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Abstract: Soil salinity is one of the major abiotic stresses restricting plant growth and development.
Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-
induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing
salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic
acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop
performance and yield under saline conditions. This review summarizes the current knowledge of the
effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and
development, and elucidates the physiological and genetic mechanisms underlying this process by
linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while
each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of
interactions between various PGRs and their involvement in numerous signaling pathways makes
it difficult to establish an unequivocal causal link between PGRs and their downstream effectors
mediating plants’ adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on
genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also
strongly dependent on salinity levels. Taken together, this results in a rather narrow “window” in
which the beneficial effects of PGR are observed, hence limiting their practical application (especially
under field conditions). It is concluded that, in the light of the above complexity, and also in the
context of the cost-benefit analysis, crop breeding for salinity tolerance remains a more reliable
avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field
requires more studies on the underlying cell-based mechanisms of interaction between PGRs and
membrane transporters mediating plant ion homeostasis.
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1. Introduction

Salinity is one of the major abiotic stresses affecting crop plants and limiting produc-
tion worldwide [1,2]. Globally, approximately 1125 million ha of land is affected by soil
salinity [3]. Soil salinization is increasing at a rate of ~3 ha/min [4], and now becoming
a major concern for the irrigated agriculture [1,5]. Salinity stress induces a multitude of
responses in plants at various levels of plant structural organization. The three primary
constraints imposed by salinity on plants are osmotic stress, ionic disbalance/toxicity;,
and oxidative stress [1]. Osmotic stress decreases external water potential and leads to
a reduced water uptake capacity of plants, thus affecting cell expansion growth. It also
leads to stomata closure, reducing the plant’s ability to assimilate CO,. The ionic stress is
caused by an excess uptake of toxic salt ions (mainly Na* and C17) that hamper normal
metabolic processes in plants. The accumulation of toxic Na* and Cl~ is also accompanied
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by a massive reduction in cytosolic K*, with numerous implications for a cell’s metabolic
activity and viability [6-9]. CI™ toxicity is less drastic compared with Na*, but nonetheless
can cause a significant disturbance to many physiological and biochemical processes in
sensitive species [10,11]. Salinity stress also leads to the production of excess amounts of
reactive oxygen species (ROS) in plant tissues [12-14], including superoxide anion (O?™),
hydrogen peroxide (H,Oy), singlet oxygen (10?), and hydroxyl radical (OH®). These ROS
can severely damage the plant’s cellular structures and macro molecules like DNA, en-
zymes, and lipids [15-18]. Also, ROS are highly potent regulators of a broad range of Ca?*,
Na*, and K*—permeable ion channels [19-21]—thus causing a major disturbance to stress
signaling and intracellular ion homeostasis, well before damaging effects become evident.

Three major cereal crops, namely wheat, rice, and maize, are responsible for over 50%
of daily caloric uptake by the human population. All of them are classified as salt-sensitive
species and perform poorly when grown on saline soils. For example, wheat provides
about 20% of human food energy requirements and 25% of proteins consumed daily
worldwide (Wheat Initiative, www.wheatinitiative.org/, accessed on 23 May 2021). Wheat
is a salt-sensitive glycophyte [22], and salinity is considered to be a major soil constraint in
the Australian Wheatbelt [23,24] which results in about a 40% yield reduction [25], costing
Australian economy ~A$200 million per annum [26].

Two different (but potentially complementary) approaches can be used to reduce
the negative impact of salinity stress on plant growth and yield. The first one is the
development of salt-resistant cultivars via molecular or classical breeding. The second
approach is related to agronomical means, and includes inoculating seeds with halotol-
erant plant growth promoting rhizobacteria (PGPR) or the application of various plant
growth regulators (PGRs) [27-34]. While genetic improvement is considered as the best
solution from a long-term perspective, no significant progress has been made in breeding
programs. This is due to the polygenic nature of tolerance, which reflects the complexity of
salt tolerance mechanisms in plant, and the lack of available genes that confer salt stress
tolerance [35-37]. Conventional breeding techniques are time-consuming and laborious,
and have met with only a limited success. With the advancement of science and technology,
molecular techniques and transgenic technology have been widely used in plant breeding
worldwide. Although transgenic technology is considered as a fast and effective method
to obtain salt-tolerant varieties, the public acceptance of genetically modified (GM) crops
remains a major stumbling block in most countries [38—40]. In this context, PGPRs could
potentially minimize the detrimental effects of salinity stress on plant growth and yield
without triggering these public/governmental concerns. PGRs share the common func-
tion of regulating intrinsic hormone levels within plants by modulating signaling within
various hormone transduction pathways, and are widely available and easy to apply to
crops [41,42]. However, the effectiveness of PGPRs depends upon their interaction with
host plant and soil environment. Sometimes plant growth-promoting bacteria has exhibited
harmful effects on the growth and development of plants [43], and is often considered
to be “unsafe” for human and animal health [44]. Also, PGRs cross-talk with each other
and may act synergistically or antagonistically to regulate plant growth, development,
and defense responses, generally by inducing gene expression [45]. This complexity may
result in a certain level of unpredictability and negate expected beneficial effects. The main
aim of this review was to summarize the bulk of the reported data on the use of PGRs
for improving performance of plants grown on salt-affected lands, revealing underlying
cellular mechanisms and downstream targets, and critically assessing the applicability of
PGR for sustainable crop production under conditions of soil salinity.

