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The present review is a historical perspective of methodology and applications using inert
liquids for respiratory support and as a vehicle to deliver biological agents to the respiratory
system. As such, the background of using oxygenated inert liquids (considered a drug
when used in the lungs) opposed to an oxygen-nitrogen gas mixture for respiratory
support is presented. The properties of these inert liquids and the mechanisms of gas
exchange and lung function alterations using this technology are described. In addition,
published preclinical and clinical trial results are discussed with respect to treatment
modalities for respiratory diseases. Finally, this forward-looking review provides a
comprehensive overview of potential methods for administration of drugs/gene
products to the respiratory system and potential biomedical applications.
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INTRODUCTION

Aerosol drugs have been delivered to the lungs for several thousand years (Stein and Thiel, 2017).
The use of aerosol delivery is complex, and deposition of drugs in the respiratory system is influenced
by several specific factors: physics of the aerosol (inertia of the aerosol), gravitational factors,
diffusion (airflow patterns in the lungs), and pulmonary defense mechanisms. Pulmonary drug
delivery has been only partly explored in recent decades even though it could represent an alternative
route of administration of drug-based therapies. Pulmonary drug delivery is an attractive route of
administration of drugs, since the lungs are an ideal entry point for drugs to the bloodstream because
of the large surface area, the very short diffusion distances in the alveolar spaces, and exposure to the
entire cardiac output. Today there is an increased need for topical delivery of lung cancer therapy
drugs, anti-inflammatory drugs to treat acute respiratory distress (i.e., COVID-19, H1N1 influenza),
and gene-targeted lung agents for several relatively uncommon (orphan) diseases and pulmonary
arterial hypertension (PAH) (Ali et al., 2015; Muralidharan et al., 2015; Alapati et al., 2019; Keshavarz
et al., 2020; Kumar et al., 2020).

During the last 20 years, the combination of nanocrystal technology combined with an inert
perfluorochemical vehicle has demonstrated the efficacy of large volume drug delivery to the entire
lung because of the vehicle physical-chemical properties (inert properties, low surface tension, and
high respiratory gas solubility) (Cullen et al., 1999). Furthermore, based on this combination delivery
approach, it has been possible to demonstrate increased lung targeted drug delivery as opposed to
systemic delivery. Nanocarriers have been found to be most promising because of their significant
advantages (i.e., cell-specific targeted drug delivery and prolonged drug release). Thus, in
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combination with inert perfluorochemical vehicles, nanocarriers
may provide effective delivery to the entire lung. The advantages
offered by pulmonary drug delivery indicate that the challenges of
such a delivery approach are worth addressing; if successfully
addressed, there are great opportunities to treat unmet clinical
needs. The present review focuses on providing a comprehensive
historical perspective of the use of inert liquids for respiratory
applications.

RESPIRATORY SUPPORT WITH INERT
LIQUIDS

The use of liquids for respiratory support is reviewed in this
section, as well as the physical properties of fluid used and the
rationale for using specific liquids.

The first liquid used as a respiratory medium for lung lavage
was saline (Winternitz and Smith, 1920). It debrides the lung
and eliminates the gas-liquid interface within it. Early saline
studies clarified factors influencing distensibility, alveolar
structure, stability, pulmonary blood flow, and ventilation
(Neergard, 1929; Mead et al., 1957; Avery and Mead, 1959;
Leith andMead, 1966; Hamosh and Luchsinger, 1968; Davidson
et al., 1995; Fournier et al., 1995). Low respiratory gas solubility
(O2; CO2) and diffusion gradients at atmospheric conditions
limited the functional use of saline solution to provide adequate
gas exchange (Kylstra et al., 1966; Kylstra, 1967; Kylstra et al.,
1973; Wessler et al., 1977; Lynch et al., 1983). The hypothesis
that O2-saturated saline solution dissolved under pressure could
possibly sustain submersed mammals was formulated (Stein
and Sonnenschein, 1950), and subsequent research revealed
that adequately oxygenated liquid could be breathed by and
support mammals submerged in hyperbaric oxygenated saline

solution (Goodlin, 1962; Kylstra et al., 1962; Pegg et al., 1963;
Kylstra et al., 1966). However, CO2 retention and profound
acidosis occurred because of the small gradient between arterial
and alveolar CO2 gradients, thus eliminating saline ventilation
for either normobaric or hyperbaric conditions. In addition, it
should be noted that although saline has been used to lavage
debris and inflammatory mediators from the lungs as noted
above, it has also been shown to inactivate pulmonary
surfactant and impair lung function (Shaffer and Wolfson,
2011).

