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Abstract: The effective treatment of membrane concentrate is a major technical challenge faced by the
new coal chemical industry. In this study, a supported perovskite catalyst LaCoO3/X was prepared by
a sol–impregnation two-step method. The feasibility of the supported perovskite catalyst LaCoO3/X
in the UV-catalytic wet hydrogen peroxide oxidation (UV-CWPO) system for the purification of
concentrated liquid of coal chemical wastewater was investigated. The effects of catalyst support,
calcination temperature, calcination time, and re-use time on catalytic performance were investigated
by batch experiments. The catalysts were characterized by X-ray diffraction (XRD), Scanning electron
microscopy (SEM), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS).
Experimental results showed that the supported perovskite catalyst LaCoO3/CeO2 prepared using
CeO2 as support, calcination temperature of 800 ◦C, and calcination time of 8 h had the best catalytic
effect. The catalytic performance of the catalyst remained excellent after seven cycles. The best
prepared catalyst was used in UV-CWPO of coal chemical wastewater membrane concentrate. The
effects of H2O2 dosage, reaction temperature, reaction pressure, and catalyst dosage on UV-CWPO
were determined. Under the conditions of H2O2 dosage of 40 mM, reaction temperature of 120 ◦C,
reaction pressure of 0.5 MPa, catalyst dosage of 1 g/L, pH of 3, and reaction time of 60 min, the
removal efficiencies of COD, TOC, and UV254 were 89.7%, 84.6%, and 98.1%, respectively. Under
the optimal operating conditions, the oxidized effluent changed from high toxicity to non-toxicity,
the BOD5/COD increased from 0.02 to 0.412, and the biodegradability of the oxidized effluent was
greatly improved. The catalyst has a simple synthesis procedure, excellent catalytic performance,
and great potential in the practical application of coal chemical wastewater treatment.

Keywords: membrane concentrate; UV-catalytic wet hydrogen peroxide oxidation; supported per-
ovskite catalyst; biotoxicity testing; biodegradability

1. Introduction

Membrane separation technology is often used in the advanced treatment unit of coal
chemical wastewater to meet the requirement of “zero discharge” in the coal chemical
industry [1]. Membrane separation technology can selectively separate impurities in coal
gasification wastewater at the molecular or ion level, but cannot degrade pollutants [2], so
a certain amount of membrane concentrate will be produced during treatment. Membrane
concentrate has the characteristics of high organic concentration, large chroma, and poor
biodegradability [3]. The effective treatment of concentrated membrane solution is a major
challenge in the advanced treatment of coal chemical wastewater. Ultraviolet-catalytic
wet hydrogen peroxide oxidation (UV-CWPO) technology introduces ultraviolet light into
catalytic wet hydrogen peroxide oxidation (CWPO) system to combine photocatalysis
and CWPO systems [4,5]. UV-CWPO can completely oxidize refractory organic matter
in wastewater and intermediate products produced in wet oxidation into carbon dioxide,
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H2O, and biodegradable small molecules; this method can deodorize, decolorize, and
disinfect at the same time for harmless treatment of toxic wastewater. In addition, UV light
itself can make H2O2 produce ·OH with strong oxidation, and the synergistic effect of UV
light and catalyst can produce more ·OH more efficiently. Compared with CWPO systems,
conventional CWPO systems operate at lower temperatures and pressure levels due to the
introduction of UV [6].Some studies have shown the superiority of photocatalytic system.
Zazo et al. [7] found that UV radiation can promote the reduction of Fe3+ to Fe2+ on the
surface of the catalyst, so that more H2O2 can be decomposed into hydroxyl radical ·OH.
In addition, UV radiation can easily mineralize oxalic acid, which greatly reduces the
leaching of active phase and prolongs the service life of the catalyst. The catalyst is the
key to UV-CWPO technology. The active components in a catalyst can reduce the reaction
conditions and improve the reaction efficiency. Therefore, finding a highly efficient and
stable catalyst is an important challenge to popularize this technology [8].