2. Plant Growth Regulators

Plant growth regulators (PGRs) are defined as synthetic or naturally occurring or-
ganic compounds that influence biological process in higher plants at very low concen-
trations [41]. PGRs can increase or decrease growth and development by altering their
normal biological processes [41,46,47]. When these compounds occur naturally inside the
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plant they are known as phytohormones, but when applied exogenously they are called
PGRs [48]. PGRs act as signaling agents, allowing plants to maintain plasticity during
growth and development, and are hence considered as principal factors in responses of
plants to biotic and abiotic stresses [49,50]. PGRs play a significant role in alleviating
salt stress via a broad range of physiological and developmental alterations [51-53]. In
broad terms, PGRs are involved in increasing the physiological availability of water and
essential nutrients, while helping plants reduce toxic salt load [54]. They also have a major
impact on the antioxidant enzyme activities in plants [55-62]. PGRs induce salt tolerance
by increasing the activity of ROS scavenging enzymes to maintain the ROS at a nontoxic
level under stress conditions [63,64]. The ameliorating ability of PGRs depends on environ-
mental factors that affect their absorption, the concentration at which they are applied, and
the physiological state of the plant [65-67]. PGRs are classified into a number of distinct
classes, such as auxins (Aux), cytokinins (CKs), nitric oxide (NO), brassinosteroids (BRs),
gibberellins (GAs), salicylic acid (SA), abscisic acid (ABA), jasmonates (JAs), and ethylene.
The following sections examine the efficiency and modes of ameliorating the effects those
PGRs have on how plants respond to salinity stress.

3. Effects of Plant Growth Regulators on Plant Performance under Saline Conditions
3.1. Auxins

Auxin is a widely used plant growth regulator of low molecular weight with an
aromatic ring structure [68]. Auxin is produced in growing shoot tips and transported
down the main stem via the polar auxin transport (PAT) mechanism [69]. It is involved
in cell division and elongation, organogenesis, and apical dominance [70-74]. Auxin
stimulates cell elongation via increasing wall extensibility and participates in the regulation
of cell wall properties by inducing wall loosening [75]. Auxins also stimulate H*~ATPase
operation, creating a driving force for inorganic ion uptake that contributes to increased
cell turgor [76,77].

Salt stress affects the growth of both primary and lateral roots [78-80]. The develop-
mental plasticity of the plant root under saline conditions is regulated by auxin [81], and the
inhibition of root growth is associated with reduced auxin accumulation [82], most likely
via the PAT mechanism [83]. Slowing root growth might be an adaptive mechanism for
plants surviving in salt environments. Exogenous application of auxin leads to an increase
in root growth under saline conditions in several species [82,84]. However, this increase in
root growth comes with a carbon cost, and therefore, could be counterproductive under
conditions of severe salinities, when (limited) plant ATP pull is required for a range of
defense responses. Lateral root development is also an important survival strategy for plant
to avoid damage in unfavorable environmental conditions, including salt stress [85-87].
Plants remodel their root architecture by altering auxin accumulation and its redistribution
under salt stress conditions [88-91].

Indole-3-acetic acid (IAA) is an important member of auxin family of plant hor-
mones [92,93]. Stress conditions lead to a significant reduction in IAA concentrations in
rice, maize, tomato, and wheat plants [94-97]. This reduction of free IAA concentration
in crop is cultivar- or plant organ-dependent. For example, the free IAA concentration
remained constant in the roots of a salt-tolerant maize hybrid line, but significantly de-
creased in the roots of a salt-sensitive line, while IAA concentration in leaves remained
constant in both lines [95]. Therefore, the reduction in plant growth and development
under stress conditions could be an outcome of altered auxin accumulation and redistri-
bution. Consistent with this, some studies suggested that exogenous application of Aux
may alleviate salinity stress in many crops, including wheat [45,84,98,99]. For example,
foliar spraying of 2 mM IAA to salt-grown maize plants increased kernel yield by ~9%,
while a combination of IAA spray and a basal application of inorganic nutrients (K and P)
improved yield by 20% under 10 dS m~! saline conditions [98]. In rice, a foliar spray of
IAA (50 mL per pot) at the reproductive stage increased grain yield by ~4% and ~46% in
salt-tolerant and salt-sensitive cultivars, respectively, under 6 dS m~! saline conditions [99].
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In the case of wheat, seed primed with 100, 150, and 200 mg L~! of different synthetic
auxins, namely 4-dichlorophenoxyacetic acid (2,4-D); 2,4,5-trichlorophe-noxyacetic acid
(2,4,5-T); and a-naphthaleneacetic acid (NAA) improved the performance of salt-grown
plants under both controlled environment and field conditions. However, the effect was
cultivar-, priming agent-, and concentration-dependent, questioning the direct causal link
between PGR application and observed responses. Seeds primed with 150 mg L~! NAA
increased plant grain yield by ~36% and ~27% in salt-sensitive and salt-tolerant wheat
varieties, respectively, when grown under 150 mM saline conditions [100]. The use of
IA A-producing bacteria also lead to an improvement of wheat performance under saline
conditions [101].

