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Autoimmune thyroid diseases (AITD) are a group of both B cell- and T cell-mediated 
organ-specific autoimmune diseases. Graves’ disease and Hashimoto thyroiditis are 
the two main clinical presentations of AITD. Both genetic and environmental factors 
have important roles in the development of AITD. Epigenetics have been considered 
to exert key roles in integrating those genetic and environmental factors, and epigen-
etic modifications caused by environmental factors may drive genetically susceptibility 
individuals to develop AITD. Recent studies on the epigenetics of AITD have provided 
some novel insights into the pathogenesis of AITD. The aim of this review is to provide 
an overview of recent advances in the epigenetic mechanisms of AITD, such as DNA 
methylation, histone modifications, and non-coding RNAs. This review highlights the key 
roles of epigenetics in the pathogenesis of AITD and potential clinical utility. However, the 
epigenetic roles in AITD are still not fully elucidated, and more researches are needed 
to provide further deeper insights into the roles of epigenetics in AITD and to uncover 
new therapeutic targets. Although there are many studies assessing the epigenetic 
modifications in AITD patients, the clinical utility of epigenetics in AITD remains poorly 
defined. More studies are needed to identify the underlying epigenetic modifications that 
can contribute to accurate diagnosis of AITD, adequate choice of treatment approach, 
and precise prediction of treatment outcomes.

Keywords: epigenetics, autoimmune thyroid diseases, pathogenesis, DNA methylation, histone modifications, 
microRNAs, long non-coding RNAs

iNTRODUCTiON

Autoimmune thyroid diseases (AITD) are a group of both B cell- and T cell-mediated autoimmune 
diseases, which are caused by loss of immune tolerance and autoimmune attack to thyroid tissues 
(1, 2). The prevalence of AITD including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) is 
more than 5%, but the prevalence of thyroid autoantibodies is more than 10% in general population 
(1, 3). Despite its high prevalence, the incidence and prevalence of AITD have increased obviously in 
recent years (1, 4, 5). GD is the main cause of clinical hyperthyroidism, and HT is the main cause of 
clinical hypothyroidism (1, 6). Besides, AITD can also increase the risk of non-thyroid diseases, such 
as cardiovascular diseases, cancers, and adverse pregnancy outcomes (7–13). In addition, there is still 
lack of major breakthrough in the treatment of AITD (1, 2, 6, 14). Therefore, AITD have become a 
serious harm to public health, and more studies are urgently needed to explore the pathogenesis of 
AITD and develop new therapeutic strategies to effectively treat AITD.
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Although the clinical manifestations of GD and HT are dif-
ferent, loss of immune tolerance caused by immune imbalance is 
believed to exert critical roles in the development of both diseases 
(15–17). Both GD and HT are characterized by the presence of 
autoantibodies against thyroid tissues, such as thyroid-stimu-
lating hormone receptor antibody (TRAb), thyroid peroxidase 
antibody (TPOAb), and thyroglobulin antibody (TgAb) (15–17). 
TRAb is thyroid-stimulating hormone receptor (TSHR)-directed 
autoantibodies, and it can be classified as TSHR-stimulating 
autoantibodies, TSHR-blocking autoantibodies, or neutral 
depending on their respective abilities to induce cAMP genera-
tion and thyrocyte proliferation or bind to the receptor without 
impacting cAMP generation (18, 19). TPOAb and TgAb are 
the major autoantibodies in HT, but they also exist in some GD 
patients. The TRAb is the major autoantibody in GD patients, but 
it also usually occurs in some HT patients.