A perovskite-type catalyst is a composite metal oxide with a cubic crystal structure and
has the advantages of controllable structure, good thermal stability, high catalytic efficiency,
and strong redox ability [9]. This catalyst is widely used in flue gas desulfurization,
catalytic combustion, tail gas purification, wastewater treatment, and other fields [10–12].
Hsu et al. [13] successfully synthesized LaFeO3 by sol–gel method. The removal efficiency
of tricholorethylene (TCE) in aqueous solution using LaFeO3 (2 g/L) as photocatalyst can
reach 95% within 1 h after xenon lamp irradiation. Burcu Palas et al. [14] used LaNiO3
perovskite catalyst in the decolorization study of catalytic wet oxidation of active black 5 azo
dye wastewater. Under the conditions of catalyst dosage of 1 g/L, reaction temperature of
50 ◦C, reaction pressure of 1 MPa, pH of 3, and initial solution concentration of 100 mg/L,
the degradation and decolorization rates of reactive black 5 solution were 65.4% and 89.6%,
respectively. The perovskite-type catalyst has great application prospect in the field of
UV-CWPO. It cannot only meet the performance requirements of CWPO system, but also
fully cooperate with ultraviolet light in the system. However, perovskite-type catalysts
generally have the disadvantage of small specific surface area. Supporting these catalysts
with large specific surface area to obtain more dispersed active components is a research
hotspot [15].

This study used sol impregnation method and selected a variety of supports to syn-
thesize supported perovskite catalyst. The catalytic activity of several benchmark catalysts
was tested to screen a desirable carrier and obtain high-quality supported perovskite cat-
alyst LaCoO3/X. The effects of calcination temperature and duration on the wastewater
purification efficiency of the catalyst were investigated by batch experiments. The physical
and chemical properties of the catalyst were characterized by XRD, SEM, BET, and XPS.
Finally, the catalysts obtained under the optimal preparation conditions were used in the
UV-CWPO system to purify coal chemical wastewater membrane concentrate. The optimal
process conditions including H2O2 dosage, catalyst dosage, reaction temperature, and
reaction pressure were explored. Toxicity test and biodegradability analysis of the oxidized
effluent were also carried out.

2. Materials and Methods
2.1. Chemicals and Materials

All chemicals used in this study were analytical reagents without further purifi-
cation. Lanthanum nitrate (La(NO3)3·6H2O) was purchased from Shanghai Lingfeng
Chemical Reagent Co., Ltd. (Shanghai, China). Cobalt nitrate (Co(NO3)2·6H2O), citric
acid (C6H8O7·H2O), cerium oxide (CeO2), potassium dichromate (K2Cr2O7), and silver
sulfate (Ag2SO4) were acquired from Sinopharm Reagent Co., Ltd. (Shanghai, China).
Activated alumina, nano titanium oxide (TiO2), concentrated sulfuric acid (H2SO4), sodium
hydroxide (NaOH), hydrogen peroxide (H2O2, 30%), and phenanthroline were obtained
from Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). Mercury sulfate (HgSO4) and
ammonium ferrous sulfate (H8FeN2O8S2·6H2O) were provided by Shanghai Triangsihewei
Chemical Co., Ltd. (Shanghai, China). Deionized water was produced by a pure water
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treatment system (EPED-Z1-30T, Eped Technology, Beijing, China) and used to prepare all
solutions (resistivity ≥ 1 MΩ·cm).

Wastewater was obtained from a coal-to-natural gas wastewater advanced treatment
unit in Inner Mongolia. Membrane concentrate characteristics were COD 1510 mg/L,
pH 7.86, TOC 658 mg/L, UV254 1.562, NH4-N 3170 mg/L, and total dissolved solid content
6200 mg/L.

2.2. Preparation of Materials

Supported perovskite catalyst LaCoO3/X (X = CeO2, TiO2, Al2O3) was prepared
by sol impregnation method. According to the stoichiometric ratio (La(NO3)3·6H2O):
(Co(NO3)2·6H2O) = 1:1, (metal ion):(C6H8O7·H2O) = 1:1.5, certain amounts of
La(NO3)3·6H2O, Co(NO3)2·6H2O, and C6H8O7·H2O were weighed and dissolved in deion-
ized water to form a mixed solution. Several carriers were impregnated in the solution by
constant-volume impregnation method. The mixed solution was oscillated in an ultrasonic
oscillator for 30 min, filtered, and placed in an oven. The samples were dried at 105 ◦C
until they were completely dried. The samples were finely ground and placed in a muffle
furnace. Perovskite catalyst LaCoO3/X was obtained by roasting at the corresponding
temperature(500–1000 ◦C) for the corresponding time (5–10 h).

