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a b s t r a c t

Gluconeogenesis responses was assessed during a short starvation period and subsequent refeeding in
Siberian sturgeon (Acipenser baerii) previously fed different dietary carbohydrates levels and experienced
to a glucose stimuli during early life. The sturgeon larvae were previously fed either a high glucose diet
(G) or a low glucose diet (F) from the first feeding to yolk absorption (8 to 12 d post-hatching [dph]). Each
group of fish was sub-divided into 2 treatments at 13 dph and was fed either a high-carbohydrate diet
(H) or a low carbohydrate diet (L) until 20 wk. In the current study, the fish in 4 groups (GL, FL, GH and
FH) were experienced to starvation for 21 d following by re-feeding of their corresponding diets for 21 d.
Fish were sampled at postprandial 6 and 24 h before starvation (P6h and P24h), starvation 7, 14 and 21 d
(S7, S14 and S21) and 1, 7, 14 and 21 d during refeeding (R1, R7, R14 and R21). Plasma samples during
refeeding were taken at P6h at each time point. Glycaemia levels, liver and muscle glycogen contents,
activities and mRNA levels of hepatic gluconeogenic enzymes were examined. We found that both di-
etary carbohydrate levels and early glucose stimuli significantly affected the metabolic responses to
starvation and refeeding in Siberian sturgeon (P < 0.05). During prolonged starvation, Siberian sturgeon
firstly mobilized the liver glycogen and then improved gluconeogenesis when the dietary carbohydrates
were abundant, whereas preserved the liver glycogen stores at a stable level and more effectively pro-
moted gluconeogenesis when the dietary carbohydrates are absent to maintain glucose homoeostasis.
During refeeding, as most teleostean, Siberian sturgeon failed controlling the activities and mRNA levels
of phosphoenolpyruvate carboxykinase cytosolic forms (PEPCK-C), fructose-1,6-bisphosphatase (FBPase),
but particularly controlled phosphoenolpyruvate carboxykinase mitochondrial forms (PEPCK-M) activ-
ities and mRNA expression of glucose-6-phosphatase (G6Pase, except in GL group). Siberian sturgeon has
a full compensatory ability on growth, but this ability would be obstructed by early glucose stimuli when
refeeding the low carbohydrate diet after S21.
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1. Introduction

Both in aquaculture and in natural water, fish could experience
periods of food deprivation or starvation, which are caused by
seasonal fluctuations, reproductive process, or imposed by routine
aquaculture procedures. Fish in northern latitudes experience low
winter water temperatures often accompanied with limited food
availability and low apatite controlled by endocrine system
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(Pottinger et al., 2003; Brodersen et al., 2011). Other factors may
induce long-term fasting includes the abnormal increased ocean
water temperature by changing climate, salinity changes and
reproduction, etc. (Polakof et al., 2006; Brodersen et al., 2011). To
face these nutritional stresses, fish mobilize their endogenous re-
serves to obtain the energy to maintain vital processes, which
impose metabolic adjustments that are species dependent (Wang
et al., 2006). Intraspecific adjustments to these conditions also
depend on different factors such as fish age or nutritional status
(Navarro and Guti�errez, 1995).

In most species, liver glycogen is generally the first substrate
used as an energy source, and mobilized to maintain the glucose
homoeostasis or normoglycaemia during the first stages of star-
vation (Figueiredo-Garutti et al., 2002; Met�on et al., 2003; Furn�e
et al., 2012). Together with glycogen mobilization, reserved lipids
are used to obtain energy, and the protein, mainly from skeletal
muscle would be mobilized subsequently (Navarro and Guti�errez,
1995; Met�on et al., 2003). The muscle glycogen may be depleted
during starvation or maintained stable through the continuous
generation of glucose in the liver (Navarro and Guti�errez, 1995). In
contrast to this pre-established dogma, some species try to pre-
serve liver glycogen stores by degrading protein for gluconeogen-
esis and use lipid and/or protein as energy substrates (Sheridan and
Mommsen, 1991; Gillis and Ballantyne, 1996). The different re-
sponses of fish refed after a starvation period may depend on
species, environmental conditions, starvation period, and the
feeding history prior to starvation (Navarro and Guti�errez, 1995). In
most species, the metabolic profiles would return to pre-starvation
levels after a short refeeding period with a fast weight recovery
known as compensatory growth (Met�on et al., 2003; Furn�e et al.,
2012; Morshedi et al., 2013).

Sturgeon are the only members of a primitive group of fish, the
chondrostean, surviving today. They occupy an intermediate posi-
tion between elasmobranches and teleosts. Siberian sturgeon dis-
tributes in almost all river systems of northern latitudes. They have
a very long-life span (up to 100 years), and become sexual maturity
at 9 to 15 years for males or 16 to 20 years for females in natural
environment. In water recirculation systems, sexual maturity can
firstly occur at 5 years (http://www.fishbase.org/ Kottelat and
Freyhof, 1972). Owing to its long-life span and the distribution
condition, sturgeon encounters regular periods of low food avail-
ability, making it a suitable species for studies of gluconeogenesis
strategies to face starvation and refeeding. It has been reported that
the metabolic responses to some nutritional conditions, including
starvation and refeeding on Adriatic sturgeon (Acipenser naccarii),
are different from rainbow trout (Oncorhynchus mykiss) (Furn�e
et al., 2009, 2012). Besides, some studies showed the dietary car-
bohydrates can be utilized effectively by Siberian sturgeon
(A. baerii) (Kaushik et al., 1989; Yun et al., 2014; Gong et al., 2015)
and other sturgeon species (Lin et al., 1997; Furn�e et al., 2005). A
few studies have reported the responses of compensatory growth,
plasma performances and/or body compositions in white sturgeon
(A. transmontanus), Chinese sturgeon (A. sinensis), Persian sturgeon
(A. persicus) and Siberian sturgeon facing starvation and refeeding
respectively (Liu et al., 2011; Yarmohammadi et al., 2012; Morshedi
et al., 2013), but there are no reports on the effects of nutritional
history, including early programming and latter dietary carbohy-
drates levels on metabolic responses on any sturgeon species.

Early nutritional programming might be a way to modify meta-
bolic responses during later life. The programming stimulus exerted
in early ontogeny stages may have long-term consequences on
physiological functions in later life stages (Lucas, 1998). Several
studies demonstrated that fish also showed an obvious develop-
mental plasticity by nutritional conditioning during the critical
developmental stages early in life, which is just similar to the
responses in mammals (Geurden et al., 2007; Vagner et al., 2007,
2009; Fang et al., 2014; Gong et al., 2015). Gong et al. (2015) had
found that high glucose intake during start feeding stage disturbed
gluconeogenesis regulation in later life of Siberian sturgeon (Gong
et al., 2015). However, no any reports on the adaptability to nutri-
tional history of this primitive species in its long-life span. Therefore,
the objectives of present study were to evaluate the possible influ-
ence of dietary carbohydrates on the metabolic strategy of Siberian
sturgeon during a short starvation period and subsequent refeeding,
and to determine whether an acute glucose stimulus during start
feeding period could modify later gluconeogenesis response.

2. Materials and methods

The experimental protocols used for sturgeon in this study
have been approved by Chinese Academy of Agricultural Sciences
Animal Care and Use Committee following the principle of the
State Council Regulation on Laboratory Animal Administration
(July 18, 2013).

2.1. Experimental diets, fish husbandry and sampling

The present study was conducted on the leftover fish of Gong
et al. (2015), in which 3 experimental diets were prepared and
the formulation and compositions are shown in Table 1. The diet G
contained 57% glucose and was used during the first feeding
period of larvae as a hyperglucidic stimulus. Glucosewas chosen as
the carbohydrate source in this diet because glucose may allow the
larvae to bypass the carbohydrate digestion step and induce pro-
nounced stimulation (Geurden et al., 2007). Two other iso-
energetic (19.6 kJ/g gross energy) diets were fed to fish after the
stimulus until 20 wk. One contained a high level of digestible
carbohydrates (35% dextrin, H diet), the other was with very low
carbohydrates (3.6%, F/L diet). All ingredients were thoroughly
mixed and formed into pellets (0.4, 0.6, 1, and 2.5 mm in diameter)
with an extrusion-bending roller (Yanggong Machine, Beijing,
China). All diets were air-dried and stored at �20 �C throughout
the experimental period. Chemical compositions of experimental
diets were determined using the methods of AOAC (2006) and the
data are shown in Table 1.

