
Xiang et al. Stem Cell Res Ther          (2021) 12:563  
https://doi.org/10.1186/s13287-021-02633-x

RESEARCH

Identification of stem cell‑related subtypes 
and risk scoring for gastric cancer based 
on stem genomic profiling
Renshen Xiang1,2†, Wei Song1,2†, Jun Ren1,2, Jing Wu1,2, Jincheng Fu1,2 and Tao Fu1* 

Abstract 

Background:  Although numerous studies demonstrate the role of cancer stem cells in occurrence, recurrence, and 
distant metastases in gastric cancer (GC), little is known about the evolving genetic and epigenetic changes in the 
stem and progenitor cells. The purpose of this study was to identify the stem cell subtypes in GC and examine their 
clinical relevance.

Methods:  Two publicly available datasets were used to identify GC stem cell subtypes, and consensus clustering was 
performed by unsupervised machine learning methods. The cancer stem cell (CSC) typing-related risk scoring (RS) 
model was established through multivariate Cox regression analysis.

Results:  Cross-platform dataset-based two stable GC stem cell subtypes, namely low stem cell enrichment (SCE_L) 
and high stem cell enrichment (SCE_H), were prudently identified. Gene set enrichment analysis revealed that the 
classical oncogenic pathways, immune-related pathways, and regulation of stem cell division were active in SCE_H; 
ferroptosis, NK cell activation, and post-mutation repair pathways were active in SCE_L. GC stem cell subtypes could 
accurately predict clinical outcomes in patients, tumor microenvironment cell-infiltration characteristics, somatic 
mutation landscape, and potential responses to immunotherapy, targeted therapy, and chemotherapy. Additionally, a 
CSC typing-related RS model was established; it was strongly independent and could accurately predict the patient’s 
overall survival.

Conclusions:  This study demonstrated the complex oncogenic mechanisms underlying GC. The findings provide a 
basis and reference for the diagnosis and treatment of GC.

Keywords:  Gastric cancer, Stem cell gene sets, Immune infiltration, Tumor mutation burden, Therapeutic response, 
Risk score
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Introduction
Globally, gastric cancer (GC) is one of the most com-
mon gastrointestinal malignancies with high incidence 
and mortality rates. According to the latest data from the 
International Cancer Research Agency, annually, there 

are approximately 930,000 new cases and 700,000 deaths, 
and GC ranks fourth and second in morbidity and mor-
tality, respectively, among all malignant tumors [1]. To 
date, despite the emergence of new diagnostic and thera-
peutic methods, the postoperative prognoses of some 
patients remain poor, and it is mainly attributed to the 
recurrence and metastases in GC [2]. Thus, it is necessary 
to investigate in detail at the molecular level, to overcome 
these shortcomings.

As early as 1959, Makino et  al. [3] hypothesized that 
tumor cells may originate from cancer stem cells (CSCs). 
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By 1997, Dick et  al. [4] were able to isolate human acute 
myeloid leukemia stem cells, which for the first time proved 
the existence of CSCs. Currently, CSCs have been success-
fully identified in several solid tumors, and a growing body 
of evidence shows that CSCs which arise from epigenetic 
mutations in the stem or progenitor cells account for 0.1% 
of tumor cells [5–7]. CSCs are usually dormant in cancer 
nests as the DNA replication is inactive, and thus, they can 
avoid DNA damage induced by chemotherapy drugs [6, 
7]. Moreover, CSCs have strong repair ability after DNA 
damage and can maintain stable genetic inheritance [6, 7] 
regulated by complicated gene regulatory networks in the 
tumor microenvironment (TME) and tumor cells; these 
include the Hippo signaling [8], Hedgehog signaling [9], 
WNT/β-catenin, [10] and NK-kB signaling pathways [11]. 
CSCs have the ability of infinite proliferation, self-renewal, 
and multi-directional differentiation [7, 12]. Among these, 
multi-directional differentiation leads to tumor heteroge-
neity, which in turn has important impacts on tumor recur-
rence, metastasis, and drug resistance [13, 14]. In addition, 
CSCs can secrete immunosuppressive cytokines, such 
as TGF-β, IL-6, IL-10, and IL-13, which can mediate the 
immune escape of tumor cells [15, 16].