The crystal phase structure of the catalyst was characterized by X-ray diffraction
analyzer (XRD, XD-6 type, Beijing Purkay General Instrument Co. Ltd., Beijing, China). At
36 kV and 20 mA, XRD analysis was carried out under monochromatic Cu Kα radiation
(λ = 1.54056 Å) within the 2θ scan range of 10◦–80◦.The specific surface area, pore volume,
and pore size distribution of the catalysts were measured using an N2 adsorption and
desorption analyzer [BET, Micromeritics TriStar II type 3020, McMurdo red 2 g (Shanghai,
China) Instrument Co., Ltd.]. Scanning electron microscope (SEM, S3400N II type, Japan
Hitachi) was used to observe the surface morphology and analyze the load cases of the
catalysts. Before the test, a thin layer of gold was plated on the sample surface to improve
the electrical conductivity under the test voltage of 10.00 kV. The valence states of elements
on the catalyst surface were analyzed by X-ray photoelectron spectroscopy (XPS, AXIS-
ULTRA DLD-600 W, Shimadzu, Japan). Al Kα was used as excitation source, and the
experimental resolution was higher than 0.1 eV. All recorded lines were calibrated to C1s
at 284.8 eV line.

2.3. Degradation Experiments and Analytical Method

A UV-CWPO system was used to treat coal chemical wastewater membrane concen-
trate.The UV-CWPO system consists of a 500 mL photochemical high-pressure reactor
(TFM-500, (Beijing Zhongjiao Jinyuan Technology Co., Ltd., Beijing, China) and a 30W
UV deuterium light source (CE-DD30T, Beijing Zhongjiao Jinyuan Technology Co., Ltd.,
Beijing, China), as shown in Figure 1.

Three catalytic oxidation experiments were conducted in parallel at the same time,
and the average value was obtained for subsequent data analysis and discussion. In an
independent catalytic oxidation experiment, 250 mL of water sample was mixed with
dilute sulfuric acid to adjust the pH to 3 and placed in a 500 mL photochemical high-
pressure reactor. Certain amounts of H2O2 (10–60 mM) and catalyst (0.4–1.4 g/L) were
added, and air at certain pressure (0.5–1.7 MPa) was added. The reaction temperature was
set at 60 ◦C–160 ◦C, and the 30 W UV-deuterium lamp source was turned on when the
set temperature was reached. Samples were obtained at different reaction intervals for
analysis. The recycling performance of the catalyst was investigated under the optimal
process conditions. The COD of the water samples was determined by the potassium
dichromate method. Total organic carbon analyzer (TOC, TOC-L, Shimadzu Company,
Osaka, Japan) was used to measure the TOC of water samples. Generally speaking, the
UV254 value is the absorbance of some organic matter in water under the ultraviolet light
at 254 nm. UV254 reflects the quantity of humic macromolecular organic compounds
and aromatic compounds containing C=C double bond and C=O double bond naturally
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occurring in water. Phenolic compounds were the main representative compounds in the
membrane concentrate, thereby it was necessary to choose UV254 as the water quality index.
A UV-Vis spectrophotometer (UV-2600, Shimadzu Company, Osaka, Japan) was used to
measure water UV254 at 254 nm wavelength.
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UV-deuterium lamp source).

The BOD5 of the water samples was determined using hash BOD tester (BODTrak
II type, Loveland, CO, USA) to investigate biochemical changes during liquid waste
processing. The method for determination of the influence of chemical substances on the
microbial metabolism of the Organization for Economic Cooperation and Development
(OCED) was used as reference. The influence of the wastewater sample on the respiration
rate of activated sludge was measured by a biological respiration meter (PF-8100, RSA
Corporation, Danbury, CT, USA) to assess the biological toxicity of wastewater. The pH
of wastewater to be tested was adjusted to 7.5 ± 0.5 by adding sodium hydroxide or
hydrochloric acid to ensure the acid–base environment required for normal growth of
activated sludge. About 250 mL of the activated sludge was placed in a 500 mL reaction
flask. OCED medium and water samples were added. After the test was started, the
biological respirator automatically recorded oxygen consumed in the reactor. According to
the oxygen consumption rate in a certain period of time, respiratory inhibition rate was
calculated by Formula (1) [16].

Respiratory depression rate = (OURblank − OURsample)/OURblank (1)