One of the modes of action for the auxin-driven decrease in the extent of salt damage
on plant performance is increasing the activities of auxin-responsive genes that increase
the plant’s water retention capacity and decrease HyO, accumulation [45,102]. The auxin
responsive TalAA gene family exhibits differential expression during the absorption of
inorganic salts in wheat roots [103], and an auxin responsive gene small auxin-upregulated
RNAs TuSAUR?75 in wheat regulates plant growth and development under saline condi-
tions by preventing HyO, accumulation under salt stress [102]. The salt-responsive gene
TaEXPB23 is downregulated by the exogenous application of IAA, and overexpression of
TaEXPB23 conferred salt stress tolerance by decreasing osmotic potential and enhancing
the water retention ability in transgenic tobacco [45].

3.2. Cytokinins

Cytokinins (CKs) are an important class of phytohormones that promote cell division
in the roots and shoots of plants. There are two types of CKs: the adenine type and the
phenylurea type [104]. To date, phenylurea CKs have not been found in plants [105]. The
adenine-type plant hormones are the main form and classified as isopentenyladenine
(iP), trans-zeatin (tZ) and cis-zeatin (cZ), and dihydrozeatin and its riboside [106,107].
The iP-type cytokinin in the phloem is transferred from aerial parts of the plant to the
root to maintain vascular structure in the root meristem [108]. The tZ-type cytokinin is
transferred from the root to aerial parts of the plant through the xylem to regulate shoot
growth [109]. As a result of these redistributions, CKs participate in various biochemical
and physiological processes, such as cell division and leaf senescence, thus controlling
the root/shoot ratio. The long-distant CK transport is also essential for plant responses to
abiotic stresses, including salt [110,111] (Figure 1).

CK has both a positive and negative regulatory role in alleviating the detrimental
effects of salinity stress. For example, cytokinin deficiency leads to enhanced salinity
tolerance in Physcomitrella patens and Arabidopsis [111-113], and contributed to yield
improvement in many crops [114]. Cytokinin oxidase (CKX) is the prime enzyme in-
volved in CK metabolism, which can effectively reduce the concentration of CK in
plants. The overexpression of CKX significantly influences hyposensitivity to salt stress in
Physcomitrella patens [111,112]. Regulation of isopentenyltransferase (IPT) genes under con-
ditions of salinity stress also reduces CK content in Arabidopsis and enhances its tolerance to
salinity [112,115,116]. On the other hand, overproduction of CKs by inducible expression
of IPT8 gene leads to reduced adaptive ability in Arabidopsis. The excess production of
CKs decreases transcript levels of ROS scavenging enzymes, thus leading to increased
ROS production that correlates with sensitivity to salt stress [113]. In contrast to the above
negative effects of CKs, other studies have indicated a beneficial role of CK for plant
performance under salinity stress. The application of CKX inhibitor INCYDE protected the
photosynthetic apparatus and increased the production of flowers in tomato plants [117].
The downregulation of CKX2 under saline stress condition significantly increased CK
concentration and reduced yield penalty in rice [118,119]. AGO2 (argonaute RISC catalytic
component 2) plays a key role in improving salinity tolerance by changing the level of CKs
and enhancing grain yield in rice [120]. These contradictory reports question the practical
application of CKs, and suggest concentration- and tissue-specific modes of action.
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Published papers indicate that salt stress conditions are often associated with a de-
crease in CK concentration in crops like rice and wheat. CK spraying leads to an increase in
grain yield under saline conditions [121]. Exogenous CKs may increase plant antioxidant
enzymes activity and reduce ROS load. Kinetin (adenine-type CKs) spraying at a rate
of 10 mg L~! ameliorated the deleterious effects of salinity by reducing the uptake of
toxic ions Na* and CI~ and promoting the uptake of K* in wheat seedlings. Seed primed
with different concentrations of synthetic cytokinins (kinetin and benzylaminopurine)
increased grain yield by up to 52%, but in a strong cultivar- and concentration-dependent
manner [60].