Currently, there are several studies on molecular typ-
ing of GC, including Lei typing [17], The Cancer Genome 
Atlas (TCGA) typing [18], and The Asian Cancer 
Research Group (ACRG) typing [19]. These have eluci-
dated the GC pathogenic mechanisms at the molecular 
level; however, the origin of tumor heterogeneity has not 
been demonstrated. Recent evidence suggests that CSCs 
can act as tumor seeds, and thus may be a potential 
driving force for heterogeneity [20, 21]. Therefore, the 
identification of stem cell subtypes could fundamen-
tally indicate the heterogeneity of tumors. In this study, 
based on the 26 human stem cell gene sets, we classi-
fied GC into low stem cell enrichment (SCE_L) and high 
stem cell enrichment (SCE_H) types. We further verified 
the stability and credibility of this classification method 
using cross-platform datasets and various algorithms. 
More importantly, this study thoroughly discussed the 
biological pathways, TME status, immune cell infiltra-
tion, immune checkpoint gene (ICG) expression, somatic 
mutation landscape, and potential sensitivity to targeted 
therapy and chemotherapy between the two stem cell 
subtypes. Various genetic and epigenetic changes in the 
evolution of stem cells were systematically examined, and 
these findings may provide new insights for the clinical 
diagnoses, treatments, and prognostic judgments for GC.

Materials and methods
Acquisition and processing of publicly available data
In this study, the patient transcriptional profiles and cor-
responding clinicopathological data, including age, sex, 

tumor grade, TNM stage, survival time, and survival sta-
tus, were obtained from the TCGA (http://​cance​rgeno​
me.​nih.​gov/) and Gene Expression Omnibus databases 
(GSE84437, https://​www.​ncbi.​nlm.​nih.​gov/​geo/). A total 
of 32 normal and 808 (375 from TCGA and 433 from 
GSE84437) GC samples were acquired from the two pub-
licly available open data sources. After processing the 
original data using the Perl software, GC samples with 
survival time < 30  days, ambiguous survival status, and 
unclear clinicopathological characteristics were excluded. 
In addition, somatic mutation data of GC patients were 
obtained from the TCGA database and 26 human stem 
cell gene sets were collected from the StemChecker por-
tal (http://​StemC​hecker.​sysbi​olab.​eu/) [22] and previous 
literature [23].

Identification of GC stem cell subtypes based on stem 
genomic profiling
Single-sample gene set enrichment analysis (ssGSEA) 
was performed using the ‘GSVA’ package the enrich-
ment of each GC sample in the 26 stem cell gene sets 
was quantified. The ‘ConsensusClusterPlus’ package was 
used for consensus clustering and identification of GC 
stem cell subtypes. K-means algorithm and cumulative 
distribution function (CDF) curve were used to deter-
mine the best number of subtypes, and 50 iterations with 
maxK = 9 were performed for stable subtypes. The sta-
bility of GC stem cell subtypes was verified by principal 
component analysis (PCA) and t-distributed stochastic 
neighbor embedding (tSNE) algorithms. Kaplan–Meier 
curves were used to evaluate the survival differences 
among GC stem cell subtypes. The ‘ggplot2’ package was 
used to visualize the proportion of existing GC subtypes 
in each stem cell subtype.

Differential expression and functional analyses of GC stem 
cell subtypes
Based on the set criteria of |log2[fold change (FC)]|> 0.5 
and a false discovery rate (FDR) < 0.05, we investigated 
the differentially expressed genes (DEGs) among GC 
stem cell subtypes in TCGA and GSE84437 cohorts. Sub-
sequently, the biological processes (BP) were analyzed 
for the DEGs, and gene set enrichment analysis (GSEA) 
with log2(FC) as the phenotype was performed using the 
‘Clusterprofiler’ package.

TME scores, immune cell fractions, and ICG expression 
for GC stem cell subtypes
TME scores (immune/stromal scores and tumor purity) 
for each sample were calculated using the ‘ESTIMATE’ 
package. The fraction of 22 immune cells in each sample 
was identified by using the CIBERSORT algorithm. In 
addition, 26 ICG representatives were obtained through 
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extensive literature review [24–28], and the levels of 
ICGs in GC stem cell subtypes were investigated by dif-
ferential expression analysis.