Inert Perfluorochemical Liquid
Physicochemical Properties
As an alternative to saline as a respiratory medium, the utility of
other liquids (silicone, vegetable oils, and animal oils) was
investigated as respiratory media; however, these oils, although
having high gas solubility, also demonstrated toxic effects (Clark,
1970; Sargent and Seffl, 1970). Perfluorochemicals (PFCs) were
initially produced as part of the Manhattan Project during World
War II. In 1966, they were used to support normobaric
respiration on the basis of their high solubility for respiratory
gases (Table 1) (Clark and Gollan, 1966), which delineated their
use as alternative respiratory mediums. True PFCs are formulated
from common organic compounds (e.g., benzene) by substituting
carbon-bound hydrogen atoms with fluorine atoms. They
provide the advantage of easy storage (indefinitely at room
temperature) and can be used under antiseptic conditions
without modification (i.e., autoclave, small-pore filtering).
They are clear, in most cases, not soluble in aqueous media or
nonlipid biologic fluids and are odorless, inert, and
transparent—very inoffensive in their use (Shaffer and
Wolfson, 2011).

TABLE 1 | Physiochemical profile of various perfluorocarbons. Reprinted from Shaffer, T.H., andWolfson, M.R. (2011). “Liquid Ventilation,” in Fetal and Neonatal Physiology,
4th Edition, eds: R. Polin, W.W. Fox, and S. Abman (Philadelphia, PA: WB Saunders), 1063–1081, with permission from Elsevier.

Perfluorocarbon Formula Orientation O2

Solution
(mL/

100 ml)
(25 °C)

Vapor
Pressure
(mm hg)
(37 °C)

Boiling
Point
(°C)

Viscosity
(cSt)
(25 °C)

Mol wt
(g/mol)

Density
(g/ml)
(25°C)

PP2 C7F14 Cyclic 57.2 180 76 0.88 350 1.788
PFOB C8F17Br Aliphatic 52.7 11 140.5 1 499 1.89
PCI C7F15Cl Aliphatic 52.7 48.5 108 0.82 404.5 1.77
P12F C9F20O Aliphatic 52.5 39 121 0.95 504.1 1.721
FC-75F C8F16O Cyclic 52.2 51 102 0.85 416.1 1.783
FC-75P C8F16O Cyclic 52.2 51 102 0.85 416.1 1.783
PFDMA C12F18 Cyclic 39.4 2.6 177.5 4.35 524.1 2
FC47 C12F27N Aliphatic 38.4 2.5 174 2.52 671.1 1.9
PP9 C11F20 Cyclic 38.4 5.2 160 3.32 512.1 1.972
APF-57 C6F14 Cyclic 70 356.4 57.3 — 338 1.58
APF-100 C8F16 Cyclic 42.1 64.6 98.6 1.11 400 1.84
APF-125 C9F18 Cyclic 47.7 30 116.6 1.17 450 1.86
APF-140 C10F18 Cyclic 49 13.6 142 2.9 462 1.93
APF-145 C10F20 Cyclic 45.3 8.9 142.8 1.44 500 1.9
APF-175 C12F22 Cyclic 35 1.4 180 3.5 562 1.98
APF-200 C13F24 Cyclic 41 1.26 200 5.3 612 1.99
APF-215 C14F26 Cyclic 37 0.2 215 8 662 2.02
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Please refer to Table 1 (Shaffer and Wolfson, 2011) for details
regarding the physicochemical profile and structure of various
PFC liquids for PFC ventilation. O2 and CO2 are specific to
respiratory gas exchange and carried only as dissolved gases with
solubilities ranging as much as 16 and three times greater,
respectively, in PFC than in saline. Oxygen solubilities range
from 35 to 70 ml gas per deciliter at 25°C (Riess, 1992). The
carrying capacity for CO2 is known for only a few PFC
compounds, but reported values of CO2 solubility are
approximately four times greater than those for O2