The feeding and sampling protocol are shown in Fig. 1. The
sturgeon larvae were fed diet G (high glucose stimulation) or diet F
(free from stimulation) from the first feeding to yolk absorption (8
to 12 d post-hatching [dph]). At 13 dph, each group of fish was
assigned to 2 treatments. One treatment was fed the high-
carbohydrate diet (as groups GH and FH), and the other treat-
ment was fed the low-carbohydrate diet (as groups GL and FL) until
20 wk with 6 replicates for each treatment and 30 fish in each tank
(diameter: 80 cm; volume: 0.3m3). All fish were fed 3 times per day
at 08:00, 14:00 and 20:00 (published in Gong et al., 2015). After 20
weeks feeding, all fish were starved for 21 d and then refed for 21 d.
During refeeding period, the fish were fed to apparent satiation 3
times daily with the corresponding diet (diet H or diet L) following
the feeding protocol before starvation. The water temperature was
maintained at 18 to 20 �C, with dissolved oxygen levels of 6.8 to
7.8 mg/L, pH¼ 8.5 and NH4eN < 0.5 mg/L. Aerationwas supplied to
each tank 24 h per day and fluorescent light was separately
designed above the tanks and kept on from 08:00 to 21:00 for
photoperiod of 13 D: 11 L.

Six fish in each tank from 3 of 6 replicates (n ¼ 18) were indi-
vidually weighed and sampled at postprandial 6 (the glycaemia
peak time point, Gong et al., 2015) and 24 h before starvation (P6h
and P24h), starvation 7, 14 and 21 d (S7, S14 and S21). Eighteen fish
from other 3 tanks were sampled at P6h at refeeding 1, 7, 14 and
21 d (R1, R7, R14 and R21). Body weight and liver weight were

http://www.fishbase.org/


Table 1
Composition and proximate analysis of experimental diets (g/kg).

Item1 Low carbohydrate diet (F/L) High carbohydrate diet (H) High glucose diet (G)

Ingredients
LT-FM 855 465 350
Fish oil 50 90 50
Dextrin 0 350 0
Glucose 0 0 570
Premix2 10 10 10
Sodium carboxymethyl cellulose 20 20 20
Fish soluble protein 20 20 0
Soy lecithin 15 15 0
Choline chloride 5 5 0
Calcium dihydrogen phosphate 5 5 0
Brewer's yeast 20 20 0
Analyzed composition, g/100 g DM
Dry matter 93.2 90.4 92.3
Crude protein 67.7 39.3 21.5
Crude fat 12.7 14.3 12.0
Gross energy, kJ/g DM 19.9 19.3 17.1
Ash 16.0 8.8 6.7
Carbohydrates3 3.6 37.6 59.8

1 All diets were the same as Gong et al. (2015). LT-FM: low temperature steam-dried fishmeal from anchovy, TripleNine Fish Protein. Esbjerg, Denmark. Anchovy fish oil and
fish soluble protein were supplied by Coland Group, Fujian, China. The carbohydrate sources (glucose and dextrin) were both analytical reagents (Sinopharm Chemical Reagent
Beijing Co., Ltd, Beijing, China).

2 Including vitamin premix (mg/kg diet): vitamin A 20; vitamin B1 12; vitamin B2 10; vitamin B6 15; Vitamin B12 8; niacinaminde 100; ascorbic acid 1,000; calcium
pantothenate 40; biotin 2; folic acid 10; vitamin E 400; vitamin K3 20; vitamin D3 10; inositol 200; corn protein powder 150. Mineral premix (mg/kg diet): CuSO4$5H2O 10;
FeSO4$H2O 300; ZnSO4$H2O 200; MnSO4$H2O 100; KIO3 (10%) 80; Na2SeO3 (10% Se) 67; CoCl2$6H2O (10% Co) 5; NaCl 100; Zeolite 638.

3 Content of carbohydrate is calculated as 100% � (% lipid þ % protein þ % ash).

6 replicates and 30 fish in each tank 18 fish from 3 tanks/time point 18 fish from other 3 tanks/time point

P6h P24h 7 d 7 d 7 d 1 d 7 d 7 d 7 d

Gong.et.al (2015) The present study

Re-feeding (21 d)Starvation (21 d)20 wk growth and sampled at postprandial 6 and 24 hfrom 8 to 12 dph

Fed high carbohydrates
diet H (35%, FH) 

Fed low carbohydrate diet 
L (3.6%, FL)

Fed high carbohydrates
diet H (35%, GH) 

Fed low carbohydrate diet 
L (3.6%, GL) 

Stimulate with high 
glucose diet (57% 
glucose, G)

Free from stimulation, 
fed with low

carbohydrate diet
( 3.6%, F ） 

Fig. 1. The protocols for the experiment design used in Gong et al. (2015) and the present study. After 20 weeks feeding, all fish were starved for 21 d and then re-fed for 21 d. Six
fish in each tank from 3 of 6 replicates (n ¼ 18) were individually weighed and sampled at postprandial 6 and 24 h before starvation (P6h and P24h), starvation 7, 14 and 21 d (S7,
S14 and S21). Eighteen fish from other 3 tanks were sampled at P6h in re-feeding 1, 7, 14 and 21 d (R1, R7, R14 and R21). Partial data of P6h and P24h in the present study were
published in Gong et al. (2015). dph ¼ day post-hatching.
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recorded and hepatosomatic index (HSI) was calculated by the ratio
of liver weight and body weight. The P6h and P24h sampling points
were used as pre-starvation control in the present study. The fish
were anaesthetised with trichloro-tert-butyl alcohol (1 mg/mL)
before sampling. Blood samples were taken from the caudal vein
using heparinised syringes to obtain plasma samples after centri-
fugation (845 � g for 10 min) at 4 �C, which were maintained
at �80 �C until analysis. The livers, white and red muscles were
quickly removed, frozen in liquid nitrogen, and stored at �80 �C
until the analyses.

2.2. Plasma glucose and tissue glycogen measurement

The plasma glucose contents were measured via the enzymatic
colourimetric method using a commercial kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China, No. F006). Liver, white
muscle (fast-twitch muscle) and red muscles (slow-twitch muscle)
were homogenized and the glycogen concentrations were deter-
mined spectrophotometrically at 620 nm following the protocol of
a commercial kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China, No. A043). The glycogen contents are expressed as
mg glucose equivalent per 100 mg fresh liver or muscle tissues.

2.3. Liver gluconeogenic enzyme activities

The activities of phosphoenolpyruvate carboxykinase cytosolic
forms (PEPCK-C), phosphoenolpyruvate carboxykinase mitochon-
drial forms (PEPCK-M), fructose-1,6-bisphosphatase (FBPase) and
glucose-6-phosphatase (G6Pase) in Siberian sturgeon liver were
measured as Gong et al. (2015) using a PowerWaveXS2 Microplate
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Spectrophotometer. In order to distinguish the activities between
cytosolic (PEPCK-C) and mitochondrial (PEPCK-M) isoforms, the
cytosolic (supernatant) and mitochondrial (pellet) fractions of ho-
mogenate were isolated by density gradient centrifugation. All
enzyme activities were expressed as unit per mg of total protein
(specific activity). One unit of enzyme activity was defined as the
amount of enzyme capable of catalyzing the hydrolysis of 1 mmol of
substrate per min at 37 �C.

2.4. Liver gluconeogenic gene mRNA levels

The mRNA level of gluconeogenic genes, including PEPCK-C (EC
4.1.1.32, GenBank accession No. JQ995142), PEPCK-M (EC 4.1.1.32,
GenBank accession No. JQ995143), FBPase (EC 3.1.3.11, GenBank
accession No. JF834907) and G6Pase (EC 3.1.3.9, GenBank accession
No. JF834908) in Siberian sturgeon liver were measured by RT-qPCR
analysis using anIQ 5 Multicolour Real-Time PCR Detection System
(Bio-Rad, Hercules, U.S.). Elongation factor 1-alpha (EF1a, GenBank
accession No. JQ995144) was used as a housekeeping gene whose
expression was found to be unaffected by the treatment in the pre-
sent experiment, and was used as an endogenous reference to
normalise the template amount. The gene-specific primers used for
mRNA quantification by RT-qPCR were designed by Primer Premier
5.0 and are shown inTable 2. The RNA extracting, cDNA synthesis and
RT-qPCR process were carried out as Gong et al. (2015).
Table 2
Primers used for mRNA quantification by RT-qPCR.