Somatic mutation landscape and tumor mutation burden 
(TMB) of GC stem cell subtypes based on the TCGA cohort
The top 30 genes (ranked by somatic mutation fre-
quency) of GC stem cell subtypes were visualized using 
the ‘maftools’ package. Using the annotation file, the 
TMB of each sample was calculated through the Perl 
software. Kaplan–Meier analysis along with log-rank 
test was used to examine the prognostic value of TMB in 
GC, and observe the co-survival results for TMB and GC 
stem cell subtypes.

Prediction of targeted therapeutic and chemotherapeutic 
responses for GC stem cell subtypes
A total of 6 genes for GC targeted therapy were obtained 
through extensive literature review [29–33]. We inves-
tigated their levels in GC stem cell subtypes based on 
differential expression analysis. After log2-scale trans-
formation of RNA-seq expression profiles, we used 
the “pRRophetic” package in R and estimated the half-
maximum inhibitory concentration, IC50, using ridge 
regression, to predict the chemotherapeutic response 
of each sample in the TCGA and GSE84437 datasets 
based on the Genomics of Drug Sensitivity in Can-
cer database (GDSC, https://​www.​cance​rrxge​ne.​org/); 
twelve chemotherapeutic agents were selected, including 
camptothecin, methotrexate, mitomycin C, doxorubicin, 
gemcitabine, paclitaxel, imatinib, bleomycin, docetaxel, 
sunitinib, cisplatin, and vinblastine. Based on the GDSC 
training set, tenfold cross-validation was used to evaluate 
the accuracy of the prediction.

Potential small molecule drugs based on the connectivity 
map database
The overlapping DEGs between the TCGA cohort and the 
GSE84437 dataset were incorporated into the connectivity 
map (CMAP) database to mine for small-molecule drugs 
that could be used in therapy or drug research [34]. Briefly, 
first, the gene names of DEGs were converted to probe ID. 
Second, we registered an account on the CMAP portal. 
Third, using the “Quick Query” option in the CMAP data-
base, we uploaded the files containing the probe IDs and 
finally obtained the potential small molecule drugs.

Development and validation of prognostic risk scoring 
model
After log2-scale transformation of DEG expressions 
for GC stem cell subtypes, univariate analyses were 

performed for GSE84437 and TCGA cohorts, and the 
co-prognostic genes were used for further analysis. Sub-
sequently, the GSE84437 dataset was considered as the 
training set and the TCGA cohort as the validation set 
to construct a risk scoring (RS) model for predicting the 
overall survival (OS) of patients through multivariate 
Cox regression analysis. The mean value of the RS model 
was used to divide the patients into high- and low-risk 
groups. The RS was calculated as the sum of the products 
of gene expression levels and their coefficients as follows:

where ‘i’ and ‘k’ represent the ith gene and the total num-
ber of genes, respectively. Kaplan–Meier analysis and 
receiver operating characteristic (ROC) curves were used 
to evaluate the accuracy and prediction efficiency. PCA 
and tSNE algorithms were used to evaluate the stability 
of the RS model. Univariate analysis was used for calcu-
lating the hazard ratios (HR) of the factors, and further, 
multivariate analysis was used to determine the inde-
pendent prognostic factors. The results were visualized 
using the ‘forestplot’ package.

Difference analysis was used to compare the RS 
between SCE_H and SCE_L groups. The ‘h.all.
v7.4.symbols’, containing multiple well-defined biological 
signatures, were downloaded from the MSigDB database 
(https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp). 
The enrichment of each well-defined biological signature 
was quantified using the ssGSEA algorithm. Differential 
analysis was performed to determine the activity of each 
well-defined biological signature between SCE_H and 
SCE_L types. The connection between RS and TME cell 
infiltration was analyzed using Spearman’s correlation 
analysis.

