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Abstract: Since the introduction of the pneumococcal conjugate vaccine, an increase in the incidence
of Streptococcus pneumoniae serotype 19A and sequence type 320 (19A-ST320) isolates have been
observed worldwide including in South Korea. We conducted a genome-wide analysis to investigate
the temporal genetic changes in 26 penicillin-non-susceptible 19A-ST320 pneumococcal isolates
from a hospital in South Korea over a period of 17 years (1999; 2004 to 2015). Although the strains
were isolated from a single hospital and showed the same genotype and serotype, a whole-genome
sequencing (WGS) analysis revealed that the S. pneumoniae isolates showed more extensive genetic
variations compared with a reference isolate obtained in 1999. A phylogenetic analysis based on
single nucleotide polymorphisms (SNPs) showed that the pneumococcal isolates from South Korea
were not grouped together into limited clusters among the 19A-ST320 isolates from several continents.
It was predicted that recombination events occurred in 11 isolates; larger numbers of SNPs were
found within recombination blocks compared with point mutations identified in five isolates. WGS
data indicated that S. pneumoniae 19A-ST320 isolates might have been introduced into South Korea
from various other countries. In addition, it was revealed that recombination may play a great role in
the evolution of pneumococci even in very limited places and periods.

Keywords: pneumococci; recombination; whole-genome sequencing; serotype 19A; ST320

1. Introduction

The pathogen Streptococcus pneumoniae causes severe infections worldwide especially
in infants, young children and the elderly. The polysaccharide capsule of S. pneumoniae
is considered to be the most important pneumococcal virulence factor [1]. Although
more than 90 serotypes have been identified in S. pneumoniae, relatively few of them
are commonly associated with invasive pneumococcal diseases (IPDs) [1]. The 7-valent
pneumococcal conjugate vaccine (PCV7), which targets seven serotypes (4, 6B, 9V, 14, 18C,
19F and 23F), was introduced in 2000 for immunizing children [2]. It has been replaced
by PCV13, which targets six additional serotypes (1, 5, 7F, 3, 6A and 19A) and has also
been approved for the prevention of IPDs and non-invasive pneumonia in adults [3]. Since
the introduction of pneumococcal vaccines, the incidence of IPDs has decreased in all age
groups worldwide [4].
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The use of PCVs has led to a change in the serotype distribution among pneumococcal
isolates [1]. After the introduction of PCV7, an increase in the occurrence of serotype 19A
was particularly evident [5], which was partly due to “serotype switching” or “capsular
switch” [6]. Although S. pneumoniae 19A-ST320 isolates had been reported before the
introduction of PCV7 in South Korea [7], serotype 19A remained the most prevalent
serotype in South Korea even after the introduction of PCV13 [8]. Among the S. pneumoniae
19A isolates, ST320 was the dominant clone in Asian countries including South Korea [8,9].
The S. pneumoniae 19A-ST320 isolates have shown multidrug resistance including penicillin
resistance [7,9].

S. pneumoniae exhibits a high degree of genomic plasticity as evidenced by the degree
of genomic variability between isolates; it was reported that approximately 74% of the
genome is shared in common between strains as a pan-genome [10]. Whole-genome
sequencing (WGS) facilitates high-resolution strain typing and can effectively identify
recombination and genomic variability. WGS studies have revealed that S. pneumoniae
rapidly and successfully develops various characteristics including antibiotic resistance via
recombination and point mutations [6,11,12]. However, the extent to which recombination
plays an important role in the evolution of pneumococci even in isolates from limited areas
remains unknown.

In this study, we performed a genome-wide analysis to examine the temporal genetic
changes in S. pneumoniae 19A-ST320 isolates during a period of 17 years using isolates
obtained from a single tertiary-care hospital in South Korea. Our study shows that S. pneu-
moniae 19A-ST320 isolates have evolved dynamically via frequent point mutations and
recombination.