(122–225 ml/dl [i.e., PFOB; perfluorooctylbromide [PFOB] =
225 ml/dl]). It is noteworthy that perflubron (PFOB;
perfluorooctylbromide) is the only medical grade
perfluorochemical approved by the FDA for emergency
medical use. While many properties of PFC liquids vary, they
do provide relatively low surface tension and viscosity, and are
more dense than both water and soft tissue.

Variations in specific physicochemical properties of the PFC
liquids are significant to their use as respiratory media and as
vehicles for the administration of biological agents. Fluids of
higher vapor pressure may volatilize from the lung more rapidly
than liquids having lower vapor pressure. Fluids with greater
spreading coefficients (dependent on surface tension) may
distribute more easily in the lung than fluids whose spreading
coefficients are lower (i.e., FC-75 > PFOB >APF-140) (Weers and
Johnson, 1991; Sekins, 1995). Fluids of higher viscosity or
kinematic viscosity may balk at redistribution in the lung, thus
remaining in contact with a greater area of the alveolar surface for
more time than those stratifying with increased rapidity (Miller
et al., 1999; Miller et al., 2001) resulting in greater flow resistance.

NON-CLINICAL AND CLINICAL STUDIES
WITH INERT LIQUIDS

The initial preclinical studies in liquid spontaneous breathing
and ventilation support were directed at breathing in unusual
environments such as deep sea diving, zero gravity, and space
travel (Clark and Gollan, 1966; Modell et al., 1973; Moskowitz
et al., 1975; Lynch et al., 1983). It was not until the studies with
premature lambs (Shaffer et al., 1976; Shaffer et al., 1983a;
Shaffer et al., 1983b; Shaffer et al., 1984b; Wolfson et al.,
1988) that the application to respiratory distress became
evident because of the advantages of low surface tension,
improved lung compliance, and gas exchange. As a result of
these investigations, the first in extremis FDA-approved total
liquid ventilation study in a near-death premature infant with
severe respiratory distress was performed (Greenspan et al.,
1989). This study and a subsequent study in several critically ill
infants (Greenspan et al., 1990) demonstrated that PFC liquid
ventilation could support gas exchange and residual
improvement in pulmonary function following the return to
conventional gas ventilation. The need for a medically approved
combination liquid ventilator and medical grade PFC breathing
fluid restricted further clinical trials. It is noteworthy, however,
that a corporate-sponsored multicenter trial resulted from the
success of the neonatal and adult animal trials with PFC liquid-

assisted gas ventilation and the initial clinical trials with human
subjects.

Subsequently, several separate investigational new drug
applications were approved by the FDA to investigate the
safety and efficacy of PFCs, mainly PFOB, as a liquid
breathing media in neonates. While animal studies over the
years showed significant efficacy and safety of liquid breathing,
clinical studies using several techniques in humans (infants,
children, and adults) had mixed outcomes. The findings from
non-clinical and clinical studies are summarized below.