CKSs mainly promote physiological responses through the regulation of gene expres-
sion [122,123], but little information is available about the molecular function of cytokinin
under salt stress conditions. In Arabidopsis, CRF6 (cytokinin response factor 6) represses
cytokinin-associated genes during oxidative stress [124]. A salt-inducible novel wheat
TaCKX3 (cytokinin oxidase/dehydrogenase) gene is located on chromosome 7B [125], and
silencing of the TnCKX1 gene increased grain yield in wheat [126]. The expression of the
high-affinity potassium transporter AtHKT1.1, which controls xylem Na* loading, was
repressed by CK treatment in Arabidopsis [127]. The genes involved in ROS breakdown
are also greatly affected in cytokinin-deficient mutant ipt1,3,5,7 [113]. CKs help induce cy-
tokinin response factors (CRFs) in the ERF-VI subfamily; CRFs positively regulate osmotic
stress tolerance [128,129]. However, other reports have suggested that overproduction
of CK resulted in a negative effect in plants by modulating stress-responsive gene ex-
pression. For example, overexpression of cytokinin biosynthetic gene AtIPTS (adenosine
phosphate—-isopentenyl transferase 8) significantly inhibits true leaf emergence and primary
root growth under salt stress conditions. It is also associated with increasing ROS produc-
tion, decreasing survival rates, and chlorophyll content, which lead to reduced salinity
tolerance [113]. These pleiotropic effects question the practicalities of CK application and
suggest that balancing CK levels is essential for adapting plants to salt conditions.
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Figure 1. Effect of cytokinin on salt stress tolerance in plants (based on @ [115,130], @ [131],
® [127,132], @ [133], ® [134], and ® [128,129]).

3.3. Nitric Oxide

Nitric oxide (NO) is a gaseous free radical that acts as a signaling molecule. NO
synthesis in plants is mainly carried out by L-arginine-dependent, nitric oxide synthase-
like activity and nitrate reductase (NR)-catalyzed reduction of nitrite (NO, ™) [135-138].
It is widely known as a “jack-of-all-trades” in stress responses [139,140]. Exogenous
application of NO enables plant protection against various abiotic stresses, including
salinity [141-144]. For example, exogenous NO treatment increases K* concentration and
decreases Na* concentration in salt-grown plants, thus maintaining an optimal K/Na
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ratio that is critical for plant’s operation [145]. NO alleviates osmotic stress by scavenging
reactive oxygen species through increased antioxidant enzyme activity [141,146-148] and
glucose-mediated repression of photosynthesis [148]. NO protects the mitochondria from
oxidative damage by increasing ATP synthesis, and seed priming with NO increases wheat
grain yield by up to 22% under saline conditions [147]. NO also significantly modulates
both H*—ATPase and H*-PPase (H*—pyrophosphatase) activities, thus conferring salinity
tolerance in plants [149]. These results suggest that application of exogenous NO could
potentially improve crop growth and development under salt stress conditions.

Despite the above beneficial reports, the practical application of NO in ameliorating
the detrimental effects of salinity is questionable for several reasons. First, similar to the
cytosolic Ca?* signaling, stress-induced elevation in NO levels is usually transient and
requires a return to the basal level. Second, NO is involved in multiple signaling pathways,
so alteration in basal NO level caused by its exogenous application may interfere with
some of them. Last but not least, the biological lifetime of an NO molecule is relatively
short (millisecond range [150]), questioning its ability to sustain long-term control of
transporters activity.

3.4. Gibberellins

Gibberellins belongs to a large group of tetracyclic diterpenoid carboxylic acid deriva-
tives which have various physiological functions, such as stimulating organ growth through
enhancement of cell division and cell elongation [151,152]. Gibberellic acid (GA) is the
most common form of gibberellin [153-155]. The biosynthesis of GA is regulated by both
developmental and environmental stimuli [156]. Salinity stress reduces endogenous GA
content, resulting in plant’s hypersensitivity to salt [157,158].

DELLA family protein is a major GA-negative regulator that may be involved in dif-
ferent environmental and hormonal signaling. For example, DELLA protein SLR1 plays a
role in inhibiting plant growth by inhibiting GA signaling under salt stress conditions [159].
Overexpression of some other GA catabolism-related genes like OsGA20x5 [160] and Os-
MYB91 [161] in rice and AtGA20x7 [162] in Arabidopsis reduces growth and shows an
enhanced tolerance to salt stress compared to wild plants. Again, OsCYP71D8L is a poten-
tial GA-deactivating protein that plays a significant role in balancing the growth process
and stress responses, and leads to enhanced tolerance to salt stress in rice [163]. These
results suggest that the reduction of GA signaling under salt stress conditions is directly
associated with salt tolerance in plants. On the other hand, some papers have reported that
exogenous application of GA had a positive effect on salt stress tolerance in many crops. In
this context, increasing lipid biosynthesis is one of the essential mechanisms conferring
salinity stress tolerance in plants. This process is disturbed by salinity, but the exogenous
application of GA leads to up-regulation of chloroplast lipid biosynthesis, which is directly
associated with increasing salt stress tolerance in rice [164]. Salt stress also reduces enzyme
activities, as well as hampering the nutritional balance in plants. A foliar spray of 0.1 mM
GA significantly alleviates the damaging effect of salt and increases growth and enzymatic
activities in okra [165]. Another potential target of GA are expansins, which determine
extensibility and mechanical properties of cell walls. The TaEXPB23 transcript expression
in wheat was upregulated by salt stress but downregulated by exogenous GA application,
and constitutive overexpression of TaEXPB23 enhanced salt stress tolerance in transgenic
tobacco by enhancing water retention ability and decreasing osmotic potential [45].

