony and scVI both show moderate
dependencies with PCA in multiple datasets (their average
proportion of overlapping edges with PCA-SNN graph are
63% and 45%, respectively, in the benchmark datasets), and
are therefore excluded to ensure low dependence between
the dimension reduction methods as required by the analyt-
ical calculations that support improved signal-to-noise ratio
(Supplementary Materials Section 1.1). scAlign using PCA,
or CCA as input are correlated with PCA and Seurat results.
While scAlign allows using gene expression without initial
dimension reduction as input, such an execution is compu-
tationally expensive (55 min of elapsed time, 25 h of CPU
time for a dataset of 1000 cells).
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Figure 5. Robustness analysis of clustering over imbalanced samples and downstream impact of MLG clustering on marker gene identification. (A)
Adjusted Rand index from Louvain and k-means clustering of low-dimensional embeddings with varying levels of imbalance in the proportion of cells
from different cell types. For the Kowalczyk 1 and Mann datasets, varying proportions of MPP cells from the ‘old’ and ‘old, stimulated’ conditions were
subsampled for the respective analysis. Reported ARI values correspond to mean, 5 and 95 percentiles across 20 subsampling experiments. (B) Differential
expression analysis for cell type/cluster marker gene identification and condition (young versus old) DE gene identification in the Kowalczyk 1 dataset.
The precision-recall (PR) values in the top panel evaluate inferred cluster (i.e. cell type) marker genes of each method against cell type marker genes defined
with ground truth cell type labels as gold standard. The bottom panel evaluates the inferred condition (i.e. age) DE genes of each cell type against the
gold standard. Gold standard cell type marker and age DE genes are defined as genes with Bonferroni corrected P-values less than 0.01 in the differential
expression analysis with ground truth cell labels. The PR values are reported at cutoffs of 0.2, 0.1, 0.05, 0.01 and 0.001 for Bonferroni adjusted p-values in
the cluster marker gene and age DE gene identification analysis.
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In extending our benchmarking experiments to include
additional layers, we observed that the improvement in ac-
curacy of MLG starts to get ‘saturated’ after adding four
layers with PCA, cNMF, Seurat, and Liger (Supplemen-
tary Figure S27). To enable potential integration of addi-
tional dimension reduction methods by users, we developed
and evaluated a weighting scheme (Supplementary Mate-
rials Section 1.3). Weighted MLG evaluates each dimen-
sion reduction result using their knn graph’s ability of incor-
porating cells from different conditions and predicting the
gene expression profiles of neighboring cells. In simulation
settings 3, 4, 7, and 8, it yields higher rare cell type iden-
tification probability (with an average improvement of 9%
over MLG across all the rare cell type simulation settings)
and better protection over irrelevant layers (Supplementary
Figure S9). Collectively, this suggests that weighted MLG
provides a robust way of incorporating additional layers to
MLG beyond the four core methods (PCA, cNMF, Seu-
rat and Liger) we have extensively utilized and evaluated.

MLG clustering confirms disrupted differentiation patterns
in HSPCs lacking the murine Gata2 -77 enhancer

We utilized MLG clustering to analyze scRNA-seq data of
hematopoietic progenitor cells sorted from E14.5 fetal liv-
ers of −77+/ + (wild type, WT) and −77−/ − (mutant, MT)
murine embryos (dataset Johnson20 from (19)). The mu-
tant condition corresponded to homozygous deletion of the
murine Gata2 −77 enhancer, located −77 kb upstream of
the Gata2 transcription start site, as described in (19). The
samples from both WT and MT mice included a complex
mixture of progenitors with diverse transcriptional profiles
(34) from a pool of common myeloid progenitor (CMP) and
granulocyte-monocyte progenitor (GMP) cells and resulted
in 14,370 cells after pre-processing (19). Exploratory analy-
sis with the data visualization tools t-SNE (32), UMAP and
SPRING (35) revealed a small separation between the cells
from the wild type and mutant conditions and an average
mixing metric of 15.25. Furthermore, Johnson et al. (36)
previously showed that −77+/ + fetal liver CMPs have the
potential to differentiate into erythroid and myeloid cells
ex vivo. In contrast, the mutant −77−/ − CMPs and GMPs
generate predominantly macrophage progeny. This insti-
gated us to proceed with clustering of the cells without data
integration since the subsampling experiments with bench-
mark datasets highlighted that data integration may cause
misalignment of cells in this setting with potentially imbal-
anced cell types.