Non-Clinical Studies With Inert Liquids
Over the course of the last 50 years, many animal studies
demonstrated liquid ventilation to be an effective approach/
treatment for deep sea diving, zero gravity, severe lung injury,
and congenital diaphragmatic hernia (CDH). These studies
supported the use of liquid ventilation as a superior source of
respiratory support when compared with gas media with
spontaneous breathing or conventional mechanical ventilation
(CMV). Various studies also demonstrated short-term beneficial
physiologic responses in lung function because of improved
alveolar recruitment and significant preservation of normal
histological structure of the lung (Moskowitz et al., 1975;
Shaffer et al., 1983a; Shaffer et al., 1983b; Shaffer et al., 1984a;
Shaffer et al., 1984b; Wolfson et al., 1992; Leach et al., 1993;
Richman et al., 1993; Sekins et al., 1994; Major et al., 1995; Al-
Rahmani et al., 2000; Cox et al., 2003). Non-clinical studies in
newborn animal models of respiratory distress syndrome (RDS)
showed that PFOB enhances uniformity of the lung inflation
consistent with PFOB working as an artificial surfactant (Weis
et al., 1997; Wolfson et al., 1998; Kandler et al., 2001; Hübler et al.,
2002; Merz et al., 2002). Animal studies also showed that PFOB
minimizes functional lung impairment because of the high airway
pressures and sustained FiO2 requirements that are
characteristics of ventilator-induced lung injury (Greenspan
et al., 1990; Wolfson et al., 1992; Bateman et al., 2001; Davies
et al., 2002).

Recent studies continue to show PFOB improves oxygenation
(Hartog et al., 1997; Bleyl et al., 1999; Al-Rahmani et al., 2000;
Bateman et al., 2001; Davies et al., 2002) in animal models of lung
injury consistent with earlier findings. Additionally, recent
studies report that PFOB increases lung compliance (Bleyl
et al., 1999; Al-Rahmani et al., 2000; Kandler et al., 2001;
Davies et al., 2002). Findings from earlier studies indicated
that PFOB may have potential anti-inflammatory properties.
Animal studies showed that administration of PFOB decreased
the expression of known inflammatory markers (Kawamae et al.,
2000; Haeberle et al., 2002; Merz et al., 2002). Two additional
research studies reported PFOB not interfering with cerebral
blood flow (Davies et al., 2010; Davies et al., 2013), suggesting
partial liquid ventilation (PLV) with PFOB will have limited
impact on cardiac output and circulation.

Animal studies consistently support the safety of PFOB, as few
negative effects have been reported. Studies show PFOB is not
absorbed systemically and causes no long-term harm (Holaday
et al., 1972; Shaffer et al., 1996; Cox et al., 2002). Several animal
studies reported final concentrations of PFC measured within the
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blood and tissue after the end of treatment were considered
minimal compared with their baseline control measurements
(Holaday et al., 1972; Modell et al., 1973; Shaffer et al., 1996;
Cox et al., 2002). Additionally, studies revealed initiation of PLV
and removal of PFOB does not produce significant adverse
effects. Pneumothorax, a documented adverse event in adult
PFOB clinical studies, was not reported with any significance
in animal models of severe lung injury employing PFOB.

Clinical Studies in Infants With Inert Liquids
Early clinical studies demonstrated that infants with severe RDS,
meconium aspiration, and CDH tolerated liquid PFC in their
lungs and were able to effectively exchange gas and maintain
cardiovascular stability (Greenspan et al., 1989; Greenspan et al.,
1990; Gross et al., 1995; Pranikoff et al., 1996; Henrichsen et al.,
2012).

Consistent with those studies and animal studies, additional
published reports indicated PFOB increased gas exchange
(Hirschl et al., 1995; Gauger et al., 1996; Hirschl et al., 1996;
Hirschl et al., 2002) in adults and children. Subsequent studies
using PFOB on preterm neonates also reported increases in lung
compliance (Greenspan et al., 1990; Hirschl et al., 1995; Hirschl
et al., 1996). PFOB rapidly improved lung function and increased
survival in a population of neonates with high mortality (Leach
et al., 1996).