Both GD and HT are characterized by lymphocytic infiltration 
in the thyroid tissues, and T cells and B cells can infiltrate into 
the thyroid gland during the development AITD (17, 20–22). 
Autoantibodies and B  cell dysfunction are thought to be the 
primary immune reactions in AITD, and aberrant functions of 
T cell subsets also exert important roles in breaking the immune 
homeostasis and causing autoimmunity against thyroid tissues 
(17, 20–22) (Figure 1). Besides, T cells may amplify autoimmun-
ity against thyroid by secreting pro-inflammatory cytokines, pro-
moting B cells to generate more autoantibodies, and maintaining 
the number of autoreactive memory T cells against thyroid tissues 
(17, 20, 21, 23). In GD, the CD4+ T helper (Th) cells are important 
in the onset of the disease, and the roles of Th1 and Th2 in the 
development of AITD have also long been recognized in previous 
studies (24–27). Recent studies have suggested that the balance 
between T effector cells and T regulatory cells are important to 
maintain the immune tolerance to thyroid, and its imbalance can 
result in the development of AITD (22, 28, 29). Besides, the roles 
of other T subsets in AITD, such as Th17, Th22, and follicular 
helper T (Tfh) cells, have also been found in numerous researches 
(25, 30–34). Th17  cells are characterized by the transcription 
factors of signal transducer and activator of transcription 3 and 
Rorγt, and they mainly secret interleukin (IL)-17 (35). Increased 
circulating Th17  cells have been found in AITD patients, and 
IL-17 has also been identified as an important cytokine in the 
pathogenesis of AITD (25, 32–34, 36). Tfh cells are characterized 
by the expression of CXC chemokine receptor 5 (CXCR5) and the 
production of IL-21 and are critical for the activation of B cells 
and germinal center formation (37). Th22 cells are characterized 
by the transcription factor of aryl hydrocarbon receptor and the 
production of IL-22 (38). Increased proportions of circulating 
Th22 cells and Tfh cells and elevated of related cytokines in the 
AITD patients have been found in several published studies, sug-
gesting the pathogenic roles of Th22 and Tfh in the pathogenesis 
of AITD (30, 31, 39). However, the molecular mechanisms under-
ling the abnormal functions of those immune cells and immune 
imbalance during the development of autoimmune attacks to 
thyroid tissues are still unclear.

Autoimmune thyroid diseases are multifactorial and complex 
diseases, and multiple factors are involved in the development of 
AITD (1, 16). Studies in the past decade have proven the important 

role of genetic factors in the pathogenesis of AITD. In the past two 
decades, genetic studies in AITD have developed from candidate 
gene analyses, whole-genome linkage screening, genome-wide 
association study (GWAS), whole-genome sequencing, and epi-
genetic studies (16, 40–42). Some thyroid-specific genetic factors 
are found to be associated with AITD, such as polymorphisms 
in TSHR gene and thyroglobulin (TG) gene (43–45). Emerging 
evidence has suggested the important role of immunogenetics in 
the pathogenesis of AITD, and polymorphisms in these immune-
modulating genes can impair immune tolerance and alter T cells’ 
interactions with antigen-presenting cells during the development 
of AITD (16, 46). Some immune-modulating genetic factors are 
also reported to be associated with AITD, such as polymorphisms 
in HLA-DR3, CTLA4, PTPN22, and FOXP3 (47–49). Of those 
AITD susceptibility genes, FOXP3 and CD25 play critical roles 
in the establishment of peripheral tolerance, and CD40, CTLA4, 
and the HLA genes are pivotal for T lymphocyte activation and 
antigen presentation (16, 42). Those immune-modulating genetic 
factors can cause dysfunction of immune cells and loss of immune 
homeostasis, which can further result in the development of 
AITD. However, those genetic factors cannot fully explain host’s 
predisposition to AITD, and environmental factors also have 
important roles in AITD (16, 50, 51). The lack of full concordance 
in monozygotic twins also proves the importance of environmen-
tal factors in AITD (52, 53). Several environmental factors such as 
high iodine intake and vitamin D deficiency are proven to be risk 
factors of AITD (54–58). The genetic and environmental factors 
may cooperate together and cause the dysfunctions of immune 
cells and thyroid autoimmunity, but the mechanisms involving 
the effects of genetic and environmental factors on the immune 
cells’ function and immune balance are still not well understood 
(59–61).