Gene Sense primer (50 to 30)

PEPCK-C GTCAAACACAACAACTACCAAACC
PEPCK-M GTTTTCTGACGCCTCTTTTG
FBPase AAAGCCAAAGGGACGGGAGA
G6Pase CTGCTTCTCCAATAGCCATCC
EF1a TACGAGGAAATCAGCAAGGAAG

PEPCK-C ¼ phosphoenolpyruvate carboxykinase cytosolic forms; PEPCK-M ¼ pho
bisphosphatase; G6Pase ¼ glucose-6-phosphatase; EF1a ¼ elongation factor 1-alpha.

Table 3
Body weight (g) and hepatosomatic index (HSI, %) in Siberian sturgeon at each sampling p
with their standard errors, n ¼ 3).

Item1 Sampling time points2

P24h S7 S14 S2

Body weight
FL 231 ± 10.7B 209 ± 8.13 244 ± 13.1Y 17
GL 206 ± 12.8B 214 ± 5.32 180 ± 5.16X 19
FH 234 ± 8.51B 211 ± 6.12 225 ± 12.6Y, AB 19
GH 227 ± 6.64C 209 ± 13.1 191 ± 10.3X 18
HSI3

FL 2.35 ± 0.07a,B 1.98 ± 0.04a 1.52 ± 0.120a 1.3
GL 2.20 ± 0.17a,B 2.20 ± 0.15a 1.26 ± 0.06a 1.4
FH 4.06 ± 0.13b,C 2.62 ± 0.09b 2.41 ± 0.08b 1.9
GH 4.06 ± 0.10b,C 2.79 ± 0.08b 2.31 ± 0.08b 1.5
Carbohydrate level (C) ns ns ns ns
High glucose stimuli (G) ns ns * ns
C � G ns ns ns ns
HSI
Carbohydrate level (C) ** * * *
High glucose stimuli (G) ns ns ns ns
C � G ns ns ns ns

a,bDifferent superscript lowercase letters denote significant differences (P < 0.05) among
letters denote significant differences (P < 0.05) between groups with or without high glu
(P < 0.05) among P6h, S21 and R21 within the same group by one-way ANOVA. ** mean

1 FL: fish fed low carbohydrate diet without high glucose stimulation during early pro
during early programming stage; FH: fish fed high carbohydrate diet without high gluco
with high glucose stimulation during early programming stage.

2 Postprandial 6 and 24 h before starvation were abbreviated as P6h and P24h; Starvatio
refeeding were abbreviated as R1, R7, R14 and R21.

3 Hepatosomatic index (HSI, %) ¼ 100 � Liver weight/Whole body weight.
2.5. Statistical analysis

Expression of mRNA of target genes is shown as n-fold differ-
ence relative to the calibrator (EF1a) following the Pfaffle (2001)
methods. Statistical analyses were performed using Statistica8.0
(Statsoft, Tulsa, OK, U.S.). The parameters of carbohydrate metab-
olites always vary along “time”, so the “sampling time” factor is
expected to be significantly different in all parameters. Therefore,
the data of each sampling point were analyzed by repeated mea-
sures two-way ANOVA followed by Tukey's multiple-range test to
inspect the differences affected by dietary carbohydrate level and
high glucose stimuli during early life or the interception of both
factors (Wang and Goonewardene, 2004). Then, one-way ANOVA
was used for analyzing the difference among pre-starvation (P6h),
S21 and R21. Homogeneity of variance was confirmed before
ANOVA and differences were regarded as significant when P < 0.05,
and data were reported as means ± standard error of mean (SEM).

3. Results

3.1. Body weight, liver weight and hepatosomatic index on various
sampling point

The body weight and HSI of Siberian sturgeon are shown in
Table3. Fish receivedahighglucosestimuli duringearly stage showed
Antisense primer (50 to 30) Target size, bp

CAAAGCATACAATCAGTGCCTACA 143
CTCTGGATCGATTTGAATTTCC 157
TAGAGCACAGGTGGTGAAGGAG 216
ATACCCCCTAACAACCTCACACT 97
AGCCAGAGATGGGCACAAAG 88

sphoenolpyruvate carboxykinase mitochondrial forms; FBPase ¼ fructose-1,6-

oint during starvation and refeeding based on the main effects ANOVA (mean values

1 R1 R7 R14 R21

5 ± 13.5A 151 ± 10.9 185 ± 12.8a 212 ± 11.2 214 ± 10.7AB

5 ± 2.14A 183 ± 12.0 174 ± 16.6a 177 ± 4.81 188 ± 15.2A

8 ± 15.2A 190 ± 5.81 218 ± 12.0b 209 ± 13.4 215 ± 8.16AB

4 ± 9.45A 186 ± 19.6 215 ± 10.0b 197 ± 9.84 216 ± 14.2B

4 ± 00.4a,A 1.52 ± 0.14a 1.24 ± 0.09a 1.81 ± 0.02a 2.08 ± 0.07a,AB

9 ± 0.12a,A 1.57 ± 0.30a 2.23 ± 0.11a 2.17 ± 0.12a 1.59 ± 0.08a,A

5 ± 0.09b,A 1.87 ± 0.11b 2.85 ± 0.05b 3.31 ± 0.21b 3.51 ± 0.09b,B

4 ± 0.06b,A 1.82 ± 0.11b 2.60 ± 0.09b 3.78 ± 0.06b 3.55 ± 0.14b,B

ns * ns ns
ns ns ns ns
ns ns ns ns

** * ** **
ns ns ns ns
ns ns ns ns

experimental groups fed different dietary carbohydrate levels; X,Ydifferent capital
cose stimuli during early life; A,Bdifferent capital letters denote significant difference
s P < 0.01, * means P < 0.05, ns means not significant.
gramming stage; GL: fish fed low carbohydrate diet with high glucose stimulation
se stimulation during early programming stage; GH: fish fed high carbohydrate diet

n 7, 14 and 21 days were abbreviated as S7, S14 and S21; 1, 7, 14 and 21 days during
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significantly lower bodyweight at S14 than thosefishwithout stimuli
(P < 0.05) and high dietary carbohydrate improved the fish body
weight at R7 (P < 0.01). Siberian sturgeon lost weight along with
longer starvation period, and were down to the lowest level at S21.
Except for the fish of GL, fish body and HSI gradually increased and
regained to the level of pre-starvation (P24h) after refeeding. Fish
from GL treatment failed recovering their bodyweight and HSI. Early
glucose stimuli did not affect HSI and generally, fish fed high carbo-
hydrate showed significantly higher HSI than those fed low carbo-
hydrate (P < 0.05). No interaction between the factors of dietary
carbohydrate level and early glucose stimuli was observed.

3.2. Plasma glucose

The plasma glucose concentrations at each sampling point are
shown in Table 4. The plasma glucose concentrations were both
affected by dietary carbohydrates level (P < 0.01) and early high
glucose stimuli (P < 0.05). The plasma glucose concentrations were
significantly higher in the H groups than in the L groups at most
sampling point (P < 0.01). Glycaemia in H groups were significantly
higher at P6h, but lower at P24h, and fish of GL group showed
slightly higher glycaemia than other fish at P24h. However, the
plasma glucose concentration of Siberian sturgeon at all duration
for FL group were generally stable (average 4.93 at starvation stage
to 5.62 mmol/mL at refeeding). In groups of GL and GH, both gly-
caemia at P6h and refeeding were significantly higher than that of
at starvation, but no difference between pre-starvation (P6h) and
refeeding. Only in FH group, glycaemia after R21 was significantly
higher than that of P6h and S21.

3.3. Tissues glycogen

The liver, white and red muscle glycogen contents at each
sampling point are shown in Table 5. The glycogen contents in liver,
white and red muscle were affected significantly both by dietary
carbohydrates level and early glucose stimuli (P < 0.05). Liver
glycogen contents were significantly higher in the H groups than in
the L groups at P6h, P24h, S7, R7, R14 and R21 (P < 0.01). Liver
glycogen contents of L groups were generally kept at a stable low
level, and in H groups the values were significantly decreased with
the prolonged starvation (P < 0.05) and then gradually increased
with refeeding to the pre-starvation levels (P6h) (P < 0.05).