Detection of the relative expression levels of genes 
in the RS model
A total of 14 pairs of GC samples (Additional file  1: 
Table  S1) were collected and the relative expression 
of genes in the RS model was detected. The study was 
approved by the Ethics Committee of Renmin Hospital of 
Wuhan University (No. NCT03972956V1.1), and we have 
obtained informed consents from the patients for using 
GC samples (No. SAMPGICU2019-2). Total RNA was 
extracted using Tissue Total RNA Isolation Kit (Fore-
gene, Wuhan, China) as per the manufacturer’s protocol 
and RNA (2 μg) was reverse transcribed to cDNA using 
the PrimeScriptTM RT reagent Kit (TaKaRa, Osaka, 
Japan).  Quantitative PCR (qPCR) was performed using 
the SYBR Green qPCR Supermixes (Bio-Rad) on the CFX 
192 Connect Real-Time PCR system (Bio-Rad, USA). The 

RS =

k∑

i

(Expi × Coei)

https://www.cancerrxgene.org/
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qPCR analysis was performed in triplicates with the 
designed primers (Table  1). The relative expression was 
normalized to GAPDH using the 2-ΔΔCT method.

Statistical analysis
For the quantitative data, the normally distributed vari-
ables were analyzed using a Student’s t-test, whereas the 
non-normally distributed variables were estimated using 
the Wilcoxon rank–sum test. For comparisons of more 
than two groups, the one-way analysis of variance and 
Kruskal–Wallis tests were used as the parametric and 
nonparametric methods, respectively. Kaplan–Meier sta-
tistics and log-rank tests were used for survival analysis. 
All statistical analyses were performed in R and Perl, and 
P < 0.05 was considered statistically significant.

Results
Identification and validation of GC stem cell subtypes 
based on stem cell gene sets
We quantified the scores of 26 human stem cell gene sets 
for each GC sample using ssGSEA. Using, consensus 
clustering analysis, two stable stem cell subtypes accord-
ing to the K-means algorithm and CDF curves were iden-
tified (Fig. 1a–c). Based on the enrichment of the 26 stem 
cell gene sets in the two subtypes (Fig. 1d, g), SCE_L and 
SCE_H groups were defined. The PCA and tSNE algo-
rithm demonstrated the strong stability of the two stem 
cell subtypes (Fig.  1e, f ). The T stage (P < 0.01), N stage 
(P < 0.01), and TNM stage (P < 0.01) were significantly dif-
ferent between the two stem cell subtypes (Fig. 1g), and 
the pathological results for SCE_H were worse. Kaplan–
Meier analysis showed that the OS of SCE_L was signifi-
cantly better than SCE_H (Fig. 1h, P = 0.025). The results 

were also verified in the GSE84437 dataset (Additional 
file 2: Fig. S1).

Furthermore, the relationship between GC stem cell 
subtypes and Lauren typing (diffuse, intestinal, and 
mixed), TCGA typing (CIN, EBV, GS, and MSI), micros-
atellite instability (MSI) status (MSI-H, MSI-L, and MSS), 
and Epstein-Barr virus (EBV) infection was investigated. 
We found that SCE_H was characterized by diffuse his-
tological type, GS subtype, MSS, and negative for EBV 
infection; while SCE_L was characterized by intestinal 
histological type, MSI, and EBV subtypes, MSI-H, and 
positive for EBV infection (Fig. 1i–l).

BP analysis and GSEA based on the TCGA and GSE84437 
cohorts
To examine the functional differences between the 
GC stem cell subtypes, differential expression analysis 
(SCE_H/SCE_L) was performed and numerous DEGs 
for gene ontology annotation were accessed. Interest-
ingly, both in the TCGA (Fig. 2a) and GSE84437 datasets 
(Fig.  2b), BPs for DEGs were associated with TME (e.g. 
extracellular matrix organization, extracellular structure 
organization, and positive regulation of cell-substrate 
adhesion), signal transduction (e.g. modulation of chemi-
cal synaptic transmission, regulation of postsynaptic 
membrane potential and regulation of cation channel 
activity), tumorigenic pathways (e.g. negative regulation 
of Wnt signaling pathway), and immune-related path-
ways (e.g. regulation of neutrophil chemotaxis and reg-
ulation of granulocyte chemotaxis). Moreover, GSEA 
showed that the classical oncogenic pathways (e.g. ECM-
receptor interaction, Hedgehog signaling pathway, and 
Hippo signaling pathway), immune-related pathways 
(e.g. neutrophil-mediated cytotoxicity and dendritic cell 
antigen processing and presentation), and regulation of 
stem cell division were active in SCE_H (Fig.  2c); while 
ferroptosis (e.g. protein maturation by iron-sulfur clus-
ter transfer and iron-sulfur cluster assembly), NK cell 
activation (e.g. natural killer cell activation involved in 
immune response), and post-mutation repair pathways 
(e.g. mismatch repair, DNA replication, and base excision 
repair) were active in SCE_L (Fig.  2c). These results lay 
the molecular foundation for the differential prognoses of 
GC stem cell subtypes.