Recent studies propose that environmental factors can interact 
with susceptibility genes to produce a synergistic effect in trigger-
ing diseases through epigenetic modulation (62–64). Epigenetics 
aim to study how non-genetic factors regulate the gene expres-
sions and phenotypes and their roles in the development of 
diseases without involving alterations of the DNA sequence (65). 
Major epigenetic mechanisms mainly include DNA methylation, 
histone modifications, and RNA interference through non-
coding RNAs (65). For example, DNA methylation can cause 
inactivation of genes, and some histone modifications can lead 
to activation of genes, but these factors are usually dynamic and 
can be affected by environmental factors (65–67). In addition, 
non-coding RNAs, such as microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs), can also regulate the expressions of 
targeted genes (68, 69). Therefore, genes involved in the immune 
system or thyroid can be regulated by epigenetic mechanisms, 
and dysfunctions of these genes caused by epigenetics can further 
result in autoimmune diseases. In the past decade, epigenetics 
have been considered to have key roles in integrating genetic 
and environmental factors in human complex diseases including 
autoimmune diseases (64, 70, 71). In the past decade, increasing 
evidence has suggested the critical roles of epigenetics in the 
pathogenesis of AITD, and epigenetic modifications caused by 
environmental factors may drive genetically susceptibility indi-
viduals to develop AITD (42, 60, 72–75). The aim of this review 
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FigURe 1 | Loss of immune tolerance results in autoimmunity during the development of autoimmune thyroid diseases. Naive CD4+ T cells can be 
activated by dendritic cells (DC) or other antigen-presenting cells and they can differentiate into various subsets which are characterized by different cytokines and 
specific transcription factors. The balance of those immune cells is necessary for the maintenance of immune homeostasis. Under normal conditions, T cell subsets 
have normal functions, and there is immune homeostasis in human body, which can maintain the immune tolerance and avoid unwarranted immune attacks to 
thyroid tissues. Some genetic factors and environmental factors can result in the dysfunctions of these T cell subsets, B cells, and antigen-presenting cells, which 
may break up the immune homeostasis and cause thyroid autoimmunity.
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is to provide an overview of recent advances in the epigenetic 
mechanisms of AITD, to highlight the epigenetic roles in the 
pathogenesis of AITD, and to discuss the potential clinical utility 
of epigenetic modifications in AITD.

ePigeNeTiCS iN AiTD

DNA Methylation and AiTD
DNA methylation is the most common type of DNA modifica-
tions, and it mainly occurs at the fifth carbon ring of cytosine in 
palindromic cytosine-phosphate-guanine dinucleotides (76–78). 
DNA methylation mainly results in transcriptional repression, 
especially when it occurs in the region of 5′ promoter regions with 
high density (79). In addition, methyl-binding domain family can 
recognize the methyl-CpG and result in transcriptional repres-
sion (79). Some important enzymes involved in DNA methyla-
tion have been found, such as DNA methyltransferases (DNMTs) 
and ten-eleven translocation (TET) enzymes for demethylation 
(78). In addition, DNA methylation can be reversed by TET 

enzymes, and the dynamic turnover of DNA methylation may 
be modulated through the relative expressions of DNMTs and 
TET enzymes (77, 78). Resent researches have provided evidence 
for the critical roles of DNA methylation in many autoimmune 
diseases through regulating gene expressions (80–85). Some 
agents targeting DNA methylation also provide promising novel 
treatment strategies for human diseases (86–88).

In the past decade, increasing evidence has demonstrated the 
roles of epigenetic dysregulation in the pathogenesis of AITD. 
Several studies have shown that global DNA hypomethylation 
exists in AITD patients, which may cause the overexpression of 
some genes involved in immune function or the activation of 
immune cells and further result in autoimmune attack toward 
thyroid tissues (74, 75). We previously studied the genome-wide 
DNA methylation of GD patients and revealed more than 200 
hypermethylated and hypomethylated genetic regions in GD 
patients, such as ICAM1, DNMT1, and MECP2 genes (74). 
Limbach et al. investigated the genome-wide DNA methylation 
of CD4+ and CD8+ T cells of GD patients and found more than 
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300 differentially methylated sites in CD4+ T cells and more than 
3,000 differentially methylated sites in CD8+ T cells, and many 
of those genes were from T  cell signaling (75). Many of those 
DNA methylations were immune-related modifications, such as 
hypermethylated sites in ICAM1, CD247, and CTLA4 (74, 75). 
Limbach et  al. also found hypermethylation of the first intron 
area in TSHR gene was associated with GD, which suggested 
methylation in thyroid-specific genes could also be involved in 
the development of AITD. The above findings demonstrated the 
existence of aberrant DNA methylation at some genes during 
the development of AITD. However, the molecular mechanisms 
underlining the roles of those differentially methylated genes are 
still unclear.

Some genetic polymorphisms of DNA methylation-regulating 
genes can also cause dysfunction of these genes and aberrant 
DNA methylation, which further increases hosts’ susceptibility 
to diseases (89, 90). Arakawa et al. reported that several polymor-
phisms in methylation-regulating genes, such as DNMT1 and 
methionine synthase reductase (MTRR), were correlated with 
DNA hypomethylation levels and susceptibility to AITD (91). 
Our previous study also found evidence for a potential role of 
DNMT3B rs2424913 and DNMT1 rs2228611 in the susceptibility 
to AITD (92). 5,10-Methylenetetrahydrofolate reductase C677T 
polymorphism was also associated with GD and Graves’ ophthal-
mopathy (93, 94). The above findings also provide secondhand 
evidence for the important roles of DNA methylation in the 
pathogenesis of AITD.