In the whole duration, white muscle glycogen contents were
averagely stable in each group. However, the white muscle
Table 4
Plasma glucose concentrations (mmol/mL) in Siberian sturgeon at each sampling point d

Item1 Sampling time points2

P6h3 P24h3 S7 S14

FL 5.72 ± 0.16a,X 4.80 ± 0.12b 4.62 ± 0.17a 4.51 ± 0.1
GL 5.87 ± 0.15a,Y,B 5.42 ± 0.20b 3.97 ± 0.11a 4.20 ± 0.1
FH 7.04 ± 0.12b,X, AB 4.69 ± 0.05a 5.24 ± 0.21b 4.75 ± 0.2
GH 8.01 ± 0.18b,Y,B 4.45 ± 0.07a 5.34 ± 0.10b 4.71 ± 0.0
Statistical analysis by repeated measures two-way ANOVA
Carbohydrate level (C) ** * ** ns
High glucose stimuli (G) * ns ns ns
C � G ns * * ns

a,bDifferent superscript lowercase letters denote significant differences (P < 0.05) among
letters denote significant differences (P < 0.05) between groups with or without high glu
(P < 0.05) among P6h, S21 and R21 within the same group by one-way ANOVA. ** mean

1 FL: fish fed low carbohydrate diet without high glucose stimulation during early pro
during early programming stage; FH: fish fed high carbohydrate diet without high gluco
with high glucose stimulation during early programming stage.

2 Postprandial 6 and 24 h before starvation were abbreviated as P6h and P24h; Starvati
refeeding were abbreviated as R1, R7, R14 and R21.

3 The data for P6h and P24h have been published in Gong et al. (2015).
glycogen was significantly higher in the H groups than in the L
groups at most time points, except for the fish sampled at S14
and R1 (P < 0.05). Fish in glucose stimulation groups showed
significantly lower glycogen content in white muscle than those
of fish without glucose stimulation at S21 and R1, but no differ-
ence was observed at other sampling points. Red muscle
glycogen contents were significantly higher in the fish fed high
carbohydrate diets than those fed the low carbohydrate diet at
most sampling points, except for S7 and R1 (P < 0.05). Red muscle
glycogen of Siberian sturgeon were stable in L groups and FH
group at P6h, S21 and R21, but significantly increased after
refeeding in fish fed diet GH.

3.4. Liver gluconeogenic enzyme activities

The data for the activity of gluconeogenic enzymes including
PEPCK-C PEPCK-M, FBPase and G6Pase in liver at each sampling
point are shown in Table 6. Dietary carbohydrates level significantly
affected the activities of PEPCK-C (at S7, S14 and R1) and PEPCK-M
(at P6h, R7 and R21) with very different pattern. Fish fed H diets
showed higher PEPCK-C activities at S7 and S14, but lower at R1
(P < 0.05), whereas kept lower PEPCK-M activities than those of L
groups at P6h, R7 and R21 (satiation status). Fish with high glucose
stimuli showed lower PEPCK-C (at S21, R21) and PEPCK-M (at P24h
and S14) activities, but adversely higher at R7 for PEPCK-C and at
S21, R7, R14 for PEPCK-M than PEPCKs activities of fish without
experimented glucose stimuli. In general, PEPCK-C activities were
increased at S21, but further increased during refeeding period.
However, the activities of PEPCK-M were increased with prolonged
starvation (S21) and then decreased, but not drop to the levels of
before starvation (P6h) at R21 in all groups (P < 0.05).

The FBPase activities for H groups were significantly lower than
those of L groups (P < 0.01) at all sampling points except for at S14.
High glucose stimuli reduced the FBPase activities at S7, S14, S21
and R1 (P < 0.05).

The activities of G6Pase were significantly lower in H groups
at P24h and R7, but adversely higher at S14 and S21 (P < 0.05).
Early high glucose stimulus significantly inhibited G6Pase ac-
tivities at P6h and P24h, but enhanced the activities at R1
(P < 0.05). The activities of G6Pase in F (FL and FH) groups were
highest at P6h, then rapidly decreased with starvation and kept
stable at low level after refeeding (R21). G6Pase in G (GL and GH)
groups were kept stable during P6h, starvation (S21) and
refeeding (R21) (P < 0.05).
uring starvation and refeeding (mean values with their standard errors, n ¼ 3).

S21 R1 R7 R14 R21

3 5.81 ± 0.28 4.93 ± 0.12a 5.52 ± 0.14a 6.16 ± 0.14a,Y 5.90 ± 0.15a

5 4.48 ± 0.22A 4.65 ± 0.16a 5.66 ± 0.11a 5.99 ± 0.21a,X 5.48 ± 0.20a,B

1 5.66 ± 0.19A 9.08 ± 0.45b 7.92 ± 0.20b 9.08 ± 0.18b,Y 10.42 ± 0.30b,B

9 5.87 ± 0.24A 8.66 ± 0.39b 8.25 ± 0.25b 7.92 ± 0.22b,X 9.80 ± 0.36b,B

ns ** ** ** **
ns ns ns * ns
ns ns ns ns ns

experimental groups fed different dietary carbohydrate levels; X,Ydifferent capital
cose stimuli during early life; A,Bdifferent capital letters denote significant difference
s P < 0.01, * means P < 0.05, ns means not significant.
gramming stage; GL: fish fed low carbohydrate diet with high glucose stimulation
se stimulation during early programming stage; GH: fish fed high carbohydrate diet

on 7, 14 and 21 days were abbreviated as S7, S14 and S21; 1, 7, 14 and 21 days during



Table 5
Glycogen contents (g/100 g tissues) in liver, white muscle and red muscle of Siberian sturgeon at each sampling point during starvation and refeeding (mean values with their
standard errors, n ¼ 3).

Item1 Sampling time points2

P6h3 P24h3 S7 S14 S21 R1 R7 R14 R21

Liver glycogen
FL 2.39 ± 0.22a 2.35 ± 0.17a 3.48 ± 0.21a,Y 3.48 ± 0.32 1.97 ± 0.26 1.98 ± 0.14 2.29 ± 0.16a 3.85 ± 0.11a 2.5 ± 0.13a

GL 2.06 ± 0.23a 1.88 ± 0.26a 2.38 ± 0.33a,X 2.26 ± 0.41 1.29 ± 0.21 0.72 ± 0.09 1.88 ± 0.23a 3.91 ± 0.58a 2.32 ± 0.14a

FH 9.25 ± 0.28b,B 7.08 ± 0.46b 6.23 ± 0.58b,Y 1.61 ± 0.36 2.30 ± 0.47A 1.70 ± 0.22 5.92 ± 0.11b 9.33 ± 0.36b 8.51 ± 0.85b,B

GH 8.89 ± 0.59b,B 6.66 ± 0.62b 5.04 ± 0.26b,X 3.87 ± 0.21 1.57 ± 0.14A 2.18 ± 0.36 7.49 ± 0.52b 8.64 ± 0.24b 7.61 ± 0.33b,B

White muscle glycogen
FL 0.10 ± 0.01a 0.12 ± 0.02a 0.13 ± 0.02a 0.17 ± 0.02 0.11 ± 0.01a,Y 0.11 ± 0.02Y 0.09 ± 0.02a 0.17 ± 0.02a 0.12 ± 0.01a

GL 0.09 ± 0.02a 0.13 ± 0.01a 0.12 ± 0.02a 0.17 ± 0.01 0.09 ± 0.01a,X 0.08 ± 0.01X 0.15 ± 0.01a 0.15 ± 0.02a 0.16 ± 0.02a

FH 0.18 ± 0.02b 0.18 ± 0.03b 0.20 ± 0.02b 0.20 ± 0.03 0.17 ± 0.01b,Y 0.10 ± 0.02Y 0.30 ± 0.03b 0.27 ± 0.03b 0.24 ± 0.03b

GH 0.16 ± 0.01b 0.20 ± 0.02b 0.18 ± 0.02b 0.15 ± 0.02 0.13 ± 0.02b,X 0.08 ± 0.01X 0.27 ± 0.02b 0.34 ± 0.04b 0.30 ± 0.04b