3.5. Brassinosteroids

Brassinosteroids are primarily polyhydroxylated, sterol-derived plant growth regula-
tors. They are ubiquitous in all plant species, and are implicated in a wide range of growth
and developmental processes in various crop plants [166-170]. BRs are involved in the
regulation of multiple physiological, developmental, and biochemical processes, including
seed germination, cell division and elongation, differentiation of vascular tissues, devel-
opment of root and shoots, senescence, reproduction, and photomorphogenesis. BRs are
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also essential for plant adaptation to various abiotic and biotic stresses [166,171,172]. BRs
interact with other hormones to regulate these types of activities in plants [169]. The most
common, and thus best studied, are 24-Epibrassinolide (24-EBL) and 28-homobrassinolide
(28-HBL) [173,174]; studies of these have included their role in mitigating salt stress in
plants [175,176].

A foliar spraying of EBL ~10~8 M or seed soaking with ~10~¢ M scavenged excessive
ROS through the enhancement of antioxidant enzyme activities and modified the activity
of proline metabolism, thus improving salinity stress tolerance in wheat [177]. Exogenous
5 uM EBL treatment resulted in a ~42% increase in pod yield in salt-grown bean plants [178],
and foliar spray of 0.125 mg L~! BR led to 18-35% increase in seed yield in peas [179].

The molecular mechanisms explaining how BRs control stress responses and reg-
ulate stress-responsive gene expression in plants are largely unknown [180-183]. BRs
bind to a small family of leucine-rich repeat receptor kinases (BRI1) at the cell surface,
thereby initiating an intracellular signal transduction cascade that results in altered expres-
sion of hundreds of genes that are implicated for diverse functions, including increased
adaptation to various stresses [184]. For example, enhancing BR signaling activity in
Arabidopsis led to increased salt stress tolerance, but BR-defective mutants showed sen-
sitivity to salt stress [181]. The transcript levels of the brassinosteroid receptor (OsBRI1)
were greatly influenced by EBL and its combination with salt stress in rice. On the other
hand, the salt responsive gene (SalT) was negligibly expressed by the combination of salt
and EBL [185]. The Arabidopsis ubiquitin-conjugating enzyme, UBC32, a stress-induced
functional ubiquitin conjugation enzyme, is associated with endoplasmic reticulum protein
degradation (ERAD) and brassinosteroid mediated growth promotion, as well as salt stress
tolerance [186]. Brassinosteroids may also enhance abiotic stress tolerance through their
interaction with other plant hormones, such as ABA [187-189]. The crosstalk between
BR and ABA occurs after BR perception, but at or before BIN2, so a large portion of BR
responsive genes are also regulated by ABA [190]. The specific details of this interaction
need to be investigated in future studies.

3.6. Salicylic Acid

Salicylic acid is a phenolic compound and important endogenous growth regulator
that participates in the regulation of biotic and abiotic stress responses in plants [191-193].
SA has been shown to affect membrane permeability, bud growth, growth rate, stomatal
closure, mitochondrial respiration, material transfer, photosynthesis, and ion absorption.
Because of this, SA plays an essential role in mediating plants” adaptive responses to salin-
ity [52,194], and controls membrane permeability (hence, ion uptake and transport) [195].
It also maintains redox homeostasis in cells under salt stress conditions [196-198] (Figure 2).
External application of SA was found to improve tolerance to salt stress in wheat plants as a
result of the upregulation of transcript levels of GPX1, GPX2, DHAR, GR, GST1, GS5T2, MD-
HAR, and GS, and further enhancement in the enzyme activities of AsA-GSH cycle [199].
SA also reduces the extent of oxidative damage caused by salt stress by enhancing the ac-
tivities of peroxidase and catalase, as well as the production of osmoprotectant compounds,
such as proline, betaine and glycine [193,200]. SA regulates the transcript levels of the
genes encoding ASA-GSH cycle enzymes, such as DHAR (dehydroascorbate reductase),
GPX (glutathione peroxidase), GR (glutathione reductase), GST (glutathione-S-transferase),
MDHAR (monodehydroascorbate reductase), and GS (glutathione synthetase) [199]. SA
treatment also improves the K* /Na* ratio in salt-grown plants [59,201].

The effectiveness of exogenous SA at mitigating salt stress damage depends on crops
and the concentration of NaCl in the growing media. For example, it can reduce the
negative effect of salt stress when plants are exposed to moderate stress (0.3% and 0.6%
NaCl), but cannot counteract severe salt stress (0.9%) in Caryophyllaceae [202]. Both
arial spraying and seed priming with 1 mM SA have improved grain yield of wheat and
pearl millet by ~13-14% [203]. The effectiveness of SA also varies with the concentration
of endogenous or exogenous SA. The higher accumulation of endogenous SA led to
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hypersensitivity to NaCl [204-206], while activating the SA signaling pathway significantly
improves salinity tolerance. For example, overexpression of SA receptors (MhNPR1 or
AtNPR1) enhanced tolerance to salt/osmotic and oxidative stress by increasing SA signaling
in tobacco [207,208]. On the other hand, a lack of SA receptor enhanced salt sensitivity in
plants [209]. Similarly, exogenous application of three levels of SA (0.5, 1.0, and 1.5 mM) as
a priming agent was evaluated in mung bean grown under different salt concentrations
(3, 6, and 9 dS m~1). In most of the cases, a moderate concentration (1 mM SA) gave
the best result in terms of ion content, gas exchange parameters, and chlorophyll content
in leaves [210]. In Arabidopsis, the inhibitory effect of high salinity was exaggerated by
>100 uM SA treatments, while plants benefited from <50 uM treatment during the seed
germination [211].
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Figure 2. Effect of salicylic acid on salt stress tolerance in plants (based on @ [212], ® [213], ® [214,215],
@ [52], ® [193,200], ® [52,207], and @ [207]).