The above findings suggest the emerging and important roles 
of DNA methylation in AITD, but current understanding on 
DNA methylation in AITD is still very limited. More studies in 
the future are necessary to further explore the possible key roles 
of DNA methylation in AITD and new promising treatment strat-
egies targeting DNA methylation for AITD patients. In addition, 
the clinical utility of DNA methylation in AITD as biomarkers 
for disease diagnosis and predictors of treatment outcomes is still 
unclear, which need to be explored in future studies.

Histone Modifications and AiTD
Histone has key roles in the compaction of DNA, interacting 
with DNA to form tightly packed chromatin, and it also has been 
suggested to have critical roles in many human diseases (95–98). 
The unstructured N-terminal amino acids in histones can be 
modified and then affect the chromatin structure and function 
directly or by binding some protein effectors (99). These modifi-
cations usually occur at the lysine or arginine of histones and are 
mediated by histone-modifying enzymes, which are intensively 
involved with chromosome remodeling (98). There are several 
main types of modifications in histones, such as methylation, 
acetylation, deacetylation, phosphorylation, ubiquitination, and 
sumoylation (99, 100). Histone modifications have important 
roles in controlling chromatin compaction, nucleosome dynam-
ics, and DNA repair, and it can directly regulate transcription  
(101, 102). Like DNA methylation, histone modifications are 
highly dynamic and are regulated by “writer” and “eraser” 
enzymes (77, 100, 103). Recent researches have provided some 
evidence for the roles of histone modifications in modulating 
immune tolerance and autoimmune diseases (104–109). Some 

small-molecule inhibitors targeting histone-modifying enzymes, 
such as histone deacetylases (HDAC), also provide new treatment 
strategies for diseases such as cancers and autoimmune diseases 
(87, 110).

We found that the histone H4 acetylation level in the periph-
eral blood mononuclear cells of GD patients was significantly 
lower than that of healthy individuals, but the levels of HDAC1 
and HDAC2 were obviously higher, which proved evidence 
for the aberrant histone modifications in GD patients (104).  
A genome-wide analysis by Limbach et al. found decreased levels 
of H3K4me3 and H3K27ac at several genes of T  cell signaling 
in GD patients (75). In addition, phosphorylated histone protein 
H2A.X was also observed in the T cells and thyrocytes in the mice 
of AITD model (111).

Stefan et al. found that interferon-alpha (IFN)-α could induce 
alterations of TG gene expression and trigger AITD through 
enrichment of Lys-4 residue methylation in histone H3 at the 
promoter area of TG gene (112). IFN-α is a key cytokine secreted 
during viral infections, and it has been found to increase levels 
of H3K4me3 and H3K4me1 in thyroid cells (72). Another study 
by Kawashima et al. showed that DNA fragments released during 
thyroid injury could be recognized by histone H2B, which further 
resulted in the activation of genes of immune responses and trig-
gered autoimmunity against thyroid tissue (113).

Genetic polymorphisms of histone-modifying genes can 
also cause dysfunction of these genes and aberrant histone 
modifications (114–116), which may further results in AITD. 
Sirtuin1 (SIRT1) is a class 3 nicotinamide adenine dinucleotide-
dependent HDAC, which is intensively associated with immune 
response and autoimmune diseases (114–116). A case–control 
study by Sarumaru et al. reported that rs3758391 and rs4746720 
in the SIRT1 gene were associated with higher levels of thyroid 
autoantibodies in AITD patients (117).

The findings above suggest the important role of histone 
modifications in AITD, but they are still not fully elucidated. 
More researches are needed to further elucidate the roles of 
histone modifications in AITD. Besides, the roles of histone 
modifications as diagnostic biomarker and predictors of treat-
ment outcomes in AITD patients have also not been investigated, 
and future researches are recommended to study these roles of 
histone modifications in AITD.

miRNAs and AiTD
microRNAs are endogenous small non-coding RNAs ranging 
from 18 to 25 nucleotides in length and have important roles in 
regulating gene expression (118). miRNAs can regulate about 60% 
of all mRNAs and are involved in many diseases, such as cancers, 
metabolic diseases, and inflammatory diseases (118–120). Some 
miRNAs also play important roles in regulating immune function 
and maintaining immune homeostasis, such as miR-223-3p and 
miR-155-5p (120–122). It is not surprising that abnormal expres-
sions of miRNAs involving immune function can potentially con-
tribute to the development of autoimmune diseases (123, 124). 
Recent studies have revealed that some miRNAs are also involved 
in the development of AITD, and most of them have been found 
to be intensively involved in modulating the differentiation or 
activation of immune cells and immune response (Table 1).
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TAbLe 1 | Aberrant expressions of non-coding RNAs in AiTD patients.

