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Gastric cancer is one of the most severe complex diseases with high morbidity and mortality in the world. The molecular
mechanisms and risk factors for this disease are still not clear since the cancer heterogeneity caused by different genetic and
environmental factors. With more and more expression data accumulated nowadays, we can perform integrative analysis for these
data to understand the complexity of gastric cancer and to identify consensus players for the heterogeneous cancer. In the present
work, we screened the published gene expression data and analyzed them with integrative tool, combined with pathway and gene
ontology enrichment investigation. We identified several consensus differentially expressed genes and these genes were further
confirmed with literature mining; at last, two genes, that is, immunoglobulin J chain and C-X-C motif chemokine ligand 17, were
screened as novel gastric cancer associated genes. Experimental validation is proposed to further confirm this finding.

1. Introduction

Gastric cancer (GC) is one of the most severe cancers in the
world with high incidence and low survival rate. According
to the global cancer statistics report in 2012, GC has been the
fifth most common cancer in the world, which causes more
than seven hundred thousand deaths each year [1]. Usually,
the number of GC patients in men is twice more than that in
women and Eastern Asia, especially Korea, Japan, and China,
has the highest incidence rate. Although relevant reports
revealed that the age-standardized incidence rate of gastric
cancer is decreasing in Japan and Korea in last few years
[2, 3], the number of new cases is still increasing due to the
aging of the population. The pathogenesis of gastric cancer
is very complex and remains unclear. Recent basic studies
mainly focus on three main factors: environmental factors,
Helicobacter pylori (H. pylori) infection, and gene expression
dysregulation [4, 5]. Previous studies have demonstrated
the unhealthy lifestyle, such as excessive diet, can raise
the risk of gastric cancer [5–7]. Processed meat intakes
will increase the risk of gastric non-cardia cancer in H.
pylori antibody-positive individuals while fresh fruits and

vegetables consumption will protect individuals against GC.
Also, in molecular level, several host genetic factors might
play a key role in GC, such as IL-1𝛽, IL-10, TFF2, and CDH1
[8–10].

With relevant studies deepening, the size of research data
is becoming larger and larger. Hundreds of gene expression
profiles and diagnostic targets are uploaded into various gene
expression databases. These data can be further integrated
to the understanding of the complexity of the diseases, such
as the cancer heterogeneity, high level consensus [11–13],
biomarker discovery [14, 15], and the key players in the cancer
genesis and progress [16]. In this study, we usedmeta-analysis
approach for analysis of multiple transcriptomic datasets. We
hope to integrate different gene expression data collected
from GC patients and normal controls to figure out robust
candidates in genes, pathways, and functions, setting the
foundation for personalized treatment of gastric cancer.

The method we used here was named INMEX (integra-
tive meta-analysis of expression data) program [17]. Data
procession and screening were performed in order to make
sure all the datasets we uploaded into the program were in
a consistent format. Due to the existence of outliers and
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Figure 1: The pipeline of the whole analysis in this study.

variations in microarray data, a combining rank orders
algorithm based on RankProd package [18] was used here to
carry out the meta-analysis.

2. Materials and Methods

The pipeline of this whole analysis in the present study is
shown in Figure 1. We first extract the microarray gene ex-
pression data from the GEO database, then we integrate ana-
lyzed the expression data with a meta-analysis tool INMEX,
and then we further screen and validate the meta-analysis
results with literature analysis and bioinformatics functional
analysis.

2.1. Dataset Collection and Data Screening. We used key-
words “gastric cancer,” with two filters: (a) organism: Homo
sapiens and (b) type: expression profiling by array, in search-
ing for the gene expression profiles in Gene Expression
Omnibus (GEO) database. We explored the searching results
by setting four inclusion criteria: (1) datasets published after
2010; (2) case-control studies; (3) sample numbers more than
20; (4) high similarity in sample background information
(i.e., sources, patients’ race and location, disease status, and
platforms). Datasets meeting these criteria were selected for
further analysis.

2.2. Meta-Analysis for Selected Datasets. Based on the ex-
pression data we collected from each qualified microarray
study, a global meta-analysis for identifying differentially
expressed (DE) genes in gastric genes was conducted in
this study. Here, we selected a web-based tool named
INMEX (integrative meta-analysis of expression data, http://
www.networkanalyst.ca/) for meta-analysis.

We firstly upload the normalized gene expression datasets
into INMEX. Then we processed and annotated the datasets
to adjust the data format and class labels into the consistent
style. After the integrity check, we selected combining rank
orders method, which is based on the RankProd package, to
carry out themeta-analysis.The number of permutation tests
in this method was 20 times.