2. Materials and Methods
2.1. Bacterial Strains and In Vitro Induction of Tigecycline-Resistant Mutants

A total of 26 S. pneumoniae isolates (two isolates per year (1999; 2004 to 2015)) were
obtained from a single tertiary-care hospital in South Korea (Samsung Medical Center,
Seoul, Korea) and analyzed (Table 1). They were selected from 156 isolates obtained in the
institution during the study period, based on the criteria of serotype (19A), genotype (ST320)
and penicillin non-susceptibility (minimum inhibitory concentration [MIC] ≥ 2 mg/L).

2.2. Serotyping and Genotyping

Serotyping of the pneumococcal isolates was determined via the capsular Quellung
method using commercial antisera (Statens Serum Institut, Copenhagen, Denmark), ac-
cording to the manufacturer’s instructions. The genotypes of the isolates were determined
by performing multilocus sequence typing [13].

2.3. Antimicrobial Susceptibility Test

Antimicrobial susceptibility tests of S. pneumoniae isolates were performed via the
broth microdilution method according to the Clinical and Laboratory Standards Institute
(CLSI) [14]. S. pneumoniae ATCC 49619 and Staphylococcus aureus ATCC 29213 were used as
the control strains.
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Table 1. Characteristics of the S. pneumoniae isolates analyzed in this study.

Isolate No. Isolation
Year

Specimen
MIC (mg/L) a

No of
SNPs b

No of
INDELs b

Putative Re-
combination

Events
r/m c

PEN CRO LEV MFX GFX

99-176 1999 Sputum 2 1 1 0.12 <0.03 - - - -
99-192 1999 Sputum 4 1 1 0.12 <0.03 7 1 0 0
04-041 2004 Nasopharynx 2 2 1 0.12 <0.03 34 6 0 0
04-177 2004 Blood 4 1 1 0.12 <0.03 53 11 1 0.86
05-384 2005 Sputum 4 2 1 0.12 <0.03 615 17 4 25.56

05-404 2005 Tracheal
aspirate 8 8 1 0.12 <0.03 44 7 0 0

06-101 2006 Sputum 4 1 1 0.12 <0.03 37 7 0 0
06-300 2006 Sputum 2 2 1 0.12 <0.03 101 3 0 0
07-028 2007 Sputum 4 1 1 0.12 <0.03 190 11 0 0
07-093 2007 Pus 4 4 0.5 0.06 <0.03 2764 26 11 58.33
08-087 2008 Ear 4 1 1 0.12 <0.03 44 5 0 0
08-114 2008 Sputum 4 2 1 0.12 <0.03 54 10 0 0
09-125 2009 Nasopharynx 4 2 1 0.12 <0.03 479 13 11 12.98
09-145 2009 Sputum 2 1 1 0.12 <0.03 44 8 0 0
10-058 2010 Sputum 4 2 1 0.12 <0.03 51 10 0 0
10-287 2010 Sputum 4 2 1 0.12 <0.03 42 5 0 0
11-138 2011 Nasopharynx 4 1 1 0.12 <0.03 76 9 1 0.43

11-194 2011 Tracheal
aspirate 4 1 0.5 0.06 <0.03 748 23 3 37.50

12-039 2012 Blood 4 2 0.5 0.12 <0.03 78 9 2 0.30
12-102 2012 Ear 4 2 1 0.12 <0.03 67 7 0 0
13-075 2013 Pleural fluid 2 1 1 0.12 <0.03 62 9 0 0
13-103 2013 Blood 2 1 1 0.12 <0.03 103 14 2 0.43
14-109 2014 Sputum 4 1 1 0.12 <0.03 2002 49 9 34.77
14-212 2014 Sputum 4 1 1 0.12 <0.03 68 14 1 0.16
15-123 2015 Others 2 1 1 0.12 <0.03 86 13 2 0.19
15-019 2015 Blood 2 1 1 0.12 <0.03 11,542 90 1 ND
a MIC, minimum inhibitory concentration; PEN, penicillin; CRO, ceftriaxone; LEV, levofloxacin; MFX, moxifloxacin; GFX, gemifloxacin; ND, not determined. b The numbers of single nucleotide polymorphisms
(SNPs) and insertion-deletions (INDELs) were measured via a comparison with the nucleotide sequences of isolate 99-176. c r/m, number of SNPs within recombination blocks/number of SNPs outside
recombination blocks.
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2.4. Genome Sequencing and Assembly