3. Results and Discussion
3.1. Optimization of Catalyst Preparation Conditions
3.1.1. Effect of Catalyst Support

Figure 2 shows the influence of different supports on the catalytic effect of the cata-
lyst. The order of catalytic performance is: LaCoO3/CeO2 > LaCoO3/TiO2 > LaCoO3 >
LaCoO3/Al2O3. The supported perovskite catalyst LaCoO3/Al2O3 had the worst catalytic
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effect. The COD removal efficiency was only 77.5% when the reaction time reached 90 min,
which was lower than the COD removal efficiency (80.6%) of LaCoO3 in the same reaction
time. When Al2O3 was used as the carrier, Al2O3 invaded the lattice of LaCoO3 and
changed the inherent structure of LaCoO3, thereby affecting the catalytic activity of the
LaCoO3/Al2O3 composite material [17]. The supported perovskite catalysts LaCoO3/CeO2
and LaCoO3/TiO2 had better catalytic effects than the original LaCoO3, and the former
had the best catalytic performance. The COD removal efficiency reached 89.5% when the
reaction reached 90 min. The catalytic activity of the supported TiO2 catalyst was improved
because the support (TiO2) produced photocatalytic effect with ultraviolet light in the
system [18]. When CeO2 was used as the support, CeO2 improved the thermal stability
and oxygen storage capacity of the catalyst. Cerium-based catalysts would not enter the
crystal lattice of perovskite, similar to commonly used transition metal cations (e.g., La, Co,
Fe, Mn). Thus, LaCoO3/CeO2 exhibited better catalytic activity [19]. Therefore, CeO2 was
selected as catalyst support to prepare supported perovskite catalyst LaCoO3/CeO2 for
subsequent experiments.

Int. J. Environ. Res. Public Health 2021, 18, x  5 of 18 

 

 

of wastewater to be tested was adjusted to 7.5 ± 0.5 by adding sodium hydroxide or hy-
drochloric acid to ensure the acid–base environment required for normal growth of acti-
vated sludge. About 250 mL of the activated sludge was placed in a 500 mL reaction flask. 
OCED medium and water samples were added. After the test was started, the biological 
respirator automatically recorded oxygen consumed in the reactor. According to the oxy-
gen consumption rate in a certain period of time, respiratory inhibition rate was calculated 
by Formula (1) [16]. 

Respiratory depression rate = (OURblank − OURsample)/OURblank (1)

3. Results and Discussion 
3.1. Optimization of Catalyst Preparation Conditions 
3.1.1. Effect of Catalyst Support 

Figure 2 shows the influence of different supports on the catalytic effect of the cata-
lyst. The order of catalytic performance is: LaCoO3/CeO2 > LaCoO3/TiO2 > LaCoO3 >  
LaCoO3/Al2O3. The supported perovskite catalyst LaCoO3/Al2O3 had the worst catalytic 
effect. The COD removal efficiency was only 77.5% when the reaction time reached 90 
min, which was lower than the COD removal efficiency (80.6%) of LaCoO3 in the same 
reaction time. When Al2O3 was used as the carrier, Al2O3 invaded the lattice of LaCoO3 
and changed the inherent structure of LaCoO3, thereby affecting the catalytic activity of 
the LaCoO3/Al2O3 composite material [17]. The supported perovskite catalysts  
LaCoO3/CeO2 and LaCoO3/TiO2 had better catalytic effects than the original LaCoO3, and 
the former had the best catalytic performance. The COD removal efficiency reached 89.5% 
when the reaction reached 90 min. The catalytic activity of the supported TiO2 catalyst 
was improved because the support (TiO2) produced photocatalytic effect with ultraviolet 
light in the system [18]. When CeO2 was used as the support, CeO2 improved the thermal 
stability and oxygen storage capacity of the catalyst. Cerium-based catalysts would not 
enter the crystal lattice of perovskite, similar to commonly used transition metal cations 
(e.g., La, Co, Fe, Mn). Thus, LaCoO3/CeO2 exhibited better catalytic activity [19]. Therefore, 
CeO2 was selected as catalyst support to prepare supported perovskite catalyst  
LaCoO3/CeO2 for subsequent experiments. 

 
Figure 2. Effect of catalyst support on catalytic effect. (Catalyst preparation conditions: calcination 
temperature = 800 °C, calcination time = 8 h; Reaction conditions: LaCoO3/CeO2 = 0.8 g/L, H2O2 = 
40 mM, 120 °C, 1 MPa, 60 min). 

0 20 40 60 80 100
0

20

40

60

80

100

C
O

D
 re

m
ov

al
(%

)

Time (min)

 LaCoO3

 LaCoO3/CeO2

 LaCoO3/TiO2

 LaCoO3/Al2O3

Figure 2. Effect of catalyst support on catalytic effect. (Catalyst preparation conditions: calcina-
tion temperature = 800 ◦C, calcination time = 8 h; Reaction conditions: LaCoO3/CeO2 = 0.8 g/L,
H2O2 = 40 mM, 120 ◦C, 1 MPa, 60 min).

