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ABSTRACT Rainbow trout that were resistant or susceptible to Flavobacterium psy-
chrophilum infection were compared with respect to their microbial composition by
using 16S rRNA V3-V4 sequencing. The differences occurred in gills, where resistant
fish displayed a greater abundance of the phylum Proteobacteria and a smaller pro-
portion of Firmicutes relative to those of susceptible fish.

The microbial composition of fish and other organisms plays an important role in the
development of diseases caused by pathogens (1, 2), making the host more

resistant or susceptible to certain diseases (3, 4). Flavobacterium psychrophilum is the
etiologic agent of cold-water disease and rainbow trout fry syndrome, with mortality
rates of over 50% (3). Currently, survival is attributed to natural diversity in the immune
capacity of each infected individual (3) and the pathogen strain involved (5). However,
the exact reason for this phenomenon is not well understood. The microbiome is a first
barrier against the establishment of pathogenic bacteria within tissues and shows
variation that depends on the history of each specimen (e.g., genetic, environmental,
and feeding history) (6–9), but its protective role regarding F. psychrophilum infections
has not been investigated. Thus, we hypothesized that resistant fish possess distinctive
microbiome features that support their resistance to the infection/disease produced by
this pathogen, as well as their eventual survival.

To obtain samples from Oncorhynchus mykiss fish that were resistant or susceptible
to Flavobacterium psychrophilum, we applied an experimental challenge model using
healthy fish from a fish farm located in Río Blanco, Chile. The challenge was performed
with 60 specimens, each of �30 g, distributed in four 27-liter aquariums (15 fish per
aquarium) at 14°C. The fish from two aquariums (30 fish in total) were injected
intraperitoneally with live F. psychrophilum 10094 (108 CFU/fish) to induce a pathogen
challenge, while the fish from the other two aquariums (30 fish) were used as controls
for the challenge. Next, the fish were kept in the facilities of the Center for Aquaculture
Biotechnology of Universidad de Santiago de Chile for 20 days in 27-liter aquariums at
12°C and a density of 16 g/liter.

The fish were sacrificed and, immediately afterward, samples of gills, intestines (stool
free), and stools (intestinal contents) were collected under sterile conditions from fish
not injected with the pathogen, fish that developed the disease, and fish that showed
no symptoms of the disease. Organs and stools were extracted in full, and 30 mg was
used for DNA extraction. Five fish per condition were sampled.

After sample extraction, total DNA was extracted, using the genomic DNA purifica-
tion kit (Promega), from each of the extracted organs and stool. DNA samples were
pooled according to condition and organ, yielding 9 groups in total. DNA was frozen
at –20°C until the samples were sent to the sequencing service.
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Macrogen (South Korea) performed next-generation sequencing of the V3-V4 region
of the 16S rRNA gene with the primers 341F (5=-CCT ACG GGN GGC WGC AG-3=) and
785R (5=-GAC TAC HVG GGT ATC TAA TCC-3=) (10) using the Illumina MiSeq platform.
After sequencing, reads of approximately 250 bp were obtained; the average number
of paired-end reads obtained was about 490,000. The numbers of paired-end reads per
sample varied between 626,000 in the intestines of resistant fish and 379,000 in the
stools of susceptible fish. Then, the QIIME v2 (11) next-generation microbiome analysis
platform was utilized. Specifically, the DADA2 v0.99.8 plugin (12) for quality control was
used for denoising (parameters: p-trunc-len-f 280 and p-trunc-len-r 240) and trimming,
in which low-quality sequences were eliminated, decreasing the numbers of paired-end
reads to 316,000 in the intestines of resistant fish and 297,000 in the intestines of
susceptible fish; finally, the SILVA v132 database (13, 14) was used for taxonomic
assignment, with similarity of 99% as the threshold.

Figure 1 summarizes the most abundant phyla (�5%) that were detected. Bacteroidetes
showed an abundance of 61.46% in control gills, while the gills of resistant and susceptible
fish showed abundances of 2.57% and 9.74%, respectively. In intestines, this phylum
showed an abundance of 50.02% in control fish; in susceptible and resistant fish, its
abundances were 70.35% and 56.99%, respectively. In stools from control fish, Bacteroidetes
had an abundance of 3.68%, which changed to 4.67% in resistant fish and 40% in
susceptible fish. The phylum Firmicutes, in contrast, decreased after exposure of the fish to
F. psychrophilum 10094, regardless of the tissue analyzed. Finally, the phylum Proteobacteria
increased its abundance in gills from 9.31% in control fish to 83.71% in resistant fish.

The microbiotas of fish that are resistant versus those that are susceptible to infections
with Flavobacterium psychrophilum 10094 differ mainly in the abundance of the bacterial
phylum Proteobacteria, which is found in greater abundance in the microbiota of resistant
fish, compared to the microbiota of those that are susceptible to the pathogen.

Data availability. This metagenomic project has been deposited in the SRA under
BioProject accession number PRJNA557254.
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