Red muscle glycogen
FL 0.12 ± 0.02a,Y 0.07 ± 0.01a 0.16 ± 0.02 0.09 ± 0.02a 0.14 ± 0.01a,Y 0.18 ± 0.02Y 0.19 ± 0.04a 0.22 ± 0.03a 0.09 ± 0.01a,X

GL 0.11 ± 0.02a,X 0.11 ± 0.02a 0.15 ± 0.01 0.09 ± 0.02a 0.12 ± 0.01a,X 0.14 ± 0.01X 0.20 ± 0.02a 0.13 ± 0.04a 0.11 ± 0.03a,Y

FH 0.20 ± 0.03b,Y 0.17 ± 0.02b 0.15 ± 0.03 0.14 ± 0.02b 0.20 ± 0.02b,Y 0.17 ± 0.03Y 0.55 ± 0.04b 0.43 ± 0.05b 0.19 ± 0.03b,X

GH 0.15 ± 0.01b,X,A 0.18 ± 0.03b 0.15 ± 0.02 0.10 ± 0.01b 0.18 ± 0.01b,X,A 0.14 ± 0.01X 0.46 ± 0.03b 0.45 ± 0.05b 0.27 ± 0.03b,Y,B

Statistical analysis by repeated measures two-way ANOVA
Liver glycogen
Carbohydrate level (C) ** ** ** ns ns ns ** ** **
High glucose stimuli (G) ns ns * ns ns ns ns ns ns
C � G ns ns ns ** ns ns ns ns ns
White muscle glycogen
Carbohydrate level (C) ** ** ** ns ** ns ** ** **
High glucose stimuli (G) ns ns ns ns ** * ns ns ns
C � G ns ns ns ns ns ns ** * ns
Red muscle glycogen
Carbohydrate level (C) ** ** ns * ** ns ** ** **
High glucose stimuli (G) * ns ns ns * * ns ns *
C � G ns ns ns ns ns ns * ns ns

a,bDifferent superscript lowercase letters denote significant differences (P < 0.05) among experimental groups fed different dietary carbohydrate levels; X,Ydifferent capital
letters denote significant differences (P < 0.05) between groups with or without high glucose stimuli during early life; A,Bdifferent capital letters denote significant difference
(P < 0.05) among P6h, S21 and R21 within the same group by one-way ANOVA. ** means P < 0.01, * means P < 0.05, ns means not significant.

1 FL: fish fed low carbohydrate diet without high glucose stimulation during early programming stage; GL: fish fed low carbohydrate diet with high glucose stimulation
during early programming stage; FH: fish fed high carbohydrate diet without high glucose stimulation during early programming stage; GH: fish fed high carbohydrate diet
with high glucose stimulation during early programming stage.

2 Postprandial 6 and 24 h before starvation were abbreviated as P6h and P24h; Starvation 7, 14 and 21 days were abbreviated as S7, S14 and S21; 1, 7, 14 and 21 days during
refeeding were abbreviated as R1, R7, R14 and R21.

3 The data for P6h and P24h have been published in Gong et al. (2015).
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3.5. Gluconeogenic gene mRNA levels

The data for the mRNA level of gluconeogenic genes including
duplicated genes PEPCK-C PEPCK-M and theirs downstream genes,
FBPase and G6Pase in liver at each sampling point are shown in
Table 7. The mRNA levels of PEPCK-C and PEPCK-M were signifi-
cantly lower in H groups than in L groups in most cases (P6h, P24h,
S7, R7, R14 and R21 for PEPCK-C and P6h, P24h, R1 and R21 for
PEPCK-M, P < 0.05). High glucose stimuli in early life only induced
higher expression of PEPCK-C at P24h and PEPCK-M at S21, but at
R21, the stimuli down-regulated the PEPCK-M mRNA levels
(P < 0.05). Both of PEPCKsmRNA levels were significantly decreased
with the feed deprivation (S21), but showed different patterns at
R21 for L and H groups. Fish fed low carbohydrate diet showed
increased PEPCKs mRNA levels at R21, but decreased expression of
PEPCK-C and kept stable low levels of PEPCK-MmRNA expression in
H groups (P < 0.05).

The mRNA levels of FBPase were significantly lower in fish fed
high carbohydrate diet than in fish fed low carbohydrate diet at
P6h, P24h and R21 (P < 0.05). High glucose stimuli did not affect the
FBPase expression generally (P > 0.05). Fish of L groups got the
highest FBPase mRNA levels at P6h, then decreased at S21 and kept
stable low levels at R21. The FBPase mRNA levels were relatively
stable at P6h, S21 and R21 for fish fed high carbohydrate diets (FH
and GH) (P < 0.05).

The mRNA levels of G6Pasewere significantly higher in L groups
than those of H groups at P6h, S7, S21, R7 and R21 (P < 0.05). High
glucose stimuli significantly up-regulated the G6Pase expression at
P6h, P24h and S7, but no significant effect during refeeding periods.
The G6Pase mRNA levels were stable at P6h, S21 and R21 for FL, FH
and GH groups. Fish of GL group significantly down-regulated
mRNA level of G6Pase during starvation and kept low level at R21
(P < 0.05).

4. Discussion

During the long evolutionary history, sturgeon faced various
harsh climate changes on earth, which could induce short or long-
term food deprivation for this ancient fish species. The mainte-
nance of energy homoeostasis during food deprivation in fish is
directly related to the capacity for mobilization of energy reserves
such as hepatic glycogen during initial stages of fasting and de-
pends on subsequent activation of hepatic gluconeogenesis
(Polakof et al., 2006). The complete compensation growth observed
in Siberian sturgeon after 2, 4 or 8 d fasting then refeeding until for
40 d, indicated a high ability of the species to grow to fully
compensate for weight loss during starvation (Morshedi et al.,
2013). Liu et al. (2011) found that Chinese sturgeon resumed
body weight after 3 or 7 d fasting then refeeding to 70 d with
similar final body weight and HSI, but only showed partial
compensation for the longer starvation (14 to 28 d) groups, which
with significantly higher mortality than those not be fasted. The
complete compensation of fish could be a promising feeding
management option for aquaculture. In the present study, we



Table 6
Specific activities (mU/mg protein) of gluconeogenic enzyme in the liver of Siberian sturgeon at each sampling point during starvation and refeeding (mean values with their
standard errors, n ¼ 3).

Item1 Sampling time points2

P6h3 P24h3 S7 S14 S21 R1 R7 R14 R21

PEPCK-C
FL 52.6 ± 2.30A 35.5 ± 1.26 45.4 ± 2.14a 65.2 ± 1.62a 72.2 ± 1.44Y,B 58.9 ± 1.23b 99.2 ± 3.43X 112 ± 4.15 112 ± 3.18Y,C

GL 43.0 ± 4.13A 43.8 ± 1.06 35.7 ± 1.61a 61.8 ± 0.94a 63.1 ± 5.20X,B 89.8 ± 6.87b 88.2 ± 1.37Y 88.7 ± 3.36 105 ± 4.01X,C

FH 62.0 ± 3.01A 44.6 ± 1.94 55.2 ± 2.30b 73.3 ± 1.78b 80.0 ± 1.24Y,B 60.4 ± 1.25a 81.9 ± 2.05X 102 ± 1.84 133 ± 2.81Y,C

GH 48.1 ± 2.29A 39.6 ± 1.68 70.4 ± 1.58b 107 ± 19.2b 69.9 ± 1.38X,B 53.6 ± 3.25a 113 ± 3.14Y 113 ± 2.68 85.2 ± 1.64X,C

PEPCK-M
FL 4.28 ± 0.21b,A 3.44 ± 0.16Y 12.10 ± 0.89 16.5 ± 0.47Y 23.2 ± 2.18Y,C 22.8 ± 1.93 16.0 ± 0.89b,X 12.9 ± 1.67X 14.1 ± 0.82b,B

GL 2.70 ± 0.10b,A 2.63 ± 0.11X 11.9 ± 1.18 13.7 ± 0.28X 17.2 ± 1.92X,B 16.3 ± 0.98 16.8 ± 0.91b,Y 16.6 ± 0.98Y 13.7 ± 1.68b,B