We constructed a multilayer graph from PCA (after re-
gressing out total counts, mouse batch effects, and percent-
age count of mitochondrial transcripts) and cNMF fac-
tors. Figure 6A displays the SPRING visualization of the
MLG clustering with four optimally chosen clusters based
on the eigengap heuristic (23), and also highlights pseudo-
time trajectories of the wild type and mutant cells. We
linked these clusters to established cell populations as (i)
CMP, (ii) erythroid/megakaryocyte, (iii) bipotential GMP
and monocyte, (iv) neutrophils, by leveraging established
lineage defining markers of these HSPC populations (37),
i.e., Flt3 and Hlf for CMPs, Hba-a2 and Car1 for erythro-
cytes; Ly86 and Csf1r for monocytes; Gstm1 and Fcnb for

neutrophils, and Pf4 for megakaryocytes (Figure 6A). Over-
all, cells in different clusters exhibited expression patterns of
documented lineage markers (37) consistent with their in-
ferred cluster labels (Supplementary Figure S15). Further-
more, an unbiased marker gene analysis of each MLG clus-
ter with MAST (38) (Supplementary Figure S14) yielded
marker genes. A gene set enrichment analysis with top 50
marker genes of each cluster agreed with the MLG clus-
ter labels based on known lineage markers (Supplementary
Figure S23).

Next, we compared MLG clusters with Louvain cluster-
ing of the cell graphs constructed from PCA, cNMF fac-
tors, Seurat-integration, Liger, Harmony, scVI and scAlign
(Figure 6B). cNMF, Seurat-integration, Liger, Harmony,
scVI and scAlign tended to partition the cells based on
their mitochondrial gene expression. Specifically, the clus-
ters in cNMF, Seurat-integration, Liger, Harmony, scVI
and scAlign are driven by the mitochondrial gene expres-
sion patterns apparent in the SPRING plot (Supplementary
Figure S13). Concordant with these partitions, the top 10
marker genes for cNMF cluster 1, Seurat-integration clus-
ter 4, Liger cluster 2, Harmony cluster 3, scVI cluster 4
and scAlign cluster 4 have 5, 7, 7, 2, 7 and 7 mitochon-
drial genes, respectively. While it is possible to adjust for
mitocondrial gene expression of the cells for some settings
such as PCA, the Seurat-integration framework does not
enable adjustment for biological variables in its CCA fac-
tors. Methods including cNMF, Liger, scVI, scAlign do not
encompass mechanisms to adjust for potential continuous
confounders. While the clustering of the low-dimensional
embedding from PCA is similar to the MLG clustering, it
merges cells expressing Gata2 and erythroid specific-gene
Car1 with cluster 1 that represents early progenitors (Sup-
plementary Figures S15, S16) and results in a markedly
smaller cluster of erythroid cells. In addition to these dif-
ferences, established lineage markers do not delineate clus-
ters from cNMF, Seurat-integration, Harmony, scVI and
scAlign as expressing cell type specific marker genes as
clearly as MLG clustering (Supplementary Figures S16,
S17, S18, S19, S20, S21, S22). As a quantitative measure of
how well lineage marker genes delineate clusters obtained
with different methods, we provide the Chi-squared statis-
tic of Fisher’s combined probability test for these genes in
Supplementary Table S7, which further highlights the better
performance of MLG. Collectively, this analysis illustrates
the power of MLG in identifying cell types/stages with low
signal by its aggregation strategy.

MLG uncovers cell stages in mouse HSPC under four exper-
imental conditions

Dataset Muench20 (20) contains scRNA-seq of 813
mouse hematopoietic progenitor cells under 4 condi-
tions: wild type (Gif1+/ +), heterozyous Gfi1 R412X mu-
tation (Gif1R412X/ −), homozygous Gfi1 R412X mutation
(Gif1R412X/R412X), heterozygous Gfi1 R412X mutation and
one silenced Irf8 allele (Gif1R412X/ −Irf8+/ −). Joint di-
mension reduction was conducted on all the cells, with
PCA, cNMF, Seurat integration, Liger, Harmony, scVI and
scAlign, followed by SNN graph construction with each in-
dividual dimension reduction results. Louvain graph clus-
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Figure 6. Clustering analysis of the Johnson20 (19) dataset. (A) SPRING (35) visualization of mutant and wild type cells from Johnson20. Cells are labeled
with MLG clustering (top left) and expression of linage marker genes. (B) SPRING visualization of mutant and wild type cells with cell labels from Louvain
clustering of SNN graphs with PCA, cNMF factors, Seurat integrtion, Liger, Harmony, scVI and scAlign low-dimensional embeddings.

tering was applied to each SNN graph along with MLG
with PCA, cNMF, Seurat, Liger SNN graphs as four lay-
ers. A total of seven clusters were identified with the eigen-
gap heuristic (23) (Figure 7B). Through the expression pat-
terns of HSPC-relevant transcription factors and granule
protein-encoding genes (Figure 7A, gene set 1), surface
marker genes (Figure 7A, gene set 2) and linage marker
genes (Figure 7A, gene set 3), we labelled the clusters 1 to
7 as HSPC, Multi-Lin (multi-lineage progenitor), Mono-
1, Mono-2 (Monocyte progenitor), Neu-1, Neu-2, Neu-3
(Neutrophil progenitor). The MLG clustering results also
matched the author annotated cell labels from (20) with the
exception of the extremely small clusters, e.g. NK(3 cells),
DC(5 cells), missed by MLG. We compared the resulting
clustering from each method using the author annotated
cell labels as gold standard. Since there are 17 distinct cell
labels in the author annotation set, we used a wide range of
numbers of clusters in the comparison (Figure 7C). MLG

yielded clustering results most closely in agreement with the
gold standard cell labels. Moreover, it performed more ro-
bustly against the choice of numbers of clusters, highlight-
ing the overall robustness of the MLG aggregation strategy.