2.3. Functional Enrichment Analysis of DE Genes. Functional
enrichment analysis of theseDE genes was further performed
by INMEX program in two approaches: Geno Ontology
and pathway analysis. In GO annotation, we set a 𝑝 value
threshold of 0.05 to identify the significantly enriched items.
In pathway analysis, KEGG pathway database was used here
for pathway enrichment analysis. A 𝑝 value threshold of
0.05 was also set for identification of significantly enriched
pathways.

3. Results

3.1. Characteristics of Datasets Included inThis Meta-Analysis.
The datasets selection strategy and the screening results are
presented in Figure 2. Through GEO datasets searching, a
total of 1722 studies were retrieved. 1618 irrelevant studies
were excluded, among which 1605 studies were not expres-
sion profiling by microarray technologies and 13 studies were
animal studies. The remaining 104 studies were included
for full-text review. Studies without case-control matches
were then excluded. Due to the platform limitation, we
further excluded those studies whose microarray platforms
are not available in INMEX program. After several rounds
of screening, a final list of 3 microarray datasets [19, 20] was
selected for meta-analysis.

http://www.networkanalyst.ca/
http://www.networkanalyst.ca/
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Figure 2: Datasets selection strategy and results.

Table 1: Datasets selected in this meta-analysis.

Accession/ID Platform GC Control Materials Year Race Region
GSE79973 GPL570 𝑛 = 10 𝑛 = 10 Gastric tissues 2016 Chinese Hangzhou
GSE19826 GPL570 𝑛 = 12 𝑛 = 12 Gastric tissue 2010 Chinese Shanghai
GSE49051 GPL10332 𝑛 = 3 𝑛 = 3 Gastric tissue 2013 Chinese Shanghai

These 3 datasets (GSE79973, GSE19826, and GSE49051)
contain totally 25 cases and 25 controls. The number of cases
and controls of each dataset is well matched. All the datasets
were collected from Chinese hospitals and sample sources
are consistent. The detailed information of these 3 datasets
is listed in Table 1.

3.2. Results of Meta-Analysis. This study is performed based
on combining rank orders. DE genes with 𝑝 value < 0.05
were selected. Totally 1153 DE genes were got through this
meta-analysis. The detailed DE gene information was listed
in Table S1 (see Supplementary Material available online at
https://doi.org/10.1155/2017/7259097). All of these DE genes
are those identified to be differentially expressed in these
three datasets rather than in individual samples. Among the
1153 DE genes, 787 genes were downregulated and 366 genes
were upregulated.

The top 10 most significantly upregulated genes and top
10 most downregulated genes were listed in Tables 2 and
3. Genes with the smallest combined rank product (RP) in
upregulated DE gene list and downregulated DE gene list are
COL6A3 (combinedRP = 59.02) and PGC (combinedRP =
22.38), respectively.

3.3. Functional Enrichment Analysis Results. Functional en-
richment analysis was carried out for further study of these

DE genes. Gene Oncology (GO) analysis and KEGG pathway
analysis were the two approaches we conducted here. In GO
analysis, we did the analysis at three levels: biological process
(BP), cellular component (CC), and molecular function
(MF). The top 10 most significantly enriched terms (adj.
𝑝 value < 0.05) were selected, respectively. The histograms
of these terms were shown in Figure 3. Most of the DE
genes are well mapped onto gastric cancer associated process
of biological factors. In KEGG pathway analysis, we also
selected top 10 most significantly enriched pathways, as
shown in Figure 4. All of the selected items were taken into
literature validation for further investigation.

4. Discussion

In this study, we have used publicly available microarray
datasets to identify genes that are differentially expressed in
tumor tissues from people with GC comparing to people
without GC. The aim of our study is to derive additional
information from the combining datasets that are unlikely to
be established from individual studies in isolation through
combining the data from three separate gene expression
datasets in a meta-analysis. Generally, we found this is to
be the case. Through PubMed literature mining, we found 8
of 10 of downregulated genes and all the upregulated genes

https://doi.org/10.1155/2017/7259097
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Table 2: Top 10 most significantly downregulated DE genes in gastric cancer.