FH 2.43 ± 0.23a,A 3.14 ± 0.18Y 9.84 ± 0.34 7.91 ± 0.79Y 27.3 ± 2.30Y,C 19.3 ± 0.29 9.82 ± 1.20a,X 12.0 ± 0.87X 9.30 ± 0.41a,B

GH 2.84 ± 0.14a,A 2.41 ± 0.09X 10.9 ± 0.28 18.4 ± 1.90X 19.8 ± 0.80X,C 20.9 ± 1.59 13.0 ± 1.07a,Y 14.6 ± 0.75Y 11.3 ± 0.17a,B

FBPase
FL 131 ± 8.47b 87.1 ± 3.7.2b 132 ± 4.17b,Y 184 ± 11.9Y 140 ± 7.4.2b,Y 84.2 ± 5.36b,Y 107 ± 8.42b 110 ± 5.24b 153 ± 6.01b

GL 117 ± 6.49b 94.2 ± 3.12b 93.5 ± 6.84b,X 126 ± 8.56X 85.0 ± 5.43b,X 50.5 ± 2.64b,X 58.8 ± 3.30ab 108 ± 15.7b 137 ± 14.3b

FH 68.2 ± 3.38a 53.5 ± 1.21a 65.5 ± 5.70a,Y 89.2 ± 4.83Y 42.4 ± 3.67a,Y 35.5 ± 2.72a,Y 48.6 ± 2.59a 47.1 ± 2.05a 67.1 ± 7.16a

GH 56.6 ± 2.90a 40.3 ± 0.98a 63.9 ± 1.68a,X 84.8 ± 3.95X 39.0 ± 2.69a,X 31.6 ± 1.94a,X 67.9 ± 6.12a 45.9 ± 1.84a 79.9 ± 4.90a

G6Pase
FL 10.0 ± 0.51Y,B 6.88 ± 0.05b,Y 4.74 ± 0.37 3.61 ± 0.47a 3.78 ± 0.46a,A 3.27 ± 0.26X 4.24 ± 0.21b 4.60 ± 0.44 4.14 ± 0.25A

GL 4.35 ± 0.11X 4.99 ± 0.18b,X 6.63 ± 0.92 4.54 ± 0.22a 4.21 ± 0.78a 5.34 ± 0.43Y 6.18 ± 0.48b 4.75 ± 0.46 3.99 ± 0.16
FH 11.2 ± 0.88Y,B 5.54 ± 0.19a,Y 4.77 ± 0.47 7.20 ± 0.81b 6.63 ± 1.02b,A 3.68 ± 0.12X 4.26 ± 0.39a 5.61 ± 0.12 4.60 ± 0.14A

GH 5.97 ± 0.29X 4.85 ± 0.14a,X 4.89 ± 0.48 4.84 ± 0.47b 6.36 ± 0.70b 3.73 ± 0.27Y 3.73 ± 0.35a 4.86 ± 0.38 4.10 ± 0.36
Statistical analysis by repeated measures two-way ANOVA
PEPCK-C
Carbohydrate level (C) ns ns ** ** ns * ns ns ns
High glucose stimuli (G) ns ns ns ns * ns * ns **
C � G ns * * * ns * * * **
PEPCK-M
Carbohydrate level (C) * ns ns ns ns ns ** ns **
High glucose stimuli (G) ns ** ns * * ns * * ns
C � G * ns ns ** ns ns ns ns ns
FBPase
Carbohydrate level (C) ** * ** ns ** ** * ** **
High glucose stimuli (G) ns ns * * * * ns ns ns
C � G ns ns * * * * ** ns ns
G6Pase
Carbohydrate level (C) ns * ns ** ** ns * ns ns
High glucose stimuli (G) ** ** ns ns ns ** ns ns ns
C � G ns ns ns * ns ns * ns ns

PEPCK-C ¼ phosphoenolpyruvate carboxykinase cytosolic forms; PEPCK-M ¼ phosphoenolpyruvate carboxykinase mitochondrial forms; FBPase ¼ fructose-1,6-
bisphosphatase; G6Pase ¼ glucose-6-phosphatase.
a,bDifferent superscript lowercase letters denote significant differences (P < 0.05) among experimental groups fed different dietary carbohydrate levels; X,Ydifferent capital
letters denote significant differences (P < 0.05) between groups with or without high glucose stimuli during early life; A,Bdifferent capital letters denote significant difference
(P < 0.05) among P6h, S21 and R21 within the same group by one-way ANOVA. **means P < 0.01, *means P < 0.05, ns means not significant.

1 FL: fish fed low carbohydrate diet without high glucose stimulation during early programming stage; GL: fish fed low carbohydrate diet with high glucose stimulation
during early programming stage; FH: fish fed high carbohydrate diet without high glucose stimulation during early programming stage; GH: fish fed high carbohydrate diet
with high glucose stimulation during early programming stage.

2 Postprandial 6 and 24 h before starvation were abbreviated as P6h and P24h; Starvation 7, 14 and 21 days were abbreviated as S7, S14 and S21; 1, 7, 14 and 21 days during
refeeding were abbreviated as R1, R7, R14 and R21.

3 The data for P6h and P24h have been published in Gong et al. (2015).
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similarly observed resumed body weight after 21 d refeeding
except in the group GL. All groups of fish lost weight gradually
during starvation stage, but only fish of GL group failed recovering
body and liver weight after R21. Fish experienced glucose stimuli
during early stage might increase carbohydrate requirement for
maintaining body energy retention or as Gong et al. (2015) sup-
posed that the glucose stimuli during the early stage have long-
term, even life-span interference on gluconeogenesis of Siberian
sturgeon. Polakof et al. (2011, 2012) reviewed the glucose meta-
bolism in fish, and demonstrated that although fish do have an
active glucose homoeostatic system, the phenotype of postprandial
hyperglycemia and slow recovery to basal blood glucose levels in
fish, including sturgeon are similar to the common features of
human diabetes (Hung, 1991; Polakof et al., 2011, 2012). Different
from mammal and birds, fish could keep alive and adapt to a long-
term (several month) food deprivation, which could be related to
the lower glucose turnover rates (Garin et al., 1987; Hoenig et al.,
2010). The natural diet of sturgeon is poor in carbohydrate
(Sokolov, 1966), but glucose is an essential energy substrate for
tissues and organs for all animals. Siberian sturgeon in FL group
showed relatively stable glycaemia level even met 21 d starvation
and thereafter refeeding. This showed that Siberian sturgeon,
similar to the other carnivorous fish species, can use dietary source
triglyceride-derived glycerol and gluconeogenic amino acid as
substrates for glucose synthesis (Geurden et al., 2007; Gong et al.,
2015). The plasma glucose levels of all groups were recovered to
baseline (4 to 5 mmol/mL) into 24 h and kept stable over the S21.
These results were consistent with the findings in lake sturgeon
(A. fulvescens) and Persian sturgeon (A. persicus) (Gillis and
Ballantyne, 1996; Yarmohammadi et al., 2012), but different from
white sturgeon (A. transmontanus), which with diabetes-like char-
acters as much slow glycaemia recovery (at least 48 h) and constant
decreasing plasma glucose (from 3.6 to 2.6 mmol/mL) during 4-
week starvation (Hung, 1991, 1997). Several studies in our lab had
observed that the Siberian sturgeon, as an omnivorous species, has
good abilities to utilize carbohydrate from starch or plant protein



Table 7
ThemRNA levels of gluconeogenic gene in the liver of Siberian sturgeon at each sampling point during starvation and refeeding (mean values with their standard errors, n¼ 3).