Comparison of TME scores, immune cell fraction, and ICG 
expression between GC stem cell subtypes
According to the results of BP analysis and GSEA, 
the TME scores and immune cell fraction of GC stem 
cell subtypes were investigated. Unanimously, it was 
found that immune/stromal scores of SCE_H were 
significantly higher than those of SCE_L (TCGA 

Table 1  List of primers

Gene Primer sequence (5′–3′)

SLIT2 Forward: GCA​CCA​TTG​AAA​GAG​GAG​CA

Reverse: GCT​TTC​CTT​GGG​ATT​GCC​TG

SFRP2 Forward: ACC​GAG​GAA​GCT​CCA​AAG​GTA​

Reverse: GAG​CCA​CAG​CAC​CGA​TTT​CT

SCRG1 Forward: CAT​TTC​TGG​GAT​GGG​AAG​GGA​

Reverse: GTG​GGA​AAT​CAG​GAA​TGG​TGTT​

MFAP5 Forward: CAG​CGT​AAG​AGG​AGA​GAG​ACAC​

Reverse: CAG​CAA​GAA​ACA​GCA​GCA​CCT​

EFEMP1 Forward: TGA​AAT​GCA​GAC​TGG​CCG​AA

Reverse: TCT​ACA​GTT​GTG​CGT​CCC​TG

COL8A1 Forward: AAG​GAG​ATG​CCC​CAC​TTG​C

Reverse: GGA​CCT​TGT​TCC​CCT​CGT​AA

ABCA8 Forward: AAG​AAC​GCA​AAA​CAG​ACC​GC

Reverse: TTT​GGC​ATC​AGG​GAT​GTG​CT
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Fig. 1  Identification of GC stem cell subtypes based on the TCGA database. a–c Two stable stem cell subtypes were identified using consensus 
clustering analysis according to the K-means algorithm and CDF curve. d GC subtypes were classified as SCE_L and SCE_H based on 26 stem cell 
gene sets. Clustering of patients belonging to SCE_L and SCE_H in the TCGA cohort based on e PCA and f tSNE algorithm. g The expression of 26 
stem cell gene sets and the proportion of clinicopathological features in SCE_L and SCE_H. h Kaplan–Meier analysis of GC stem cell subtypes. i–l 
The proportion of i Lauren subtypes, j TCGA subtypes, k MSI subtypes, and l EBV infection subtypes in GC stem cell subtypes. Statistical significance: 
*P < 0.05; **P < 0.01; ***P < 0.001
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cohort: Fig.  2d, e; GSE84437 dataset: Fig.  2g, h, all 
P < 0.001), while tumor purity was lower in SCE_L 
(TCGA cohort: Fig.  2f; GSE84437 dataset: Fig.  2i, all 
P < 0.001). According to the CIBERSORT algorithm 
(TCGA cohort: Fig. 3a; GSE84437 dataset: Fig. 3b), the 
infiltration density of M2 macrophages (P < 0.05), reg-
ulatory T cells (P < 0.05), resting mast cells (P < 0.05), 

and memory resting CD4+ T cells (P < 0.05), which 
predicted worse OS [35], increased significantly in 
SCE_H; while the infiltration density of memory-acti-
vated CD4+ T cells (P < 0.05), follicular helper T cells 
(P < 0.05), M0 macrophages (P < 0.05), and M1 mac-
rophages (P < 0.05), which were correlated with better 
OS [35], decreased significantly in SCE_H. To explain 