3.1.2. Effect of Calcination Temperature

The effects of different calcination temperatures (500 ◦C, 600 ◦C, 700 ◦C, 800 ◦C,
900 ◦C, and 1000 ◦C) on the catalytic activity of LaCoO3/CeO2 were investigated (Figure 3).
With increasing roasting temperature, the catalytic effect of the catalyst was gradually
improved.The catalyst with calcination temperature of 800 ◦C performed the best catalytic
effect, and the COD removal efficiency reached 90.2%. The catalytic activity of the catalyst
did not continue to increase and even began to decrease when the calcination temperature
exceeded 800 ◦C. The COD removal efficiency only reached 85.6% by the catalyst with the
calcination temperature of 1000 ◦C. The perovskite structure of the catalyst on the CeO2
carrier had not been formed when the calcination temperature was in a lower range, and
the purity of the effective perovskite structure was also relatively low, resulting in lower
catalyst activity [20]. Meanwhile, if the calcination temperature was too high, the catalyst
was prone to sintering, resulting in the collapse of the internal structure of the catalyst,
blockage of the pores, and reduction of active sites, which in turn led to the degradation
of the catalytic activity [21]. In summary, 800 ◦C was selected as the best calcination
temperature of LaCoO3/CeO2.
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3.1.3. Effect of Calcination Time

The effects of different calcination times (5, 6, 7, 8, 9, and 10 h) on the catalytic activity
of LaCoO3/CeO2 were investigated (Figure 4). As the calcination time of the catalyst
increased, the catalytic effect gradually improved. When the calcination time was 8 h, the
catalytic effect reached the highest, and the COD removal efficiency reached 91.1%. As
the calcination time continued to increase, the catalytic activity of the catalyst began to
decrease gradually. The COD removal efficiency only reached 86.4% by the catalyst after
calcination 10 h. Due to the short calcination process, the complexing agent in the catalyst
was not completely burned out, so the structure of the catalyst was unstable, the pore was
not clear, and the active point formed was less. Thus, the catalyst with a shorter calcination
time showed poor catalytic performance [22].

When the calcination time was too long, a perovskite catalyst structure was formed
on the CeO2 support and part of the catalyst was sintered and agglomerated, thereby
decreasing the specific surface area [23], destroying the active point of the catalyst, and
reducing the catalytic effect. Therefore, 8 h was selected as the best roasting time for
the catalyst.

3.2. Characterization of Catalysts
3.2.1. X-ray Diffraction (XRD)

The crystal phase structures of LaCoO3 and LaCoO3/CeO2 are shown in Figure 5.
Characteristic diffraction peaks of LaCoO3 perovskite structure prepared by the sol–gel
method were found at 33.04◦, 47.65◦, and 59.08◦, consistent with the standard card of
LaCoO3 (PDF#48-0123). This finding indicated the effectiveness of the preparation method.
The prepared catalyst had a pure perovskite structure and orthogonal crystal. The XRD
spectra of the supported catalyst LaCoO3/CeO2 prepared by impregnation showed not
only obvious characteristic diffraction peaks of LaCoO3 perovskite structure but also
characteristic peaks of CeO2 at 29.08◦, 33.04◦, and 56.51◦, corresponding to the standard
card of CeO2 (PDF#1-800) [24]. This result confirmed that an LaCoO3 perovskite-type
structure was formed on the surface of the CeO2 support, and the crystal forms of the
support and active component were not destroyed.
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Figure 5. XRD patterns of LaCoO3 catalysts with different supports. (Catalyst preparation conditions:
calcination temperature = 800 ◦C, calcination time = 8 h).

3.2.2. N2 Adsorption/Desorption Analysis

The specific surface area and pore texture information of LaCoO3 and LaCoO3/CeO2
are listed in Table 1. The specific surface area of LaCoO3/CeO2 increased from 2.685 m2/g
of pure LaCoO3 to 13.073 m2/g, the pore volume increased from 0.006297 cm3/g to
0.052408 cm3/g, and the pore diameter was 4.0569 nm. With increasing specific surface
area and pore volume, the active points on the catalyst surface also increased, and the
catalytic activity became stronger [25].
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Table 1. BET surface area and pore structure of LaCoO3 catalysts with different supports.