Item1 Sampling time points2

P6h3 P24h3 S7 S14 S21 R1 R7 R14 R21

PEPCK-C
FL 1.42 ± 0.27b,C 0.10 ± 0.04b,X 0.05 ± 0.03b 0.02 ± 0.01 0.04 ± 0.02A 0.17 ± 0.04 2.15 ± 0.47b 0.91 ± 0.31b 0.26 ± 0.06b,B

GL 2.55 ± 0.69b,C 1.02 ± 0.23b,Y 0.07 ± 0.02b 0.02 ± 0.01 0.07 ± 0.02A 0.16 ± 0.06 1.28 ± 0.39b 0.32 ± 0.14b 0.26 ± 0.08b,B

FH 0.12 ± 0.05a,C 0.04 ± 0.01a,X 0.03 ± 0.01a 0.29 ± 0.12 0.05 ± 0.03B 0.19 ± 0.08 0.28 ± 0.08a 0.03 ± 0.01a 0.01 ± 0.00a,A

GH 0.08 ± 0.05a,B 0.07 ± 0.04aY 0.03 ± 0.00a 0.01 ± 0.00 0.02 ± 0.01A 0.36 ± 0.17 0.19 ± 0.06a 0.01 ± 0.01a 0.01 ± 0.00a,A

PEPCK-M
FL 1.18 ± 0.18b,B 1.29 ± 0.12b 0.41 ± 0.05 0.35 ± 0.07 0.33 ± 0.04X,A 2.88 ± 0.35b 3.40 ± 0.98 1.57 ± 0.66 1.77 ± 0.19b,Y,C

GL 1.40 ± 0.13b,C 1.20 ± 0.15b 0.39 ± 0.09 0.31 ± 0.03 0.31 ± 0.05Y,A 3.08 ± 0.88b 2.20 ± 0.47 1.15 ± 0.11 0.88 ± 0.09b,X,B

FH 0.74 ± 0.11a,B 0.49 ± 0.10a 0.30 ± 0.06 0.19 ± 0.06 0.21 ± 0.04X,A 2.09 ± 0.21a 1.79 ± 0.24 0.83 ± 0.27 0.34 ± 0.05a,Y,A

GH 0.56 ± 0.06a 0.62 ± 0.09a 0.41 ± 0.04 0.21 ± 0.07 0.54 ± 0.09Y 1.86 ± 0.18a 1.88 ± 0.37 0.71 ± 0.14 0.53 ± 0.11a,X

FBPase
FL 1.08 ± 0.09b,B 0.77 ± 0.08b 0.38 ± 0.09 0.21 ± 0.04 0.47 ± 0.09A 0.22 ± 0.01 1.54 ± 0.18 0.73 ± 0.04 0.57 ± 0.09b,A

GL 1.15 ± 0.16b,B 0.86 ± 0.09b 0.34 ± 0.05 0.16 ± 0.03 0.32 ± 0.05A 0.39 ± 0.08 1.29 ± 0.21 0.87 ± 0.15 0.67 ± 0.12b,A

FH 0.47 ± 0.05a 0.27 ± 0.04a 0.25 ± 0.04 0.12 ± 0.04 0.29 ± 0.03 0.67 ± 0.16 1.11 ± 0.18 0.62 ± 0.25 0.28 ± 0.08a

GH 0.4 ± 0.04a 0.36 ± 0.08a 0.29 ± 0.07 0.13 ± 0.08 0.58 ± 0.07 0.48 ± 0.13 1.49 ± 0.89 0.46 ± 0.17 0.26 ± 0.06a

G6Pase
FL 1.17 ± 0.11b,X 2.17 ± 0.15X 2.21 ± 0.17b,X 0.8 ± 0.14 1.18 ± 0.07b 1.42 ± 0.27 1.13 ± 0.11b 0.6 ± 0.08 1.08 ± 0.07b

GL 2.21 ± 0.24b,Y,B 4.18 ± 0.34Y 1.51 ± 0.09b,Y 0.63 ± 0.07 1.34 ± 0.04b,A 1.52 ± 0.11 1.08 ± 0.17b 0.61 ± 0.14 1.11 ± 0.14b,A

FH 0.73 ± 0.07a,X 2.76 ± 0.48X 1.48 ± 0.08a,X 0.73 ± 0.09 0.77 ± 0.08a 1.73 ± 0.14 0.59 ± 0.10a 0.44 ± 0.09 0.64 ± 0.10a

GH 0.74 ± 0.10a,Y 2.72 ± 0.27Y 1.27 ± 0.05a,Y 0.73 ± 0.10 0.83 ± 0.07a 1.31 ± 0.09 0.53 ± 0.07a 0.40 ± 0.03 0.53 ± 0.05a

Statistical analysis by repeated measures two-way ANOVA
PEPCK-C
Carbohydrate level (C) ** * ** ns ns ns ** ** **
High glucose stimuli (G) ns * ns ns ns ns ns ns ns
C � G ns * ns ns ns ns ns ns ns
PEPCK-M
Carbohydrate level (C) * ** ns ns ns * ns ns **
High glucose stimuli (G) ns ns ns ns * ns ns ns *
C � G ns ns ns ns * ns ns ns **
FBPase
Carbohydrate level (C) ** ** ns ns ns ns ns ns **
High glucose stimuli (G) ns ns ns ns ns ns ns ns ns
C � G ns ns ns ns ns ns ns ns ns
G6Pase
Carbohydrate level (C) ** ns ** ns ** ns ** ns **
High glucose stimuli (G) * * ** ns ns ns ns ns ns
C � G * * ns ns ns ns ns ns ns

PEPCK-C ¼ phosphoenolpyruvate carboxykinase cytosolic forms; PEPCK-M ¼ phosphoenolpyruvate carboxykinase mitochondrial forms; FBPase ¼ fructose-1,6-
bisphosphatase; G6Pase ¼ glucose-6-phosphatase; EF1a ¼ elongation factor 1-alpha.
a,bDifferent superscript lowercase letters denote significant differences (P < 0.05) among experimental groups fed different dietary carbohydrate levels; X,Ydifferent capital
letters denote significant differences (P < 0.05) between groups with or without high glucose stimuli during early life; A,Bdifferent capital letters denote significant difference
(P < 0.05) among P6h, S21 and R21 within the same group by one-way ANOVA. **means P < 0.01, *means P < 0.05, ns means not significant.

1 FL: fish fed low carbohydrate diet without high glucose stimulation during early programming stage; GL: fish fed low carbohydrate diet with high glucose stimulation
during early programming stage; FH: fish fed high carbohydrate diet without high glucose stimulation during early programming stage; GH: fish fed high carbohydrate diet
with high glucose stimulation during early programming stage.

2 Postprandial 6 and 24 h before starvation were abbreviated as P6h and P24h; Starvation 7, 14 and 21 days were abbreviated as S7, S14 and S21; 1, 7, 14 and 21 days during
refeeding were abbreviated as R1, R7, R14 and R21.

3 The data for P6h and P24h have been published in Gong et al. (2015).
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when fed a fishmeal free diet (Yun et al., 2014; Gong et al., 2015).
The different feeding habits could be a reason to explain the
different patterns of glucose metabolism between Siberian stur-
geon and white sturgeon.

Liver glycogen is the first substrate for maintaining plasma
glucose levels, which demonstrated as the rapidly reduced content
at the initial stage of starvation in most fish (P�erez-Jim�enez et al.,
2007, 2012; Barcellos et al., 2010; Furn�e et al., 2012). However,
some studies showed that fish also try to preserve the liver
glycogen stores when they experience some nutritional challenge
(Sheridan and Mommsen, 1991; Navarro and Guti�errez, 1995; Gillis
and Ballantyne, 1996). In the present study, fish fed high carbohy-
drate diets preserved much higher liver glycogen, which accom-
panied with larger liver size than those of L groups. At the same
time, we found that Siberian sturgeon rapidly mobilize the liver
glycogen to maintain the plasma glucose levels when this substrate
was abundant (mainly derived from dietary carbohydrates), and
can preserve the stores to avoid depleted when they were insuffi-
cient (lack of dietary carbohydrates or starvation prolonged). These
results were different from the findings in gilthead sea bream
(Sparus aurata) and European sea bass (Dicentrarchus labrax), which
showed that the reduced liver glycogen response to starvation in all
groups fed with different protein and carbohydrates contents diets
(Met�on et al., 1999; P�erez-Jim�enez et al., 2007). The different re-
sponses to starvation of liver glycogen induced by nutritional his-
tory before starvation in Siberian sturgeon suggested that this
species, or maybe the lake sturgeon and the Persian sturgeon have
stronger adaptability to glucose metabolism than the teleost
carnivorous fish (Gillis and Ballantyne, 1996; Yarmohammadi et al.,
2012). The lateral muscle of sturgeon mainly consisted of a large
deep layer of fast-white muscle covered by a superficial layer of
slow-red muscle (Radaelli et al., 1999). The significant decrease of
white muscle glycogen during prolonged starvation was observed
for several carnivorous fish species, such as Plaice (Pleuronectes
platessa), Channa punctatus, and Northern pike (Esox lucius L.)
(Johnston and Glodspink, 1973; Ince and Thorpe, 1976; Namrata
et al., 2011). The fast running time and the glycogen content in
white muscles of diabetes mice were significantly lower than that
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of wild type ones. Significantly, increased glycolytic flux was
observed in diabetes mice fast muscle (Meng et al., 2013). In the
present study, glycogen contents in red and white muscle were not
obviously changed during starvation period in all groups, which
suggested muscle carbohydrate storage are not the primary sub-
strates mobilized as an energy source during the starvation in Si-
berian sturgeon. The similar results were observed in omnivorous
carp, Cyprinus carpio L., (Blasco et al., 1992). Jundi�a, Rhamdia quelen
(Barcellos et al., 2010) and even a carnivorous species European sea
bass (Guti�errez et al., 1991; Chatzifotis et al., 2011).