S. pneumoniae 99-176, which was isolated in 1999, was sequenced de novo by Macrogen
(Seoul, South Korea) using a PacBio RS II system (Pacific Biosciences, Menlo Park, CA,
USA) after which a 20 kb single molecule real-time (SMRT) bell template library (Pacific
Biosciences) was constructed. Open reading frames were predicted and annotated using
Prokka (v1.13). Each predicted protein was compared against a protein database using a
basic local alignment search tool for proteins (BLASTP) with a minimum cut-off of 30%
identity and 80% coverage. The annotated sequence of S. pneumoniae 99-176 was deposited
in the GenBank nucleotide sequence database under accession number CP063829.

To identify the genetic differences between S. pneumoniae 99-176 and the other strains,
the other 25 19A-ST320 isolates were sequenced using the Illumina HiSeq 2000 Preliminary
Performance Parameters (151 bp paired-end reads). The sequences of the other 25 isolates
covered 99.4% to 100% of those of the strain 99-176. The reads were deposited in the NCBI
Sequence Read Archive under the GenBank accession number PRJNA671606.

2.5. Prediction of Recombination Sites via Phylogenetic Analysis

To map the reads to the reference, the trimmed reads for the 178 S. pneumoniae 19A-
ST320 isolates, including the 25 isolates identified in this study, were aligned against the
reference genome of 99-176 using Snippy version 4.4.5 (https://github.com/tseemann/
snippy/, accessed on 12 February 2021). The quality of the SNPs was checked by a threshold
of 0.9 and a depth over 30 using Snippy. The whole-genome sequences of S. pneumoniae 19A-
ST320 isolates, which were classified as global pneumococcal sequence cluster 1 (GPSC1),
were retrieved from the website of The Global Pneumococcal Sequencing (GPS) Project
(https://www.pneumogen.net/gps/, accessed on 12 February 2021) [15]; sequences of
SP61 and SP64 were also included in the analysis. The whole-genome sequences of 178
strains were used to just call SNPs and were not assembled. The whole-genome core
SNP alignment output from Snippy was used for a downstream phylogenetic analysis. A
maximum-likelihood tree was generated using RAxML version 8.2.10 based on the SNPs
with a minimum fraction of 90% among ≥20 reads [16]. To identify the regions of genetic
recombination, we used Gubbins (v.2.3.4), which uses an algorithm to iteratively identify
the loci containing elevated densities of base substitutions while concurrently constructing
a phylogeny based on the putative point mutations outside of these regions [17]. The
resulting phylogenetic tree, isolate metadata, core genome SNPs and recombination sites
were visualized using Phandango version 1.3.0 [18].

3. Results
3.1. WGS Statistics

The genome of S. pneumoniae 99-176, which was determined de novo as a reference
and was assembled de novo by method of HGAP3 and Quiver (Pacific Biosciences, Menlo
Park, CA, USA), was found to be 2,089,994 bp in length, containing 2064 coding sequences
as well as 58 tRNA and 12 rRNA genes. The sequencing statistics of the other S. pneumoniae
isolates are shown in Table S1. The numbers of contigs of the isolates analyzed in this
study, except for isolate 15-019, ranged from 22 to 30. A total of 237 contigs were obtained
and analyzed from isolate 15-019. The reads obtained by Illumina were assembled by
SPAdes v3.11.1 (http://cab.spbu.ru/software/spades/, accessed on 12 February 2021).
The assembled sequence lengths of the 24 isolates except for 15-019 ranged from 2,026,658
to 2,083,098 bp, which covered 97.0% to 99.7% of the genome of isolate 99-176. The depth of
coverage on the reference sequence of 99-176 was 757.164 on average, ranging from 495.246
to 1753.27. The overall G+C contents of 26 isolates were 39.52 to 39.84%.