Diseases Samples or cells expression changes epigenetic alteration/function Reference

GD Serum Increased expression of miR-346 in GD patients with relapse Predicative factor for relapse (125)

AITD Circulating 
microvesicles

Upregulation of miR-146a-5p and miR-155-5p Possibly targeting IL-8 and SMAD4 (126)

GD PBMC Downregulation of lncRNAs Heg Disease biomarker and possibly decreased CD14 mRNA level 
of mononuclear cells

(127)

GD Thyroid tissues Downregulation of miR-146a-5p Unclear (128)

GD PBMC Downregulation of miR-154-3p, miR-376b-3p, and miR-431-3p Disease biomarker (129)

GD CD4+ T cells and 
CD8+ T cells

Downregulation of miR-200a-3p and miR-200a-5p in both CD4+ T cells and CD8+ T cells; 
Downregulation of miR-155-5p and miR-155-3p in CD8+ T cells

Disease biomarker (130)

GD PBMC Downregulation of miR-125a-5p Disease biomarker (131)

GD Regulatory T cells Upregulation of miR-155-5p, miR-519e-5p, and miR-30a–5p; Downregulation of miR-19b-3p 
and miR-146a-5p

Disease biomarker; possibly regulating retinoic acid pathway (60)

GD Serum Upregulation of miR-451a, miR-16-5p, miR-22-3p, and miR-375 Disease biomarker (73)

GD Serum, CD4+ T cells Downregulation of miR-346 Disease biomarker; regulating CD4+CXCR5+ T cells by 
targeting Bcl-6

(132)

GD Thyroid tissues 5 unregulated miRNAs, such as miR-22-3p and miR-183-5p, and 18 downregulated miRNAs, 
such as miR-101-3p, miR-660-5p, and miR-197-3p

Possible miRNA-target gene network (133)

GD Serum MiR-23b-5p and miR-92a-3p were significantly increased in GD patients achieving remission, 
while let-7g-3p and miR-339-5p were significantly decreased in GD patients achieving remission.

Biomarkers of clinical activity (134)

Graves’ 
ophthalmopathy

Serum Lower serum level of miR-224-5p was independently associated with glucocorticoid insensitivity Biomarker of glucocorticoid insensitivity (135)

Graves’ 
ophthalmopathy

Orbital fibroblasts Upregulation of miR-21-5p Activating the TGF-beta1/Smad signaling pathway by 
enhancing Smad3 phosphorylation

(136)

Graves’ 
ophthalmopathy

Serum Downregulation of miR-146a-5p Disease biomarker; being correlated with the clinical activity (137)

Graves’ 
ophthalmopathy

PBMC Downregulation of miR-146a-5p and upregulation of miR-155-5p Disease biomarker (138)

HT PBMC Upregulation of lncRNA IFNG-AS1 Disease biomarker; contributing to Th1 cell response possibly 
through regulating the expression of IFN-γ

(139)

HT PBMC Upregulation of let-7e-5p Disease biomarker; possibly regulating IL-10 expression (140)

HT Thyroid tissues; 
serum

Upregulation of miR-142-5p, miR-142-3p, and miR-146a-5p in thyroid tissues; upregulation of 
miR-142-5p in the serum

MiR-142-5p regulated the expression of claudin-1 and 
increased permeability of thyrocytes

(141)

HT PBMC Downregulation of miR-125a-3p Disease biomarker; directly inhibiting interleukin-23 receptor 
expression

(142)

HT Serum Upregulation of miR-451a, miR-22-3p, and miR-375 Disease biomarker (73)