EntrezID Gene full name Gene symbol CombinedRP AveLogFC
5225 Progastricsin PGC 22.38 −14454.48
57016 Aldo-keto reductase family 1 member B10 AKR1B10 22.86 −6705.56

9992 Potassium voltage-gated channel
subfamily E regulatory subunit 2 KCNE2 36.08 −4314.33

284340 C-X-C motif chemokine ligand 17 CXCL17 49.18 −3880.57
135656 Diffuse panbronchiolitis critical region 1 DPCR1 55.94 −1892.04
51208 Claudin 18 CLDN18 57.35 −3435.26

3512
Immunoglobulin J polypeptide, linker
protein for immunoglobulin alpha, and

mu polypeptides
IGJ 62.81 −25978.05

1510 Cathepsin E CTSE 64.51 −4631.28

340547 V-set and immunoglobulin domain
containing 1 VSIG1 69.66 −1752.54

4499 Metallothionein 1M MT1M 100.58 −6787.14

Table 3: Top 10 most significantly upregulated DE genes in gastric cancer.

EntrezID Gene full name Gene symbol CombinedRP AveLogFC
1293 Collagen type VI alpha 3 chain COL6A3 59.02 3600.96
1278 Collagen type I alpha 2 chain COL1A2 62.06 3576.21
10562 Olfactomedin 4 OLFM4 150.67 3542.76
7058 Thrombospondin 2 THBS2 163.66 24.03
115908 Diffuse panbronchiolitis critical region 1 CTHRC1 174.61 1204.56
4680 Collagen triple helix repeat containing 1 CEACAM6 203.78 2542.02
3624 Inhibin beta A subunit INHBA 219.12 368.69
1290 Collagen type V alpha 2 chain COL5A2 230.72 1064.68
54829 Asporin ASPN 255.15 237.05
1366 Claudin 7 CLDN7 288.09 356.71

have been reported to be associated with gastric cancer by
biological and clinical experiment validation. For example,
downregulated gene with smallest combinedRP in this study
is Progastricsin (PGC). Many researchers have found it plays
a key role in gastric cancer and the PGC polymorphism could
serve as one of the diagnosis biomarkers for GC [21–23]. Also,
in a recent research, Li et al. found, in mitogen-activated
protein kinase activator with WD40 repeats (MAWD) and
MAWD-binding protein (MAWBP) downregulated GC cells,
the expression level of PGC was lower than that in control
samples [24]. In upregulated genes, collagenVI𝛼3 (COL6A3)
is the gene with smallest combinedRP. Relevant research
has found the expression level of COL6A3 was significantly
higher in GC patients [25, 26], which also could serve as
a diagnosis biomarker for GC. Other DE genes, such as
COL1A2 [26], OLFM4 [27], THBS2 [28], CEACAM6 [29],
CTSE [30], AKR1B10 [31], and KCNE2 [32], also have been
reported to be differentially expressed in GC patients com-
paring to controls.

Interestingly, in the top 10 downregulated DE genes, 2
genes (IGJ and CXCL17) have not been reported to have a
direct association with GC. For IGJ, Tvarijonaviciute et al.
have observed that, in obese dogs, the amount of IGJ proteins
was decreased [33]. Relevant research has revealed that

obesity will increase the risk of gastric cancer [34]. For
CXCL17, it is reported that overexpression of CXCL17 has
a strong connection with colon cancer and hepatocellular
carcinoma [35, 36]. The existence of gene interaction reveals
the association between GC and these two cancers [37, 38].
Because there are still no specific experiments on these two
genes and GC, further biological and clinical research are
needed.

To further investigate the functional mechanisms of these
DE genes, we performed GO analysis and KEGG pathway
analysis. We finally get 102 significantly enriched terms (𝑝
value < 0.05) in biological process level, 157 in cellular
component level, and 31 in molecular function level. As
shown above, the top 10 significantly enriched terms were all
reported to be associatedwithGC. For example, in extracellu-
lar matrix, there exists extracellular matrix protein 1 (ECM1).
ECM1 plays a key role in lymphangiogenesis [39], which
could be an inducement of cancer invasion and metastasis.
Aberrant expression of ECM1 was found in GC samples in a
recent study [40]. Also, in translational elongation process,
relevant genes, such as translation elongation factor EEF1B2,
were upregulated in the poor prognosis samples [41]. All the
top 10 terms in BP, CC, and MF have been reported to have
an association with GC.
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Figure 3: Gene Oncology (GO) annotation for the DE genes in gastric cancer. Here the GO annotation was used at three levels: biological
process, cellular component, and molecular function. (a), (b), and (c) represent the top 10 most significantly enriched GO terms for these DE
genes, respectively. All the adjusted statistical significance value (𝑝 value) of the terms was negative 10-based transformed.