3.2. SNPs

The SNPs of the isolates were determined via a comparison of their Illumina reads with
whole-genome sequences of isolate 99-176, which were generated de novo (Table 1). As the

https://github.com/tseemann/snippy/
https://github.com/tseemann/snippy/
https://www.pneumogen.net/gps/
http://cab.spbu.ru/software/spades/
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sequences of isolate 15-019 showed a larger number of SNPs (11,542) compared with those
of the other S. pneumoniae isolates included in this study, we analyzed the SNPs of 15-019
separately. The number of SNPs present in the genomes of the other 24 isolates excluding
15-019 ranged from 7 (99-192) to 2764 (07-093). The number of insertions or deletions
(INDELs) were found to range from 1 to 49 in the 24 isolates, compared with the genome of
isolate 99-176. Isolate 15-019 showed 90 INDELs. Based on a BLAST analysis, the genome
of isolate 15-019 was the most similar to those of S. pneumoniae strains SP61 and SP64
isolated in Germany (https://www.ncbi.nlm.nih.gov/nuccore/CP018137.1/, accessed on
12 February 2021), which also showed serotype 19A and genotype ST320 [19]; using Snippy
(v4.4.5), the number of SNPs between 15-019 and SP61 and SP64 were estimated to be 53
and 33, respectively.

Figure 1 shows the distribution of genes containing sequence variations. Although the
rates of SNPs were less than 1% in most genes of most S. pneumoniae isolates, high genetic
variations were found in certain regions of a few isolates. Genes exhibiting SNP rates of
≥4% were found in seven isolates (Figure 1). Particularly, several regions including genes
containing SNP rates of ≥4% were identified in isolates 07-093 and 14-109. It was found
that isolate 15-019 contained more highly variable genes compared with the other isolates.
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Figure 1. Distribution of genes showing sequence variation. The colored blocks indicate the genes showing sequence
variations compared with isolate 99-176. It is represented regardless of the length of the genes. The color was marked
differently depending on the degree of variation. The genes showing SNP rates ≥ 4% are shown at the top of the figure. The
location of the CPS locus is indicated by a blue box. SNP, single nucleotide polymorphism; CPS, capsular polysaccharide.

3.3. Phylogenetic Analyses and Prediction of Recombination Sites

We analyzed the whole-genome sequences of 179 S. pneumoniae 19A-ST320 isolates
including 153 isolates that belonged to GPSC1 [15].15 A phylogenetic tree based on the
SNPs showed multichotomous branching with several obvious sub-clusters (Figure 2A). In
the phylogenetic tree, the S. pneumoniae isolates from South Korea were not grouped into
limited clusters among the isolates from several continents. Although pairs of isolates 08-
114 and 12-102, 11-194 and 14-212, 04-177 and 14-109 and 99-176 and 99-192 were grouped
together, the isolates from South Korea were scattered in the phylogenetic tree, unlike
those from China. Several isolates from South Korea showed close relationships with the
pneumococcal strains from other continents rather than Asia.

https://www.ncbi.nlm.nih.gov/nuccore/CP018137.1/


Microorganisms 2021, 9, 795 6 of 11

1 
 

(A) 

 
(B) 

 
Figure 2. (A) Phylogenetic tree and predicted recombination sites of 179 S. pneumoniae 19A-ST320 isolates based on
whole-genome sequence data of 26 isolates determined in this study. Sequences of 151 isolates were retrieved from the
Global Pneumococcal Sequencing (GPS) project (https://www.pneumogen.net/gps/) (accessed on 12 February 2021) and
sequences of SP61 and SP64 were obtained from Germany. On the left, the phylogenetic tree constructed via RAxML based
on SNPs is shown. The isolates from South Korea are represented with a red background. On the right, recombination sites
are shown. Red bars indicate that recombination is ancestral, i.e., occurred at a non-terminal nod. Blue bars are shown if
they appeared in one isolate. (B) A sub-cluster containing S. pneumoniae isolates 15-075 and 06-300, which are represented
with a red background. GPS, global pneumococcal sequencing; RAxML, Randomized Axelerated Maximum Likelihood;
SNPs, single nucleotide polymorphisms.

https://www.pneumogen.net/gps/
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A sub-cluster including isolate 15-019, which showed markedly higher variation
compared with other S. pneumoniae isolates from South Korea, is shown in Figure 2B. The
sub-cluster consisted mainly of isolates from China. Two isolates from Slovenia and one
isolate from Germany (SP61) were included in the sub-cluster along with two Korean
isolates. Although more variable genes were identified in the whole-genome sequence
of 15-019 than in that of 99-176 (a reference strain), only one putative recombination site
containing a prophage gene was identified.