(Continued )
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MiR-155-5p and miR-146a-5p are two widely studied miR-
NAs and have important roles in modulating immune response 
(122, 144–146). MiR-146a-5p could repress IL-1R-associated 
kinase 1 and TNF-receptor-associated factor 6, and its downex-
pression would increase the activation and antigen presentation 
of dendritic cells (144, 147). MiR-155-5p also could regulate 
the immune functions of Th cells or dendritic cells by target-
ing transcription factors or key molecules involved in immune 
response (122, 148, 149). Abnormal expressions of miR-155-5p 
and miRNA-146a-5p can contribute to the development of 
autoimmune diseases by breaking immune homeostasis and 
immune tolerance. There are several studies providing evidence 
for the abnormal expression of miR-155-5p and miR-146a-5p in 
AITD patients (Figure 2; Table 1). Bernecker et al. found that 
miR-146a-5p and miR-155-5p were differently expressed in the 
thyroid tissues of AITD (128). GD and HT patients had signifi-
cantly lower levels of miR-146a-5p and miR-155-5p in the thyroid 
tissues, respectively (128). A subsequent study by Bernecker et al. 
found that GD and HT patients had lower level of miR-155-5p in 
HT in CD8+ T cells than controls (130). Wei et al. reported that 
Graves’ ophthalmopathy patients had significantly lower levels 
of miR-146a-5p than controls, and miR-146a-5p was negatively 
correlated with serum level of IL-17, which had been suggested 
to be an important pathogenic cytokine in the development of 
Graves’ ophthalmopathy (33, 34, 137). However, few studies have 
explored their clinical utility as diagnostic biomarkers or predic-
tors of treatment outcomes. Besides no study has been performed 
to explore the feasibility of treatment strategies targeting those 
two miRNAs in AITD, especially for those with intractable GD.

There are also some other miRNAs found to be associated with 
AITD (Table 1). Chen et al. found downregulation of miR-346 
in GD patients, and miR-346 could inhibit Bcl-6 expression and 
regulate the activation of CD4+CXCR5+ T cells (132). Zhu et al. 
reported that miR-142-5p was highly expressed in HT patients 
and was positively correlated with TgAb (141). Overexpression 
of miR-142-5p in thyrocytes resulted in reduced expression of 
claudin-1 and increased permeability of thyrocytes monolayer 
(141). Tong et  al. found that the expression of miR-21-5p in 
orbital fibroblasts from Graves’ ophthalmopathy was higher than 
that in the controls, and miR-21-5p could promote collagen I 
expression and total collagen production induced by TGF-beta1 
in orbital fibroblasts (136). Peng et al. found that miR-125a-3p 
could target IL-23 receptor (IL-23R), and its decreased expres-
sion of miR-125a-3p could upregulate IL-23R expression in HT 
patients (142). Our previous study simultaneously detected the 
expression profiles of miRNAs and mRNAs in the thyroid tissues 
of GD patients (133). We found five unregulated miRNAs, such 
as miR-22-3p and miR-183-5p, and 18 downregulated miRNAs 
in the thyroid tissues of GD patients, such as miR-101-3p, 
miR-660-5p, and miR-197-3p (133). The finding from our study 
highlighted a miRNA-target gene network in the pathogenesis 
of GD (133). Other abnormally expressed miRNAs identified in 
AITD patients could be found in Table 1.

Some studies also studied the clinical utility of miRNAs in 
AITD. Hiratsuka et  al. used miRNA array to identify circulat-
ing miRNAs in relation to disease activity of GD by recruiting 
seven intractable GD patients, seven GD patients in remission, 
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FigURe 2 | Roles of non-coding RNAs in the development of autoimmune thyroid diseases (AiTD). microRNAs (miRNAs) or long non-coding RNAs 
(lncRNAs) can target some genes involved in immune response or the function of immune cells. The altered expression of miRNAs or lncRNAs can alter the normal 
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repress IL-1R-associated kinase 1 (IRAK1) and TNF-receptor-associated factor 6 (TRAF6), and its downexpression will increase the activation and antigen 
presentation of dendritic cells. Other miRNAs, such as miR-125-3p and miR-346 and miR-155-5p, can also regulate the immune functions of Th cells or dendritic 
cells by targeting transcription factors or key molecules. Lnc IFNG-AS1 can increase the expression of IFNG and increase the activation Th1 cell, and increased level 
of lncRNA IFNG-AS1 thus contributes to Th1 cell response in HT patients. MiR-21-5p can promote collagen I expression and total collagen production induced by 
TGF-beta1 in orbital fibroblasts, and increased expression of miR-21-5p thus can contribute to Graves’ ophthalmopathy. MiR-142-5p can target CLDN1, and its 
overexpression in thyrocytes can result in reduced expression of claudin-1 and increased permeability of thyrocytes monolayer.
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and seven healthy controls, and found that miR-23b-5p and 
miR-92a-3p were significantly increased in GD patients achiev-
ing remission, but let-7g-3p and miR-339-5p were significantly 
lower in GD patients achieving remission than intractable GD 
patients, demonstrating that some miRNAs could be as biomark-
ers of intractable GD and treatment response (134). A recent 
study by Li et al. found that patients with higher miR-346 level at 
diagnosis were at a higher risk of relapse during follow-up (125). 
A study by Shen et al. found that lower serum level of miR-224-5p 
was independently associated with glucocorticoid insensitiv-
ity in Graves’ ophthalmopathy, and in  vitro overexpression of 
miR-224-5p could restore glucocorticoid sensitivity via targeting 
GSK-3beta (135). However, apart from those three studies above, 
no other studies assessing the clinical utility of miRNAs in AITD 
are available.