Catalyst Specific Surface
Area (m2/g) Pore Volume (cm3/g) Pore Diameter (nm)

LaCoO3 2.6749 0.0063 4.9501
LaCoO3/CeO2 13.0729 0.0524 4.0569

3.2.3. Scanning Electron Microscopy (SEM)

Figure 6 shows the morphology and structure of LaCoO3/CeO2. As shown in
Figure 6a, the composite metal oxide LaCoO3 was distributed on the surface of the CeO2
carrier in the form of uniform crystal particles. Although particles were closely connected,
the gap between them were clearly seen. In addition, although the LaCoO3 particles on the
surface of the support are partially sintered, there are still a large number of pores on the
crystal surface and between the crystal structures (Figure 6b,c). Increasing the active point
of the catalyst and the contact area between the catalyst and the reactants was conducive
to the catalytic reaction [26]. In conclusion, the supported LaCoO3/CeO2 catalyst had a
larger specific surface area and higher catalytic activity, consistent with the microscopic
characterization and macroscopic experimental results.
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3.2.4. X-ray Photoelectron Spectroscopy (XPS)

The surface element analysis results of the LaCoO3/CeO2 catalysts are shown in
Figures 7–9. Figure 7a,b shows the La 3D XPS spectra of LaCoO3 and LaCoO3/CeO2
catalysts, respectively. Two pairs of bimodals appeared in both spectra. Two pairs of
bimodals located at the lower binding energy (A: 833.8 and 837.7 eV; B: 834.2 and 838.1 eV)
were attributed to La 3d3/2 and La 3d5/2. The two pairs of double peaks located at the
higher binding energy position were the carrying peak generated by the main peak orbital
spin fission, consistent with the characteristic peak of La3+ [27] and confirming the existence
of La in LaCoO3 and LaCoO3/CeO2 catalysts. Figure 8a,b shows the XPS spectra of Co2P
of LaCoO3 and LaCoO3/CeO2 catalysts, respectively, in the vicinity of 795.5 eV (a: 795.1 eV;
B: 795.8 eV) and around 780 eV (A: 779.8 eV; B: 780.1 eV) were attributed to Co 2P1/2 and
Co 2P3/2, respectively. Peak-splitting fitting was performed for Co 2P3/2, which was near
779 eV (A: 779.1 eV; B: 779.3 eV) and 781 eV (A: 780.9 eV; B: 781.3 eV) corresponding to
Co3+ and Co2+, respectively. This finding suggested that Co in LaCoO3 and LaCoO3/CeO2
catalysts existed in the form of CO3+ and CO2+, respectively [28].
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Figure 9a,b show the XPS spectra of O 1s of LaCoO3 and LaCoO3/CeO2 catalysts,
respectively. At around 528.5 eV in the two spectra (A: 528.3 eV; B: 528.7 eV) and 531 eV
(A: 530.8 eV; B: 531.2 eV), the two main peaks were attributed to lattice oxygen (OL)
and surface adsorbed oxygen (OS) [29]. The relative contents of lattice oxygen (OL) and
surface adsorbed oxygen (OS) in LaCoO3 and LaCoO3/CeO2 catalysts were calculated
according to the ratio of the peak area of Co3+ and Co2+ (Table 2). With the addition of
CeO2 support, the ratio of Co3+/Co2+ in the catalyst was close to 1, indicating that the
mutual conversion between Co3+ and Co2+ in LaCoO3/CeO2 supported catalyst gradually
reached a balance. The oxygen vacancy was formed during charge balance, which was
beneficial to the improvement of catalytic activity [30]. The OL/OS ratio increased from
0.80 to 1.48, indicating that the lattice oxygen defects increased in the supported catalysts.
The lattice oxygen defect was beneficial to increase the active point of the catalyst, thus
improving the catalytic effect of the catalyst [31].

Table 2. Ratio of Co3+ and Co2+ and OL and OS of LaCoO3 and LaCoO3/CeO2.

Catalyst Co3+/Co2+ OL/OS

LaCoO3 1.88 0.80
LaCoO3/CeO2 1.15 1.48

3.3. Degradation Experiments
3.3.1. Comparison to Several Kinds of Reaction Systems

Figure 10 showed that COD removal efficiency of wastewater by UV photocatalysis
was quite low, only 16.6%. The reason for this phenomenon was that UV photocatalytic
oxidation was limited by reaction conditions and light could not penetrate the turbid
solution. The COD removal efficiency in wastewater by CWPO was 75.9%. The removal
efficiency of COD in wastewater by UV-CWPO was the best. COD removal efficiency as
high as 89.7% when the reaction reached 60 min, and its trend was basically stable after
60 min. Therefore, the UV-CWPO system proves that the combination of UV and CWPO
technologies can produce beneficial effects and improve the COD removal efficiency.
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Figure 10. Comparison to different reaction systems. (Reaction conditions: LaCoO3/CeO2 = 1 g/L,
H2O2 = 40 mM, 120 ◦C, 0.5 MPa).