Most importantly, the utility of PFOB was demonstrated in a
multicenter study of premature infants with severe RDS
refractory to other available treatments (surfactant therapy,
high frequency, too young for extracorporeal membrane
oxygenation) (Leach et al., 1996). Thirteen (13) infants were
treated with PFOB. Within an hour following the instillation of
PFOB, there was an increase in arterial oxygen tension of 138%.
Dynamic compliance increased by 61% and continued to climb
through the first 24 h (Leach et al., 1996). Furthermore, the mean
oxygenation index, markedly elevated at baseline (49 ± 60), fell to
17 ± 16 within the first hour and continued to fall to 9 ± 7 at 24 h.
Arterial carbon dioxide tension normalized within 4 h after PFOB
treatment. Mean airway pressure decreased from 17 ± 3 to 12 ±
2 cm of water (29%) in the first 24 h despite an increase in tidal
volume (5.0 ± 3.4 ml/kg during gas ventilation to 7.8 ± 3.4 ml/kg
during PFOB ventilation). It should be noted that no serious
adverse events were reported during PFOB-assisted ventilation. It
was determined that PFOB-assisted ventilation could be utilized
for critically ill infants for several days without serious adverse
events. A number of the surviving participants are currently well
and in their twenties.

More recently, lavage with PFC has been shown to be safe for
treatment of persistent and difficult-to-treat lung atelectasis
(Henrichsen et al., 2012). Bronchoalveolar lavage utilizing PFC
liquid was performed without incident in infants with severe
alveolar proteinosis during conventional mechanical ventilation
without necessitating the additional support of extracorporeal
membrane oxygenation. Furthermore, recent PFC liquid studies
have reported safe imaging studies in bronchopulmonary patients
(Degnan et al., 2019).

Follow-up imaging studies up to 20 years after treatment with
PFOB in humans demonstrated no negative effects from this

treatment (Tiruvoipati et al., 2007; Hagerty et al., 2008; Servaes
and Epelman, 2009). The studies demonstrated evidence of
residual PFC specs in the lung, thorax, mediastinum, and
retroperitoneum. These are also cautionary when interpreting
the high-density opacifications associated with Hounsfield unit
densities of some PFCs used with intrapulmonary applications
such as pulmonary calcification (Tiruvoipati et al., 2007) and
stress the necessity of obtaining precise clinical histories in the
light of unusual radiographic findings (Hagerty et al., 2008).

Clinical Studies in Adults With Inert Liquids
In early liquid ventilation studies, it was reported that PFOB
usage in adults increased lung compliance (Hirschl et al., 1996),
which is consistent with preclinical animal studies. However, a
randomized clinical trial in adults with acute respiratory distress
syndrome (ARDS) randomized to protective conventional
mechanical ventilation of the lung, low-dose PFC, or high-
dose PFC and partial liquid ventilation did not result in
improved mortality. Additional ventilator-free days were
realized in the conventional mechanical ventilation group
when compared with the low-dose and high-dose PFC groups
(Hirschl et al., 2002; Degraeuwe and Zimmermann, 2006;
Kacmarek et al., 2006). Improved mortality or ventilator-free
days did not result in another randomized clinical trial in spite of
decreased progression in respiratory insufficiency to ARDS in
patients treated with partial liquid ventilation with PFC.

DRUG/GENE PRODUCT ADMINISTRATION

Systemic administration of therapeutics to target the lung is faced
with numerous challenges secondary to potential degradation by
serum and hepatic enzymes and rapid renal clearance.
Compromised pulmonary blood flow in the injured lung may
further limit passive diffusion of the drug from the blood into the
lung parenchyma. Retention of the therapeutics in the lung is also
often suboptimal. These challenges can be mitigated by local
administration of therapeutics through inhalation or airway
instillation (Bennett et al., 2002). However, many acute and
chronic lung diseases affect distally located alveoli and thus
require delivery of biological agents to the distal lung
parenchyma for optimal therapeutic effect. Distal delivery of
therapeutic agents requires obtaining the correct particle size,
which has been challenging. Furthermore, ventilation
abnormalities in the impaired lung regions also minimize drug
delivery to these target areas.

Drug Delivery With Inert Liquids
Some studies have successfully demonstrated that lungs filled
with PFC liquid have the ability to deliver active and inactive
agents for the diagnosis and treatment of respiratory disorders.