microRNAs are important regulators of gene expression, 
while genetic variants in miRNAs have been associated with 
many diseases (150–152). Inoue et  al. found that MIR125A 
rs12976445 C/T was significantly associated with HD and 
intractable GD (131). Our recent study also proved that 
rs3746444 of miR-499a and rs12976445 of miR-125a-5p were 
associated with AITD susceptibility (153). The above study also 
indicated the roles of miRNAs in the pathogenesis of AITD. In 
addition, Dicer is an important ribonuclease involved in the 

biogenesis of miRNAs (154). Frezzetti et  al. reported that the 
development of the thyroid gland was not affected by the absence 
of Dicer through using thyrocyte-specific Dicer knockout mice, 
but Dicer knockout resulted in severe hypothyroidism (155). In 
addition, Dicer inactivation also increased the expressions of Tg 
and decreased the expressions of cell adhesion proteins in the 
thyroid cells, such as Cdh16 and Cdh1 (155). Saeki et al. found 
that AITD patients had lower expression of Dicer and DROSHA 
compared with healthy controls, and DICER rs1057035 and 
DROSHA rs644236 were obviously associated with susceptibil-
ity to GD (156).

Although there are many studies investigating the differently 
expressed miRNAs in AITD patients, few studies have explored 
their clinical utility. The diagnostic values of those miRNAs and 
their roles in the risk stratification of AITD patients have not 
been clearly defined. More studies are needed to investigate the 
clinical significance of miRNAs and assess whether miRNAs can 
help to promote advances in the personalized therapeutics for 
AITD patients. Besides, no study has been performed to explore 
the feasibility of treatment strategies targeting miRNAs in AITD, 
especially for the treatment of intractable GD. Therefore, more 
studies in the future are needed to find more AITD-related 
miRNAs, to explore their molecular roles in the pathogenesis of 
AITD, and to investigate their clinical utility in AITD.
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LncRNAs and AiTD
Long non-coding RNAs are a class of non-coding RNAs with a 
length of more than 200 nt, which are also involved in autoim-
mune diseases (157, 158). LncRNAs are found to be involved 
in a variety of biological processes, and lncRNAs may regulate 
gene expressions at various levels, such as epigenetic regulation, 
transcriptional regulation, posttranscriptional regulation, and 
regulating miRNAs (159–161). Many studies have confirmed 
that lncRNAs play critical roles in immune system development 
and function regulation (162, 163). LncRNAs are involved in 
regulating T  cell production and differentiation, and differ-
ent types of T  cells may express certain specific lncRNAs  
(162, 164–166). Previous studies have reported aberrant expres-
sions of many lncRNAs in various autoimmune diseases, but the 
precise mechanisms underling the roles of lncRNAs in autoim-
mune diseases are still largely unknown (167–170). There are 
also several studies suggesting the possible important roles of 
lncRNAs in AITD (127, 139, 171, 172).

Christensen et al. first reported one lncRNA associated with 
GD, namely lncRNA Heg (127). LncRNA Heg was correlated 
with the levels of TRAb and CD14 mRNA in the mononuclear 
cells of GD patients (127). In vitro studies suggested that lncRNA 
Heg could significantly decrease the level of CD14 mRNA of 
mononuclear cells (127). However, antithyroid treatment was 
unable to change the level of lncRNA Heg in GD patients (171). 
Peng et  al. found that lncRNA-IFNG-AS1 was upregulated 
in HT patients, and it was associated with the frequency of 
circulating Th1  cells and IFN-γ expression (139). In addition, 
lncRNA-IFNG-AS1 could regulate IFN-γ expression in human 
CD4+ T cells and may promote Th1 response in the develop-
ment of HT (139). A GWAS by Zhao et al. found a susceptibility 
locus of GD at an intergenic region harboring two non-coding 
RNAs at 14q32.2, and two lncRNAs including C14orf64 and 
GDCG14q32.2 were reported to be potentially involved in the 
pathogenesis of GD (172).