We next analyzed only the whole-genome sequences of the S. pneumoniae isolates from
South Korea that were isolated in this study, excluding 15-019 (Figure 3). In the phylogenetic
tree, isolates from the same year were not grouped together except for the isolates obtained
in 1999 and no distinct clusters were identified. We predicted recombination sites in the
genomes of the isolates using Gubbins (v.2.3.4) (Table 1; Figure 3). Recombination sites
predicted using only isolates from Korea were nearly similar to those predicted using 279
S. pneumoniae isolates. It was predicted that recombination events occurred in 11 isolates. In
the 11 S. pneumoniae isolates, 1 (04-177, 11-138 and 14-212) to 11 (07-093 and 09-125) putative
recombination blocks were identified. In five isolates (11-194, 05-384, 09-125, 07-093 and
14-109), multiple genes that are presented at the top or bottom in Figure 3, were included
in recombination blocks. In the five isolates, the r/m values (the number of SNPs within
recombination blocks/the number of SNPs outside recombination blocks) were high; 12.98
for 09-125 and 58.33 for 07-093 (Table 1). The predicted recombination events were not
associated with phylogenetic grouping.
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recombination events are indicated with a colored background; red background indicates that the r/m value was 10 or more;
blue background indicates that the r/m value was <1. A horizontal and colored bar showing the predicted recombination
events is displayed for each isolate on the right. Recombination blocks predicted in multiple isolates are presented in a red
color and those predicted in one isolate are presented in blue. The genes within recombination blocks including multiple
genes are shown at the top and bottom of the figure. The location of the CPS locus is indicated by a purple box. RAxML,
Randomized Axelerated Maximum Likelihood; SNPs, single nucleotide polymorphisms; CPS, capsular polysaccharide.

4. Discussion

To examine the temporal genetic changes in penicillin-non-susceptible S. pneumoniae
19A-ST320 isolates, which have spread worldwide including to South Korea after the
introduction of PCV7, we performed WGS for two randomly selected isolates per year
from a hospital in South Korea. Despite the fact that these isolates were obtained from
a single hospital and all showed the same serotype and genotype, the degree of genetic
variation was much larger than expected.

By performing a phylogenetic analysis based on SNPs, we found that the isolates
from South Korea did not form one or a few clades among the S. pneumoniae 19A-ST320
isolates from several continents. However, certain pneumococcal isolates from South Korea
such as 06-300 and 19-019 were clustered with the isolates from China; several isolates
were dispersed in the phylogenetic tree. This suggested that all 19A-ST320 isolates, whose
incidence increased after the introduction of PCV7, did not disseminate in South Korea via
clonal spreading. Instead, the 19A-ST320 pneumococcal isolates from South Korea may
have multiple origins. Since the introduction of the vaccine, pneumococcal strains may
have been steadily introduced into South Korea from foreign countries. Although the two
19A-ST320 isolates obtained in 1999 have nearly identical genomes, the possibility cannot
be excluded that various 19A-ST320 strains existed even before the introduction of the
vaccine and have evolved into diverse isolates via point mutations and recombination.

The characteristics of isolate 15-019 are noteworthy. The isolate showed a higher
sequence variation than other pneumococcal isolates from South Korea; therefore, it was
suspected that frequent genetic recombination events had taken place in 15-019. However,
only one recombination in a small region was predicted to occur in isolate 15-019. Therefore,
it is speculated that 15-019 or its related strains might have been introduced from a foreign
country; for example, from China. In addition, isolate 06-300 was clustered together with
isolate 15-019 despite the large genetic variation between the two isolates. In the genome
of 06-300, no predicted recombination site was identified. Therefore, there may be no direct
association between the two isolates; they or their ancestors might have been imported
from different countries.