In KEGG pathway analysis, the most significantly en-
riched pathway is Ribosome. Genes such as RPL11, RPL23,
RPS6, and MRPS21 were enriched on this pathway. Ribo-
somal protein family (PRL/RPS) has been demonstrated to
have a strong connection with GC. For example, a recent
study revealed that GLTSCR2 regulates the MDM2-TP53
pathway through RPL11, playing a key role in GC progression
[42]. A previous study has observed that reducing the

phosphorylation of RPS6 could have an influence on the sen-
sitivity toMEK inhibition in gastric cancer cells [43]. Another
important pathway in GC is glycolysis/gluconeogenesis path-
way. Reports revealed that microRNA-133b could silence
PKM-splicer PTBP1, leading the inhibition of growth of
human gastric cancer cells [44]. Hu and Chen also found
that SIRT3 can strengthen glycolysis in SIRT3-expressing GC
cells. Other pathways, like ECM-receptor interaction and
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Figure 4:The top 10most significantly enriched pathways inKEGGpathway analysis for theDE genes in gastric cancer.The adjusted statistical
significance value (𝑝 value) was negative 10-based log transformed.

metabolism of xenobiotics by cytochrome P450, have been
validated to be associated with GC through bioinformatics
approaches based protein-protein interaction networks anal-
ysis [45].

5. Conclusions

To summarize, our research provides novel angels in patho-
genesis of gastric cancer. We identified consistently DE genes
in gastric cancer through INMEX meta-analysis tools. Top
10 of upregulated and downregulated genes could potentially
serve as diagnosis biomarker. GO annotation and KEGG
pathway analysis demonstrated those candidates have a
strong relationship with gastric cancer. Moreover, we identi-
fied 2 novelGCassociated genes, IGJ andCXCL17,which have
never been reported to be associated with GC before. Further
experimental validation should be conducted in order to
understand the mechanism of these two genes on gastric
cancer.

Competing Interests

The authors declare that there is no conflict of interests.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (Grant no. 31470821). Thanks are due
to Mr. Shen Li in Suzhou Eastern Science, Technology and
Culture Co., Ltd., Suzhou, Jiangsu 215123, China, for the help
with data preparation and analysis.

References

[1] L. A. Torre, F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and
A. Jemal, “Global cancer statistics, 2012,” CA: A Cancer Journal
for Clinicians, vol. 65, no. 2, pp. 87–108, 2015.

[2] M. Inoue and S. Tsugane, “Epidemiology of gastric cancer in
Japan,” Postgraduate Medical Journal, vol. 81, no. 957, pp. 419–
424, 2005.

[3] H. Shin, Y. Won, K. Jung et al., “Nationwide cancer incidence
in Korea, 1999∼2001; first result using the national cancer

incidence database,” Cancer Research and Treatment, vol. 37, no.
6, pp. 325–331, 2005.

[4] D. M. Parkin, “The global health burden of infection-associated
cancers in the year 2002,” International Journal of Cancer, vol.
118, no. 12, pp. 3030–3044, 2006.

[5] S. Tsugane and S. Sasazuki, “Diet and the risk of gastric cancer:
review of epidemiological evidence,”Gastric Cancer, vol. 10, no.
2, pp. 75–83, 2007.

[6] C. A. Gonzalez, L. Lujan-Barroso, H. B. Bueno-De-Mesquita
et al., “Fruit and vegetable intake and the risk of gastric ade-
nocarcinoma: a reanalysis of the european prospective investi-
gation into cancer and nutrition (EPIC-EURGAST) study after
a longer follow-up,” International Journal of Cancer, vol. 131, no.
12, pp. 2910–2919, 2012.

[7] C.A.Gonzalez, P. Jakszyn,G. Pera et al., “Meat intake and risk of
stomach and esophageal adenocarcinoma within the European
Prospective Investigation Into Cancer and Nutrition (EPIC),”
Journal of the National Cancer Institute, vol. 98, no. 5, pp. 345–
354, 2006.

[8] J. Bornschein, T. Rokkas, M. Selgrad, and P. Malfertheiner,
“Gastric cancer: clinical aspects, epidemiology and molecular
background,”Helicobacter, vol. 16, supplement 1, pp. 45–52, 2011.

[9] H. Kim, J. W. Eun, H. Lee et al., “Gene expression changes in
patient-matched gastric normal mucosa, adenomas, and carci-
nomas,” Experimental and Molecular Pathology, vol. 90, no. 2,
pp. 201–209, 2011.
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