Respiratory infections affect distally located alveoli with
bacteria and viruses multiplying in the alveolar cells. Distal
lung distribution of intra-tracheally delivered anti-infective
agents is essential to halt disease progression. In a newborn
lamb model of acid lung injury, gentamicin administration
during tidal liquid ventilation using PFC resulted in
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significantly higher lung gentamicin levels compared with
intravenous administration (Fox et al., 1997; Zelinka et al.,
1997; Cullen et al., 1999; Cox et al., 2001). This technique also
resulted in greater pulmonary gentamicin levels and lower serum
levels, which are required to achieve therapeutic levels in the lung
while mitigating systemic adverse effects of gentamicin. Similarly,
when utilizing a piglet model of meconium aspiration, greater
pulmonary levels and lower serum levels of vancomycin were
achieved after intrapulmonary instillation of vancomycin and
PFC followed by partial liquid ventilation, compared with
intravenous injection of vancomycin followed by conventional
gas ventilation (Jeng et al., 2007).

In an animal model of meconium aspiration syndrome, partial
liquid ventilation improved regional distribution of
intratracheally administered radio-labelled surfactant
compared with conventional mechanical ventilation. There was
more uniform distribution of surfactant between the lungs as well
as between both ventral and dorsal regions of the lungs. Such
uniform distribution was associated with improved systemic
oxygenation (Chappell et al., 2001). PFC was also an effective
delivery vehicle for pulmonary administration of vasoactive
agents (Wolfson et al., 1996).

Inhalational smoke-induced acute lung injury is
characterized by airway epithelial injury leading to excess
leakage of plasma substrates into large airways and the
formation of fibrin casts. Interventions to prevent or treat
airway casts are limited. In this regard, PFC has been used for
intratracheal administration of plasminogen activators (tissue
plasminogen activator [tPA] and single-chain urokinase
plasminogen activator [scuPA]) for management of airway
clot and fibrinous cast formation associated with smoke-
induced acute lung injury. Enzymatic activities of the
plasminogen activator following dispersion and storage in
PFC were preserved, and PFC administration alone did not
impact physiologic or histological differences. In contrast,
PFC-facilitated plasminogen activator delivery resulted in
significantly better physiologic and histologic outcomes.
PFC-facilitated delivery of plasminogen activator
demonstrated improved outcomes than achieved by
nebulization of plasminogen activators alone (Wolfson
et al., 2020).

Drug delivery during PFC PLV respiratory support has been
demonstrated with other soluble gases in PFOB such as
inspired nitric oxide (NO). NO administration with PLV in
surfactant-depleted adult pigs resulted in a significant
improvement in gas exchange and decrease in pulmonary
artery pressure, most notably without deleterious effects on
systemic hemodynamic conditions (Houmes et al., 1997). In a
congenital diaphragmatic hernia lamb preparation treated
prophylactically with PLV, it was demonstrated that NO
improved oxygenation and reduced pulmonary hypertension
(Wilcox et al., 1994). As such, the ability to deliver NO during
PLV is probably related to distribution of NO in the gas-
ventilated regions of the lung, the solubility and diffusion of
this gas in the PFC, and recruitment of lung volume. Results on
the effective delivery of NO in PFC liquid are consistent with
earlier studies showing the use of PFC liquid as a vehicle to

deliver biologic agents. Based on transport principles, it
appears that the amount of NO delivered to pulmonary
structures is dependent on NO concentration in PFC liquid,
stratification pattern of gas and PFC liquid in the lung,
distribution of pulmonary blood flow, and ventilation-
perfusion matching. Finally, the clearance of NO from the
partially filled PFC lung and potential formation of NO2

during liquid ventilation potentially could be different
compared with the gas-filled lung.