Researches on the lncRNAs associated with AITD will also 
provide potential drug targets and help us to find some novel 
treatment strategies for AITD (42, 173). Currently, there is 
still lack of a good understanding on the regulatory network 
of lncRNAs/miRNAs/mRNAs in the molecular mechanisms 
of AITD. More studies in the future are needed to find more 
AITD-related lncRNAs, to explore their roles in AITD in details, 
and to investigate the feasibility of non-coding RNA-based 
therapeutic agents for AITD (174). In addition, the clinical 
utility of lncRNAs in AITD patients is also poorly studied, and 
more studies are needed to identify those lncRNAs associated 
with different types of AITD and to assess their roles in predict-
ing treatment responsiveness, guiding the choice of treatment 
approach for GD patients, and predicting relapse risk during 
follow-up.

X Chromosome inactivation (XCi) in AiTD
X chromosomes are randomly inactivated in females, which 
can result in a mosaic pattern of cells expressing genes from 
either chromosome (175). XCI is a major epigenetic feature in 
which one X chromosome is transcriptionally silenced, and the 

X-inactive-specific transcript has major roles in the silencing 
(176, 177). Currently, histone modifications, DNA methylation, 
and non-coding RNAs are all considered to be involved in the 
formation of XCI (178). Skewed XCI occurs when the inactiva-
tion of one X chromosome is silenced more than the other one 
(178, 179). Skewed XCI can also result in loss of imbalance of gene 
products and immune tolerance and thus is involved in many 
autoimmune diseases (180–183).

Autoimmune thyroid diseases occur more often in females, 
suggesting a key role for the XCI in AITD (176). Skewed XCI has 
been proposed as a potential mechanism explaining the female 
preponderance of AITD (184). Previous studies have proven 
the increased frequency of skewed XCI in AITD patients (182, 
184–187). Brix et al. first conducted a case–control study and 
found that the frequencies of skewed XCI in female twins with 
GD and HT were both significantly higher than the controls 
(11%) (185). Ozcelik et al. reported that extreme skewing of XCI 
was present in 19% of AITD patients, but only in 2.4% of con-
trols (P < 0.0001) (182). Yin et al. also found that XCI skewing 
was significantly associated with AITD (OR = 4.0, P = 0.004) 
(186). However, a recent study by Ishido at al. reported that 
there was no obvious difference of skewed XCI between AITD 
cases and controls, but it was significantly higher in intractable 
GD patients (66.7%) than those with GD remission (25.0%), 
which suggested that skewed XCI was related to the GD 
 progression (188).

SUMMARY

The important roles of epigenetics in AITD have been increas-
ingly recognized, but many of them are still largely unknown, 
which need to be elucidated in more epigenetic researches in the 
future. Specially, more studies are needed to find more AITD-
related epigenetic modifications, to explore deeper complex 
interactions of epigenetic factors in the pathogenesis of AITD, 
and to investigate the feasibility of epigenetic-based therapeu-
tic strategies for the treatment of AITD. In addition, it is still 
unclear whether some thyroid-specific lncRNAs and miRNAs 
could have roles in the pathogenesis of AITD, and future studies 
are recommended to explore it. Currently, there are still great 
challenges in providing effective healthcare for AITD patients, 
such as adequate choice of treatment protocols for GD, precise 
prediction of treatment response, and appropriate personalized 
therapeutics for AITD. Epigenetics undoubtedly provide oppor-
tunities of a better understanding of the mechanism of AITD 
and may help to solve these challenges and promote advances 
in the personalized therapeutics of AITD. However, although 
there are many studies assessing the epigenetic modifications 
in AITD patients, few studies have explored those epigenetic 
modifications that are associated with types of AITD, treatment 
outcomes, and risk of relapse during follow-up, and the clinical 
utility of epigenetics in AITD remains poorly defined. A better 
understanding of those epigenetic modifications can contribute 
to accurate diagnosis of AITD, adequate choice of treatment 
approach, and precise prediction of treatment outcomes, and 
it’s recommended in future researches. Besides most studies 
available now focus on one type of epigenetic modifications 
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(e.g., DNA methylation) in isolation, which is unlikely to fully 
explain the etiology of AITD. Hence, to get a better understand-
ing of the etiology of AITD and improve the clinical utility 
of epigenetics in AITD, it is essential to integrate analyses of 
multiple epigenetic modifications together in future studies. The 
increasing use of bioinformatics and high-throughput sequenc-
ing will provide much help in interpreting analyses of multiple 
epigenetic modifications in AITD. Finally, clinical observational 
studies with large number of AITD patients are also needed, 
which will provide essential evidence for the clinical utility of 
those epigenetic modifications in AITD.
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