During the refeeding period, fish fed high carbohydrates diet
showed significantly higher levels of plasma glucose and glycogen
than the fish fed low carbohydrates diet, which suggested the di-
etary carbohydrates has important contribution to the recovery of
these indexes in Siberian sturgeon. In contrast, for European sea
bass, the rapidly repletion of hepatic glycogen during refeeding was
completely sustained by de novo gluconeogenesis, and synthesized
from dietary carbohydrates was negligible (Viegas et al., 2012).
These differences may also due to the different feeding habits be-
tween Siberian sturgeon and the carnivorous teleosts (Kaushik
et al., 1989; Gong et al., 2015). Furthermore, the plasma glucose
levels and red muscle glycogen contents exceed over the levels at
pre-starvation when the fish fed with high carbohydrates diet in
the present study. These glycogen overshoots after fasting period
seem to be a tactic for rapid storage of food energy, and to be used
later for the synthesis of body materials (Barcellos et al., 2010).
Besides, early high glucose stimuli changed themetabolism pattern
in fish both fed low or high carbohydrate diets. This confirmed the
long-term effects of an early nutrition programming on the later life
as reported by Gong et al. (2015).

The regulation of hepatic gluconeogenesis is mainly affected by
natural feeding habits for a healthy animal. In the omnivorous carp,
as in nondiabetic mammals, gluconeogenesis is activated during
starvation and switched off when glucose is available from dietary
sources (Panserat et al., 2002a; Pilkis and Granner, 1992; Van
Schaftingen and Gerin, 2002). Some studies have focused on the
gluconeogenesis response to starvation and thereafter-refeeding
based activities and/or mRNA levels of key gluconeogenic en-
zymes, but the results were contradictory. For example, in Euro-
pean sea bass, fasting provoked a significant decrease in G6Pase
activity and mRNA level (Viegas et al., 2013), but increased G6Pase
activity for gilthead sea bream (Caseras et al., 2002; Met�on et al.,
2004; Sangiao-Alvarellos et al., 2005) and unchanged activity for
rainbow trout (Panserat et al., 2001, 2002; Kirchner et al., 2008).
The activities of FBPase were unchanged during starvation and
subsequent refeeding in European sea bass, Adriatic sturgeon and
rainbow trout (P�erez-Jim�enez et al., 2007; Furn�e et al., 2012), or
decreased with refeeding and recovered to the pre-starvation
levels in rainbow trout (Soengas et al., 2006) but significantly
enhanced during early refeeding period and higher than the
continuingly feeding control in gilthead sea bream (Met�on et al.,
1999, 2003). Phosphoenolpyruvate carboxykinase cytosolic forms
has been studied almost to the complete exclusion of PEPCK-M
in mammals (Hanson, 2009; Stark and Kibbey, 2014). For a long
term, PEPCK-M is generally considered irrelevant for glucose pro-
duction in mammals until Stark and Kibbey (2014) found that
PEPCK-M loss impaired gluconeogenesis from lactate, which is
similar to the concept only supported for birds (they have PEPCK-M
and no PEPCK-C activity in liver) (Watford et al., 1981). Panserat
et al. (2001) cloned the PEPCKs cDNA sequence and demonstrate
the PEPCK-M is the main source in rainbow trout. Different from
mammals, PEPCK-M gene of rainbow trout is kept at an even level
expression and not influenced by nutritional status (feeding, star-
vation and dietary carbohydrate level). The function of PEPCK-C
could be ignored by its low expression. This could be the key
reason of long-last postprandial hyperglycemia for carnivorous
fish, at least for rainbow trout. However, in limited reports related
to PEPCKs functions in fish, including common carp, grass carp and
gilthead sea bream, the forms are not distinguished by sources
from cytoplasm (PEPCK-C) or mitochondrion (PEPCK-M) (Panserat
et al., 2002a; Tian et al., 2015). In the present study, PEPCK-M well
responded the energy status of Siberian sturgeon, with signifi-
cantly increased enzyme activities during starvation, then
decreased after refeeding. Phosphoenolpyruvate carboxykinase
cytosolic forms activities were significantly increased at S21.
However, this relatively normal gluconeogeneic enzyme reaction is
not controlled during the refeeding period. The constantly
increased mRNA levels of PEPCK-C during refeeding period of Si-
berian sturgeon indicated the similarly incontrollable gluconeo-
genesis after meal as carnivorous fish, like rainbow trout. Both
dietary carbohydrate levels and early glucose stimuli affected the
specific gluconeogenesis enzyme activities and mRNA levels
(Tables 6 and 7). Compare with the F groups, fish experienced early
glucose stimuli showed less regulating ability in gluconeogenesis
response (lower PEPCKs, FBPase activities during starvation),
which could be an important reason for losing more body weight
for G groups during starvation. In Siberian sturgeon, much higher
activities of PEPCK-C were detected than those of PEPCK-M, we
speculate PEPCK-C could be the main source for Siberian sturgeon
as mammals, but PEPCK-M simultaneously works important role in
regulating gluconeogenesis. The activities of FBPase were kept
stable, and did not give corresponding response at mRNA levels for
starvation or refeeding. Glucose-6-phosphatase is the final step for
gluconeogenesis in animal. Different from other groups, G6Pase
mRNA level in GL group significantly down-regulated at S21 and
kept low expression at R21 even a very low carbohydrate diet was
supplied. The uncontrolled gluconeogenesis response could be the
reason for failing to recover the body weight after refeeding in this
group. Siberian sturgeon could relatively control the plasma
glucose level during starvation or refeeding fed with low or high
carbohydrate diets. Conversely, carnivorous fish failed to inhibit
the hepatic gluconeogenesis fed with high carbohydrates. Hyper-
glycemia or glucose intolerance phenotype in carnivorous species
rainbow trout was associated with higher G6Pase gene expression
and activity in the liver (Panserat et al., 2002b). Besides, the dif-
ferences between the mRNA levels and activities of gluconeogenic
enzymes in response to nutritional status were also found in our
previous study in Siberian sturgeon (Gong et al., 2015) and Euro-
pean sea bass (Viegas et al., 2013). The genes expression could be
subject to negative feedback by enzyme activities (Schunkert et al.,
1993). These results suggested that Siberian sturgeon are able to
effectively mobilize the gluconeogenesis pathway and enhancing
endogenous glucose in response to food deprivation and refeeding
with a particular way combined mammal and fish, but also
different from mammal and most teleostean. The glucose meta-
bolism in the ancient fish species needs to be further studied.

5. Conclusion

Both dietary carbohydrate levels and early glucose stimuli
significantly affected the gluconeogenesis responses to starvation
and refeeding in Siberian sturgeon. During prolonged starvation and
thereafter refeeding, Siberian sturgeon combines the gluconeo-
genesis regulation characters of mammals (glucostasis, well
controlled PEPCK-M activity and stable G6Pase mRNA expression)
and carnivorous teleostean (uncontrolled PEPECK-C, FBPase mRNA
levels and/or enzyme activities). Siberian sturgeon has a full
compensatory ability on growth, but this ability would be
obstructed by early glucose stimuli when refeeding the low carbo-
hydrate diet after S21. The stable glycaemia under all conditions
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could be relied on the well-controlled regulation of glucose meta-
bolism in this species, although the gluconeogenesis of the species is
not perfectly responded to the nutrition status as mammals.
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