3.7. Abscisic Acid

Abscisic acid is known as a stress hormone that mediates different types of biological
and non-biological stress in plants [216-218]. ABA is synthesized in all de novo plant parts
such as roots, flowers, leaves, and stems [219]. As an endogenous signaling molecules
ABA enables plants’ survival under adverse environmental conditions, including salin-
ity [220,221] (Figure 3).

During salt stress conditions, endogenous levels of ABA increase, which enhances
plant adaptation to salinity by limiting ROS accumulation [222]. Higher accumulation
of ABA also induces stomata closure, thus reducing transpiration for better water saving
under osmotic stress conditions caused by salinity [223,224]. The accumulation of ABA
occurs more rapidly in roots than leaves [95,225], and biosynthesis of ABA is associated
with lateral root development in plants under salt stress conditions. This process is believed
to be related to ABA regulation of auxin distribution under NaCl treatment. Interestingly,
ABA biosynthesis inhibitor fluridone and an ABA biosynthesis mutant (vp14) successfully
rescued the Arabidopsis phenotype under saline conditions [226]. Exogenous application
of ABA increases the number of lateral roots in the ABA receptor mutants (pyl8 and pyl9)
in Arabidopsis, thus conferring to the plants a tolerance to salt [227]. These results indicate
that the activation of ABA signaling displays enhanced salinity tolerance in crops and is
triggered by an external application of ABA.

In wheat, ABA reduces salt stress damage by regulating proline content [228], and also
by reducing the ROS levels in salt-grown plants [229]. Seed priming with ABA decreases
Na* content and increased K* content in flag leaves, leading to increased number of grains
per spike and grain yield of wheat under saline conditions, with up to 49% yield increase
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being reported [230]. In rice, exogenous application of 100 pM ABA solutions has improved
plant performance by increasing OsP5CS1 and OsP5CR gene expression, which triggered
proline accumulation, although the effect was varietal-dependent [231]. In wheat, the
spraying of a moderate concentration of ABA (50 umol-L~!) improved salt tolerance, while
a higher concentration (100 pmol-L~!) had no significant impact [232]. Sorghum leaves
were fed with an exogenous ABA to control shoot Na* concentration and improve plant
growth. The growth enhancement and lower Na* content in shoots occur at a lower ABA
concentration (=10 mmol m~3) than a higher ABA concentration (=240 mmol m~3 or above)
under 150 mol m~3 NaCl treatment. A higher dose of ABA is needed to adapt plants to
treatment with a lethal dose of NaCl (300 mol m~3). It is known that ABA acts by inducing
transitional stomata closure to reduce transpiration and increase water use efficiency, thus
lowering transpiration; this probably plays a significant role in reducing transporting Na*
from root to shoot [233]. In potatoes, exogenous application of ABA improves stomatal
conductance and leaf relative water content under saline conditions, but the effect varies
with genotype and method of ABA application, suggesting external ABA control over
stomata functioning and better water saving under saline conditions [234].

Wheat LEA (late embryogenesis abundant) protein DHN-5, induced by salt and
abscisic acid, can confer salt and osmotic stress tolerance, while Dhn-5 transgenic plants
exhibit higher germination rates and leaf area, as well as better growth. The above salinity
tolerance of the transgenic plant could be due to higher K* accumulation in leaves and
osmotic adjustment developed by active accumulation of proline [235]. In another study, a
new member of the CIPK (calcineurin B-like protein-interacting protein kinase) gene family
(TaCIPK29) has been identified in wheat. The TaCIPK29 transcription level increased after
the treatment of ABA and NaCl. TaCIPK29 transgenic plant shows higher K* /Na* ratio
and increased activity of peroxidase (POD) and catalase (CAT) under salt stress [236]. A
novel, ABA-inducible TaSC gene was cloned from a salt-tolerant wheat mutant, RH8706-
49 [237], that operated in a CDPK pathway, enhancing intercellular K*/Na* ratio and
chloroplast function. Exogenous ABA treatment also promoted early salt stress-responding
genes WESRI and WESR2 in wheat [238]. A basic helix-loop-helix wheat gene (TaubHLHI)
mediates plant adaptation to osmotic stresses. This gene is associated with promoting
stomata closure and increasing biomass production under salt and ABA treatment. The
overexpression of TabHLH1 enhances leaf water retention capacity in transgenic tobacco,
indicating better water saving to adapt under saline conditions [239].