Gene Delivery to the Respiratory System
Twenty-two percent of all pediatric hospital admissions are due
to respiratory illness. Genetic lung diseases account for increased
morbidity and mortality (Nogee, 2010; Tanash et al., 2010; Witt
et al., 2012). Genetic diseases such as surfactant protein disease,
cystic fibrosis, Hermansky-Pudlak syndrome, and
neuroendocrine cell hyperplasia of infancy (NEHI) cause
severe lung disease and are associated with high mortality and
morbidity. No cure currently exists. Pulmonary epithelial cell-
specific genetic mutations and abnormal gene regulation play a
causal role in many genetic lung diseases and are attractive targets
for airway delivery of therapeutic agents. Effective airway-based
delivery of gene therapy vectors is a substantial hurdle to
successful gene therapy for lung diseases.

CRISPR-Cas9 gene editing provides an unprecedented
opportunity to manipulate genes in somatic cells. Editing
technologies have demonstrated clear therapeutic promise in
non-human primates and early human clinical trials (Komor
et al., 2016; Maeder et al., 2019; Frangoul et al., 2021; Musunuru
et al., 2021; Rothgangl et al., 2021). New approaches in base editor
design enable installation of targeted, single-nucleotide mutations
without double strand breaks or the need for donor DNA
templates, an exciting advance that paves the way for
correction of single nucleotide polymorphisms that comprise
the largest class of known pathogenic genetic variants in
humans (Landrum et al., 2016; Stenson et al., 2017). Genetic
surfactant protein diseases are a particularly attractive target
given that the lung is a barrier organ amenable to
intratracheal or nasal treatment applications to selectively
reach pulmonary cell lineages (Alton et al., 2015; Alapati et al.,
2019; Kang et al., 2020).

The postnatal lung presents important limitations to airway
delivery because of the substantial mucus and surfactant barrier at
the air-epithelial interface, repulsive charge interactions at the cell
membrane, and unequal reagent distribution due to the
heterogeneity of lung disease with some areas being
overinflated and others collapsed (Kim et al., 2016; Alapati
and Morrisey, 2017; Roesch and Drumm, 2017). Furthermore,
proteinaceous debris and inflammatory fluids contribute to
additional physical barriers in diseased lungs. These barriers
limit adequate ventilation, particularly to diseased tissues,
resulting in limited delivery of inhaled therapies to needed
locations. Systemic drug delivery to diseased lung may be
affected by the displacement of blood flow away from the
injury site. In contrast, any related absence of such immune
and physical barriers in the fluid-filled fetal lungs has resulted in
systematic gene transfer to the pulmonary epithelial cells
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following prenatal viral vector delivery by intra-amniotic
injection, taking advantage of fetal breathing movements for
lung targeting (Buckley et al., 2005; Endo et al., 2010; Joyeux
et al., 2014; Alapati et al., 2019). Additionally, the fluid-filled fetal
lung supports relatively uniform targeting of most major
pulmonary epithelial cell types, including distal and proximal
lineages (Alapati et al., 2019).

Gene Product Delivery With Inert Liquids
The fluid-filled fetal lung physiology could be partially
mimicked in postnatal lungs with PFC liquids because of
their high spreading coefficients and intriguing properties
for pulmonary distribution of biological agents. The high
O2 and CO2 solubility of PFC liquids allows effective gas
exchange, even in lungs filled with fluid. PFCs also reduce
surface tension, which assists lung volume recruitment at
reduced inspiratory pressures by eliminating the air-liquid
interface. Importantly, PFC liquids effectively penetrate
collapsed regions of the lung to facilitate access to under-
ventilated regions. This is particularly important in non-
homogenous lung diseases such as surfactant protein
diseases, in which PFC liquids could simultaneously
facilitate delivery of therapies, increase gas exchange, and
improve pulmonary function. Several groups have exhibited
the superior effectiveness of PFC liquids as vehicles for
pulmonary distribution of genetic cargo (Lisby et al., 1997;
Weiss et al., 1999a; Weiss et al., 1999b; Weiss et al., 2000;
Kazzaz et al., 2011). PFC liquids instilled during the
intratracheal administration of recombinant viral vector
propelled the vector more effectively into the lung. As a
result, PFC enhanced airway and alveolar epithelial gene
expression in both normal and injured rodent lungs (Weiss
et al., 2001). Use of PFC as vehicle for delivery of genetic cargo
also resulted in earlier detection of gene expression and need
for lesser amounts of vector. In all of these studies, PFC was
administered immediately following administration of
aqueous vector because of immiscibility of PFC with
aqueous solutions. The propulsive effect of PFC resulted in
improved delivery and distribution of the vectors. PFC liquids
also transiently decreased transepithelial resistance and
increased tight junction permeability. This transient
increase in epithelial permeability enhanced access to viral
vectors and gene expression. The peak effect was observed
from 6 h to 1 day following instillation. Notably, alveolar-
capillary permeability was not affected (Weiss et al., 2003).
Many studies have also demonstrated improvement in lung
mechanics and oxygenation in research models of lung injury
following administration of PFC liquids in nebulized or
aerosolized forms (Bleyl et al., 1999; Ragaller et al., 2001;
Kandler et al., 2004; von der Hardt et al., 2004). As such,
administration of nebulized perflubron improved resulting
recombinant viral vector mediated gene expression (Beckett
et al., 2012). By adapting and optimizing PFC liquid strategies
demonstrated to be beneficial for viral vector gene delivery,
PFC liquids hold promise for enhanced airway delivery of
CRISPR systems as therapeutic strategy for a myriad of
respiratory disorders.