3.3.2. Effect of H2O2 Dosage on Wastewater Purification

The influence of different H2O2 dosages on wastewater purification is shown in
Figure 11. With increasing H2O2 dosage, the removal efficiencies of COD, TOC, and
UV254 in wastewater increased. When the H2O2 dosage reached 40 mM, the removal
efficiencies of COD, TOC, and UV254 reached the maximum values of 88.5%, 81.2%, and
97.9%, respectively. When the H2O2 dosage exceeded 40 mM, the removal efficiency of
UV254 had no significant increase, while the removal efficiencies of COD and TOC showed
a downward trend. With the increase of H2O2 dosage, more ·OH was produced, which
enhanced the oxidation capacity of the reaction system [32]. When the concentration
of H2O2 was too high, excess H2O2 was decomposed with ·OH in the reaction system,
inhibiting the oxidation capacity of the system and causing the waste of oxidants [33].
Overall, the optimal dosage of H2O2 was 40 mM.
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Figure 11. Effect of H2O2 dosage on oxidation. (Reaction conditions: LaCoO3/CeO2 = 0.8 g/L,
120 ◦C, 1 MPa, 60 min).
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3.3.3. Effect of Reaction Temperature on Wastewater Purification

The effect of different reaction temperatures on wastewater purification is shown
in Figure 12. As the reaction temperature increased within 60 ◦C–160 ◦C, the removal
efficiencies of COD, TOC, and UV254 in wastewater increased continuously at first and then
tended to be stable. When the reaction temperature was 120 ◦C, the removal efficiencies of
COD, TOC, and UV254 reached the maximum values of 88.5%, 86.7%, and 97.9%, respec-
tively. The gradual increase in the reaction temperature in the initial stage accelerated the
reaction process between organic matter in wastewater and ·OH, thereby continuously
increasing the rate of the reaction system [34]. When the temperature continued to rise,
the removal efficiencies of COD, TOC, and UV254 tended to be stable without significant
changes. Therefore, the optimal reaction temperature was 120 ◦C.
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Figure 12. Effect of reaction temperature on oxidation. (Reaction conditions: LaCoO3/CeO2 = 0.8 g/L,
H2O2 = 40 mM, 1 MPa, 60 min).

3.3.4. Effect of Reaction Pressure on Effluent Purification

The effect of different reaction pressure levels on wastewater purification is shown
in Figure 13. With increasing reaction pressure, the removal efficiencies of COD, TOC,
and UV254 remained basically unchanged. When the reaction pressure was 0.5 MPa (the
saturated vapor pressure of water at 120 ◦C is 0.2 MPa), the removal efficiencies of COD,
TOC, and UV254 reached 89.2%, 84.5%, and 97.1%, respectively. Increase in the reaction
pressure had no significant effect on oxidation. In the UV-CWPO system, the oxidation
process between H2O2 and pollutants is the main body, and the mass transfer of oxygen
from the gas phase to the liquid phase is less than that in the CWPO system, thereby
reducing energy consumption [35,36]. Therefore, the system can oxidize and degrade
pollutants under low-pressure conditions. Considering the oxidation effect and safety, the
optimal reaction pressure was 0.5 MPa.
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Figure 13. Effect of reaction pressure on oxidation. (Reaction conditions: LaCoO3/CeO2 = 0.8 g/L,
H2O2 = 40 mM, 120 ◦C, 60 min).

3.3.5. Effect of Catalyst Dosage on Wastewater Purification

The effect of different dosages of catalyst on wastewater purification is shown in
Figure 14. With increasing catalyst dosage, the removal efficiencies of COD, TOC, and
UV254 in wastewater showed a trend of increasing first and then decreasing. When the
dosage of the catalyst was 1 g/L, the removal efficiencies of COD, TOC, and UV254 reached
89.7%, 84.6%, and 98.1%, respectively. With increasing catalyst dosage, the active points
on the catalyst surface increased, and the decomposition rate of H2O2 to produce ·OH
was accelerated, thereby increasing the oxidation rate. When the dosage of the catalyst
was greater than 1 g/L, the light transmittance of wastewater was negatively affected,
which was not conducive to the absorption of ultraviolet light. The oxidation effect then
decreased slightly [37]. Therefore, the optimal dosage of the catalyst was 1 g/L.
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3.4. Reusability and Stability of Catalyst

Seven cyclic degradation experiments were carried out to evaluate the reusability
and stability of the LaCoO3/CeO2 catalyst (Figure 15). The removal efficiencies of COD,
TOC, and UV254 reached 88.3%, 82.8%, and 96.3% after seven times of repeated use, which
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were not significantly lower than the removal efficiencies of the first use. Hence, the
LaCoO3/CeO2 catalyst had good reusability and stability.
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H2O2 = 40 mM, 120 ◦C, 0.5 MPa, 60 min).