/,,/‘ ABA Aeienia &
Indiect activation -ccceceeeed
* eﬁl/ \\
e CIPK29 e G

Pyr/Pyl 0sT1 -7 ©
} ! N P5CS1; HLH1;
IAA SLAC1 SKOR CAT; POD PSCR WESR

! ! ' i 4 '
Lateral root 9 | Proline T iptional
Xylem K loadin ncreased AO ranscriptiona
[ development ] [ Stomata closure ] [ ¥ ing ] [ activity accumulation factors
- .fate. Increased xylem Oxidative Osmotic /
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Figure 3. Effect of abscisic acid on salt stress tolerance in plants (based on @ [240], @ [223], © [241],
@ [236], ® [231], and ® [239]).
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While exogenous modulation of ABA levels in plants comes with improved water
use efficiency (WUE), the resultant stomata closure may compromise the plant’s ability
to assimilate CO, (hence, biomass gain). This calls into question the long-term efficacy of
such approaches for field-grown crops exposed to salinity.

3.8. Jasmonates

Another important set of PGRs are the jasmonates. Jasmonic acid (JA) and its methyl
ester (Me]) are known as jasmonates, and control a wide range of plant growth and
developmental activities, as well as adaptive plant responses to a range of biotic and
abiotic stressors, including salinity [242,243]. The biological activities of JA are significantly
increased when plants are exposed to excess levels of salt [244], with stronger responses
from salt-tolerant cultivars. This has prompted a suggestion to use jasmonic acid content
as a proxy for salinity tolerance in plants [245-247]. Activation of the JA signaling pathway
increases the accumulation of JA and increases plant salinity tolerance [248]. Consistent
with this, the JA receptor mutant is associated with greater cell elongation under saline
conditions to confer salinity tolerance [249]. Exogenous application of JA alleviates the
toxic effects of salt by maintaining ion homeostasis, increasing ROS scavenging enzymatic
activities, and improving stomatal functioning.

In wheat, exogenous 2 mM JA treatment alleviated salt stress by enhancing the
activities and transcript levels of antioxidant enzymes, such as CAT, SOD, and APX. It also
boosted the content of reduced glutathione (GSH) and carotenoids, thus decreasing the
peroxidation of lipids [57]. Foliar JA sprays are beneficial for improving the grain yield of
salt-grown soybeans [250]. The effectiveness of JA depends on its concentration and the
level of salinity in the growing media [251].

JA induces biological and non-biological stress responses through the jasmonate sig-
naling pathway [252]. For example, a salinity-responsive bread wheat gene TnAOC1 was
constitutively expressed in both bread wheat and Arabidopsis, and was upregulated by
exogenously supplied JA and ABA. The expression of TtAOCI in both Arabidopsis and
wheat restricted root growth, but enhanced salt tolerance and JA content by increasing SOD
activity, indicating that JA was involved in the orchestration of salt stress response and de-
velopmental processes [248]. Other studies have shown that TnAOC1 and TaOPR1 [16,253]
are the two genes that provide salt tolerance via both JA- and ABA-dependent pathways
to promote expression of MYC2, a crucial component of abiotic stress response-signaling
pathway [254]. Large-scale transcriptomic studies have shown that some JA-biosynthesis
genes (e.g., AOC1, AOC2, AOS, LOX3 and OPR3) are up-regulated in roots under salt
stress [255-258]. These findings suggest that JA signaling pathway is activated by salt stress
and triggers an array of physiological and growth changes in plants. The TIFY gene family
is regulated by salt and JA treatment, and transgenic lines over-expressing TdTIFY11a
showed higher germination and growth rates under high-salinity conditions, indicating
that it acts as jasmonic acid signaling [259]. A salt-responsive wheat gene TuEXPB23,
associated with enhanced water retention ability and decreased osmotic potential, was
upregulated by JA in transgenic tobacco [45].

3.9. Ethylene

Ethylene is a gaseous signaling molecule known as a stress-responsive hormone
in plants [52,260]. It regulates a broad array of physiological and developmental re-
sponses [261,262] by cross-talking with other signaling molecules [263,264]. The func-
tional effectiveness of ethylene depends on the sensitivity of plants to the hormone and
its concentration in the cell [265-268]. Salt stress conditions cause a rapid increase of
ethylene and its direct precursor ACC (1-aminocyclopropane-1-carboxylic acid) production
inside the cell [269,270]. Higher ethylene production results in salt-sensitive phenotypes in
many plants, such as rice, Arabidopsis, pepper, lettuce, spinach, and beetroot [269,271,272].
However, other studies have shown that the overproduction of endogenous ethylene
or exogenous treatment of ethylene-releasing compounds, such as ethephon or ethylene
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precursors like ACC, may lead to increased salinity stress [273-276]. These results sug-
gest that the effectiveness of ethylene in mitigating plant responses to salinity is crop-
and genotypic-specific, and is controlled by the concentration of ethylene in a specific
cellular compartment.