Considerations for Improving Drug/Gene
Delivery With Inert Liquids
The fact that aqueous solutions are not readily soluble in PFCs is
an important consideration for PFC drug delivery. Some research
projects have circumvented this barrier by relying on bulk flow
turbulent mixing (Wolfson et al., 1996; Lisby et al., 1997).
However, techniques that improve solubility of the drug or
biologic agent in PFC are advantageous to provide stability
and equivalent disbursement of the drug within the lung and
for more controlled dosing procedures. One such method is
generation of nanocrystals that can then be administered
during partial liquid ventilation. This approach was
successfully utilized by developing gentamicin/
perfluorochemical nanocrystal suspension that was delivered
using two techniques (Cullen et al., 1999). In the first
technique, called the top-fill technique, gentamicin/PFC
nanocrystal suspension was instilled through the sideport of
an endotracheal tube 29 ± 8 min after initiation of partial
liquid ventilation with a bolus of oxygenated perflubron. In
the second technique, called the slow-fill technique, the
gentamicin/PFC nanocrystal suspension was combined with
perflubron, vortexed, and delivered through the sideport of an
endotracheal tube. Thus, in the second technique, partial liquid
ventilation and gentamicin treatment were initiated
simultaneously. Both the techniques resulted in effective
distribution of gentamicin into the lung and greater
gentamicin levels per gram of dry lung tissue compared with
intravenous administration of aqueous gentamicin. The amount
of original gentamicin dose left in the lobes of the lungs adjusted
for dry weight after 4 h and was greater in the slow-fill technique
compared with the top-fill technique.

SUMMARY

When lung parenchymal disease and/or injury are present in the
lung, pulmonary ventilation and perfusion are compromised.
Ventilation can be irregular and perfusion may be inhibited by
ventilation-perfusion mismatch. The route of therapy
administration is hindered by these abnormalities, rendering
standard intravenous and aerosol/endotracheal tube delivery
ineffective in delivering therapeutic agents to the affected area.

Liquid ventilation with an inert respiratory gas solubility is a
revolutionary mode for respiratory support, as well as delivery of
drug/gene product to the respiratory system. As noted, inert
perfluorochemical liquids have low viscosity and high oxygen and
carbon dioxide capabilities (Grotberg, 2001). The physical
properties of PFC liquids improve lung mechanics and gas
exchange and condition the lung parenchymal surface for
optimal administration of drug/gene product.

The use of PFC liquid in the respiratory system enhances
ventilation and perfusion matching, boosting exposure of the
drug/gene product to the circulation, successfully reaching
required therapeutic serum drug levels (Fox et al., 1997).
Studies have demonstrated the utilization of PFCs as adjuncts
for intrapulmonary biological agent delivery both preclinically
and clinically as reported herein.
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