4. Biodegradability Analysis
4.1. Biodegradability

Change in biodegradability before and after wastewater purification is very important
for actual water treatment. First, BOD5/COD before and after wastewater purification
in the UV-CWPO system was tested (Figure 16). In general, the greater the BOD5/COD
value is, the better the biodegradability of wastewater is. The wastewater is generally
considered to be biodegradable when BOD5/COD > 0.3. The biodegradability of the
concentrated liquid of coal chemical wastewater membrane before oxidation was very poor.
The BOD5/COD was only 0.02 after five days of biochemical cultivation, indicating that
wastewater before oxidation treatment could not be directly treated in the biochemical unit.
The biodegradability of wastewater purified by this system was greatly improved. The
BOD5/COD of the wastewater reached 0.412 after five days of biochemical culture, and the
biodegradability was greatly improved. After oxidation, the large molecular organic matter
and toxic and harmful components in wastewater were greatly degraded and transformed
into small molecular substances that can be biodegraded [38]. Therefore, wastewater
oxidized by UV-CWPO can be treated in the biochemical unit.
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4.2. Biological Toxicity Analysis

The biological toxicity of wastewater before and after treatment was determined by
measuring the effect of wastewater on the respiration rate of activated sludge. Figure 17
shows the oxygen consumption rate (OUR) of the sample (oxygen mass consumed per unit
time). When the reaction lasted for 8 h, the OUR of blank water sample was 2.02 mg/h,
the OUR of raw water was 0.33 mg/h, and the OUR of the effluent was 2.28 mg/h. The
OUR of water oxidized by the UV-CWPO system was higher than that of the blank water
sample. The OUR of the raw water was lower than that of the blank water sample. This
finding indicated that the concentrated liquid of coal chemical wastewater membrane
before oxidation had serious inhibitory effect on the respiration rate of activated sludge.
However, the oxidized water sample promoted the respiration rate of activated sludge,
confirming that the oxidized water sample is easily degraded by activated sludge [39].

The inhibition rates of water samples before and after oxidation treatment were
calculated relative to the blank samples, and the toxicity of wastewater was classified
accordingly (Table 3). The water sample after oxidation treatment changed from the original
highly toxic to non-toxic. Hence, the oxidized effluent can enter into the biochemical unit
for treatment.
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Table 3. Results of toxicity in water samples.

Sample Respiratory Depression Rate Toxicity

Raw water 83.66% High toxic
Oxidation discharge No inhibition Non-toxic

5. Conclusions

In this study, supported perovskite catalyst LaCoO3/X was prepared by two steps
(sol–gel method and impregnation). The best catalyst LaCoO3/CeO2 was selected based
on macro catalyst performance test and micro characterization analysis. The optimal
preparation conditions were established (calcination temperature of 800 ◦C, calcination
time of 8 h). The overall crystal structure of LaCoO3/CeO2 was clear, and the composite
metal oxide LaCoO3 with standard perovskite structure was well distributed on the surface
of the CeO2 carrier. LaCoO3/CeO2 was used as the catalyst in the UV-CWPO system
to participate in the purification of coal chemical wastewater membrane concentrate.
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Under the best process conditions, i.e., pH of 3, reaction time of 60 min, H2O2 dosage
of 40 mM, reaction temperature of 120 ◦C, reaction pressure of 0.5 MPa, and catalyst
dosage of 1 g/L, the removal efficiency of COD, TOC, and UV254 reached 89.7%, 84.6%,
and 98.1%, respectively. In addition, the removal efficiency of COD, TOC, and UV254
still reached 88.7%, 82.8%, and 96.3% after seven cycles of degradation, which were not
significantly lower than those at the first use. Apparently, the prepared LaCoO3/CeO2
catalyst showed desirable reusability and stability. The biodegradability analysis showed
that the BOD5/COD of wastewater treated by the UV-CWPO system increased from 0.02
to 0.412. The toxicity analysis indicated that the water sample after oxidation changed
from the original highly toxic to non-toxic, and the oxidized effluent was suitable for
subsequent biochemical units. Hence, the supported perovskite catalyst LaCoO3/CeO2
is a pure perovskite catalyst with orthogonal crystal form and has a good application
prospect for treating concentrated liquid of a coal chemical wastewater membrane in a
UV-CWPO system.
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