Similar to other PGRs, ethylene modulates salinity tolerance by maintaining tissue
Na*/K* homeostasis and inducing the antioxidant defense system [277-279]. Consis-
tent with this, exogenous application of an ethylene-releasing compound significantly
improves salinity tolerance in Arabidopsis. Exogenous 10 uM ACC (1-aminocyclopropane-
1-carboxylic acid), an ethylene precursor, suppressed K* loss and enhanced Na* extrusion
from the root, thus maintaining K* /Na* homeostasis during short-term NaCl treatment
in Arabidopsis [280]. While exogenous 30 pM ethephon (another ethylene-releasing agent)
confers salt stress tolerance by increasing K* ion content in shoots and roots rather than
decreasing Na* content in Arabidopsis, it also recovers salt-induced reductions in root
growth [273]. In wheat, seed germination, as well as root and shoot length are significantly
improved by different concentrations of ethephon under 100 mM NaCl treatment [281].

Ethylene response factors (ERFs) are key regulators in abiotic stress tolerance, includ-
ing salinity. The transcription of wheat ERF gene (TuERF1) is induced by salinity, and
overexpression of this gene activates stress-related genes that eventually increase salt stress
tolerance in transgenic plants [282]. The seedlings of the TaERF3-overexpressing transgenic
lines exhibit significantly enhanced tolerance to both drought and salt stresses compared
to untransformed wheat [283]. Overexpression of an ethylene-responsive transcription
factor (TASHN1) from durum wheat resulted in the development of a thicker cuticle and
lower stomatal density, thus reducing water loss in transgenic tobacco [284]. Transcripts
of the lipid transfer protein gene (TaLTP1) were increased by salt and ethephon treatment
in wheat [285]. LTPs enhance cell membrane integrity and ROS scavenging in transgenic
potatoes [286]. They also result in reduced Na* accumulation in transgenic tobacco [287].
A wheat aquaporin gene TnAQP8 conferred salt stress tolerance in transgenic tobacco
by increasing the K*/Na* ratio and Ca?* content, and by reducing membrane damage
and HyO; accumulation [288]. Its transcript levels were induced by both ethylene and
NaCl. Ethylene also induces many early response genes that are essential for ribosomal
protein activation, chaperoning synthesis, ROS scavenging, and carbohydrate metabolites
pathway [289].

4. Summary and Recommendations

When exposed to saline stress, plants display retarded growth and development and
yield losses, and employ a range of mechanisms to deal with various constraints imposed
by saline soils. Plant hormones play an important role in this process. Using exogenously
applied PGRs remains a highly attractive option to plant growers, as a cost-effective method
to induce salt tolerance genes and assist plants in adapting to hostile salinity conditions.
However, the effectiveness of PGRs depends on the level of salt stress, genotype, timing,
and methods of applications, as well as PGR concentrations. The issue is also complicated
by the facts that plant hormones are involved in numerous developmental and adaptive
responses (not only those related to salinity), and hormonal signaling pathways have a
very significant overlap. Thus, elevation in the basal level of one of the PGRs could result in
a major disturbance to some other signaling pathways, with pleiotropic effects for growth,
development, and adaptation. This is specifically true for PGRs that modulate endogenous
ROS and NO levels. The practical applicability of PGRs should also be considered in
technological and economic contexts. Root treatment with PGRs reported in many papers
is appropriate for laboratory-based studies, but has no place in the field. The aerial PGR
sprays are more practical, but require significant technological developments (e.g., the use
of surface surfactants, timing of spray application, etc.). The overall effects of PGR sprays
will also be strongly dependent on environmental conditions (temperature, humidity, time
of the day), as their penetration into the leaf will be largely determined by the extent of
the stomata opening. The cost-benefit analysis of the efficacy of PGR ariel sprays should
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also be taken into account. We would like to illustrate the latter point by one simple
example. In Yusuf et al. [177], the authors reported an 18% to 35% increase in seed yield
in salt-grown peas, using a foliar spray of 0.125 mg L~! of 24-epibrassinolide (EBL). The
current cost of 10 mg of EBL from Sigma-Aldrich (Sigma-Aldrich Pty Ltd., NSW, Australia)
is $588, and will be sufficient to make only 80 L of solution. The typical field rate of aerial
spray application is 450 L ha~! [290], so the cost of spraying of 1 ha will be about $3300
(EBL only). At the same time, the “target benchmark” for pea production in Australia is
8 tons ha—! [291], with the commodity price being around $1000 per tonne in 2019 [292].
Thus, even a 30% increase in yield following EBL application will only result in a benefit of
$2400 ha~!, which is clearly not enough to cover the cost of EBL application. The same logic
is applicable to all other PGRs. Thus, all above beneficial reports of PGR application need to
be taken with a “pinch of skepticism” and critically evaluated for their economic rationale.

In this context, we believe that future progress in the field may be achieved not
by exogenous application of PGRs, but rather by understanding a causal link between
PGRs and their downstream effectors mediating plants” adaptation to salinity, and then
incorporating these findings into a variety of plants via molecular breeding. This task,
however, remains a great challenge, and can be only resolved by moving from whole-
plant studies (employed by 95% of published papers) to more in-depth studies at the
cellular level, using a modern range of biophysical and imaging techniques that allow
quantification of the operation of key transport systems conferring plant ionic and oxidative
homeostasis under stress conditions.
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