The distribution of variable genes and recombination sites showed that both point
mutations and recombination might have contributed to the temporal genetic changes in S.
pneumoniae 19A-ST320 isolates during the study period of 17 years. No recombination sites
were predicted in 15 pneumococcal isolates from South Korea; however, the genomes of
five isolates showed more SNPs within recombination blocks than outside recombination
blocks. There were significant differences in the levels of genetic recombination between
pneumococcal lineages although hotspots for recombination such as regions including
antibiotic resistance genes showed consistency across lineages due to a common selective
pressure [20,21]. Our data suggested that the frequency of recombination might have been
different between pneumococcal isolates even if they belonged to the same lineage. The
introduction of foreign DNA from the environment into the chromosome via transformation
and homologous recombination is known to contribute more towards genetic variation
than mutations [15]. It has been estimated that nearly 90% of all genetic variations in S.
pneumoniae have been introduced via recombination [6]. Although only isolates from a
single hospital were analyzed, our WGS data also indicated that recombination might play
a great role in the evolution of pneumococci.

Three recombination sites were found in multiple isolates from South Korea (Figure 3).
As the regions including recombination sites were not identical and the isolates containing
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the regions were not clustered together, recombination events could not have occurred in
their common ancestors. Therefore, all recombination sites identified in this study might
have occurred independently. In the analysis including the 19A-ST320 pneumococcal
isolates of GPSC1, ancestral recombination was found to be associated with limited isolates
from North America. This indicated that recombination in the 19A-ST320 lineage might
occur frequently and independently.

Various genes were included in recombination blocks. First, genes involved in
metabolism were identified at the site of recombination. The genes purL to purK involved
in nucleotide biosynthesis and mnm genes associated with 2-thiouridine biosynthesis were
found in recombination sites of 11-194 [22,23]. The mnm genes were also observed in a
recombination site of 14-109. The genes required for maltose metabolism, malP to malR [24],
and the genes regulating membrane fluidity, desR and desk [25], were included in recombina-
tion blocks of 14-109. The genes associated with the regulation of glutamine and glutamate
metabolism in S. pneumoniae, i.e., glnR and glnA [26], were found in the recombination
block of 05-384. In addition, rsmA and prmA, which encode methyltransferase, were found
in the recombination site of 05-384.

A few genes known to be associated with virulence in S. pneumoniae were also identi-
fied within recombination blocks. The gene lytB_1 was found in the recombination sites of
14-109 and 11-194 [27]. The gene strH, which was found in a recombination block of 05-384,
encodes exo-beta-D-N-acetylglucosaminidase, a known virulence factor in S. pneumoniae
that promotes resistance to opsonophagocytic killing by human neutrophils [28].

In 14-109, the genes associated with antibiotic resistance were identified in recom-
bination sites; sulA associated with sulfonamide resistance [29], several genes encoding
enzymes involved in the peptidoglycan biosynthetic pathway and penicillin resistance
such as mur genes [30] and a gene associated with vancomycin resistance in Staphylococcus
aureus, graS [31].

Genetic alterations due to the recombination of penicillin-binding proteins encoded
by pbp1a, pbp2x and pbp2b are known to contribute to penicillin resistance [32]. However,
we could not identify the recombination of regions that contained pbp genes because
we selected only penicillin-non-susceptible isolates in this study. Although the roles
of the genes identified within recombination blocks are unknown, it is probable that
recombination results in a variety of traits in the same clone.

In summary, we performed WGS for two randomly selected S. pneumoniae 19A-ST320
isolates per year over 17 years (1999; 2004 to 2015) from one hospital in South Korea.
Despite showing the same serotype and genotype, a high degree of genetic variation was
observed. A phylogenetic analysis of isolates including 19A-ST320 isolates of GSPC1
showed that several isolates from South Korea were dispersed in the constructed phylo-
genetic tree, suggesting that the 19A-ST320 isolates from South Korea may have multiple
origins. Frequent recombination events were identified in certain isolates, indicating that
recombination may play a great role in the evolution of pneumococci although the isolates
were obtained from a single hospital.
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