DISCUSSION

We have introduced MLG clustering as a versatile method
to identify cell types/stages in scRNA-seq data from mul-
tiple stimuli by aggregating cell graphs of multiple low-
dimensional embeddings of the data. MLG construction
capitalizes on the complementary information captured
with SNN graphs from different dimension reduction meth-
ods such as PCA and cNMF in addition to data integration
methods such as Seurat and Liger for scRNA-seq data from
multiple stimuli. By aggregating sparse SNNs with low edge
overlap, MLG amplifes the signal-to-noise ratio. Here the
signal-to-noise ratio is quantified by comparing the within
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Figure 7. Clustering analysis of the Muench 20(20) dataset. (A) Heatmaps of the cell-level gene expression for HSPC-relevant transcription factors and
granule protein-encoding genes (gene set 1), surface markers (gene set 2) and lineage defining markers (gene set 3). Cells are grouped by MLG clustering and
cell conditions. MLG clustering is compared with author annotated cell labels from (20) in the last row of the heatmap. (B) Visualization of the dataset with
the force directed layout of MLG. Cells are labeled with MLG clusters (left) and cell conditions (right). (C) ARIs are computed between author annotated
cell labels and clustering results of MLG and individual SNN graphs constructed from low-dimensional embeddings by PCA, cNMF, Seurat-integration
Liger, Harmony, scVI, and scAlign.

cluster connectivity of cells to the between cluster connec-
tivity.

While the MLG clustering framework is flexible in the
types of dimension reduction methods it can aggregate over,
computational experiments with both simulated and bench-
mark datasets demonstrated that combining SNN graphs
from low-dimensional embeddings of PCA and cNMF per-
form well when the stimuli is not the dominant effect and
MLG benefits from aggregating over Seurat-integration
and Liger when data integration is essential to accommo-
date the stimuli effect. Furthermore, both PCA and cNMF
are robust, and easy to tune compared to other dimension
reduction methods for scRNA-seq. Another guiding prin-
ciple for building MLG is to avoid the simultaneous use of
methods that are highly related to prevent amplification of
false cell-to-cell connections. The mixing metric performed
as a robust quantity for capturing the level of the stimuli
effect to guide the aggregation task in terms of whether or
not to include low-dimensional embeddings from data inte-
gration. Overall, we found that Louvain clustering of MLG
exhibited superior performance over clustering with indi-

vidual low-dimensional embeddings both in accuracy of the
clustering and the downstream marker gene identification.

To enable integration of additional dimension reduc-
tion methods to MLG by users, we developed a weight-
ing scheme. Weighted MLG evaluates each dimension re-
duction result using their knn graph’s ability to incorpo-
rate cells from different conditions and predict the gene ex-
pression profile of neighboring cells. This weighting scheme
performed robustly in a wide variety of simulation settings,
making it feasible to include additional scRNA-seq dimen-
sion reduction methods in MLG than discussed here.

While our focus in this work has been predominantly
scRNA-seq datasets from multiple conditions, we show-
case how MLG can be readily applied to analyze multi-
modal SNARE-seq data from joint profiling of transcrip-
tome and chromatin accessibility (21) and that it performs
as well as the methods tailored for this data type in Sup-
plementary Section 1.4 (Supplementary Figure S24, S25,
Supplementary Tables S5 and S6). We expect MLG clus-
tering to be generally applicable for SNARE-seq, Share-seq
(39) and other single cell data modalities such as scHi-C
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(40), joint profiling of transcriptome and DNA methylation
(41). In these applications, each modality yields individual
low-dimensional embeddings of the cells and aggregation of
their graph products can increase the overall signal. Finally,
the computational cost of MLG is naturally driven by the
dimension reduction methods it aggregates over (Supple-
mentary Materials Section 1.5, Supplementary Figure S26).
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Datasets Kowalczyk 1 and Kowalczyk 2 are available at
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Mann dataset is available at NCBI GEO with accession
number GSE100426. The Cellbench dataset is available
from Github at https://github.com/LuyiTian/sc mixology/
blob/master/data/mRNAmix qc.RData. The −77+/ + and
−77−/ − datasets are available at NCBI GEO with ac-
cession number GSE134439. Dataset Muench20 is avail-
able at https://www.synapse.org/#!Synapse:syn16806696.
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