Fig. 2  Functional analysis of DEGs (SCE_H/SCE_L) and tumor microenvironment scores for GC stem cell subtypes. BPs based on the GO annotation 
in the a TCGA and b GSE84437 cohorts. c GSEA based on the common DEGs between the TCGA and GSE84437 cohorts. Comparison of the immune 
score, stromal score, and tumor purity between SCE_L and SCE_H in the d–f TCGA and g–i GSE84437 cohorts. Statistical significance: *P < 0.05; 
**P < 0.01; ***P < 0.001
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this difference in the infiltration fraction of immune 
cells between SCE_H and SCE_L, we found that most 
ICGs were significantly overexpressed in SCE_H 
(TCGA cohort: Fig.  3c, GSE84437 dataset: Fig.  3d), 
including CD28 (P < 0.001), CD40LG (P < 0.01), CD86 
(P < 0.05), HAVCR2 (P < 0.05), TNFSF4 (P < 0.05), 
PDCD1 (PD-1), CD8A, JAK1, LDHB, PDCD1LG2, 
TNFRSF4, TNFRSF18, and TNFSF18; while only a 

few ICGs were up-regulated in SCE_L (TCGA cohort: 
Fig.  3c, GSE84437 dataset: Fig.  3d), including PVR 
(P < 0.01), LDHA (P < 0.001), YTHDF1 (P < 0.001), 
CD274 (PD-L1), and CTLA4. The abnormal expression 
of ICGs could partly explain the differential infiltration 
of immune cells, and thus, could guide immunothera-
peutic strategies based on GC stem cell subtypes.

Fig. 3  Immune cell infiltration and ICG expression between SCE_L and SCE_H. Comparison of infiltration densities of 22 immune cell types 
between the a TCGA and b GSE84437 cohorts. The expression levels of 26 ICGs in SCE_L and SCE_H in the c TCGA and d GSE84437 cohorts. 
Statistical significance: *P < 0.05; **P < 0.01; ***P < 0.001
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Somatic mutation landscape and TMB of GC stem cell 
subtypes
Based on the TCGA cohort, it was found that the mutation 
frequency of the top 30 genes in SCE_L (Fig. 4a) was much 
higher than that in SCE_H (Fig. 4b). Moreover, the TMB 
value of SCE_L was also significantly higher than that of 
SCE_H (Fig. 4c); higher TMB predicted better OS (Fig. 4d). 
Further, the joint survival analysis of GC stem cell subtypes 

and TMB showed that the OS of SCE_L+TMB_H was the 
best, followed by SCE_L+TMB_L and SCE_H  MB_H, and 
that of SCE_H+TMB_L was the worst (Fig. 4e).

Evaluation of targeted therapeutic and chemotherapeutic 
responses for GC stem cell subtypes
According to differential expression analysis, it was found 
that five target genes (HER2, EGFR, VEGF, c-MET, and 

Fig. 4  Somatic mutation landscape, TMB, and targeted therapeutic response prediction for GC stem cell subtypes. Somatic mutation landscape of 
a SCE_L and b SCE_H. c Comparison of TMB between SCE_L and SCE_H. d Kaplan–Meier analysis of TMB. e Joint survival analysis of GC stem cell 
subtypes and TMB. The expression levels of six target genes in the f TCGA and g GSE84437 cohorts
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mTOR) were highly expressed in SCE_L; while only 
IGF1R was significantly up-regulated in SCE_H (TCGA 
cohort: Fig. 4f; GSE84437 dataset: Fig. 4g). This indicated 
that patients with the SCE_L subtype may benefit more 
from targeted therapy.

The half-maximum inhibitory concentration, the 
IC50 of 12 chemotherapeutic agents were estimated in 
the samples from the TCGA and GSE84437 datasets. 
The sensitivity of SCE_L to camptothecin (Fig. 5a, g; all 
P < 0.05), methotrexate (Fig.  5b, h; all P < 0.001), mito-
mycin C (Fig.  5c, i; all P < 0.001), doxorubicin (Fig.  5d, 
j; GSE84437 dataset: P < 0.001), gemcitabine (Fig.  5e, 
k; GSE84437 dataset: P < 0.001), and paclitaxel (Fig.  5f, 
l; GSE84437 dataset: P < 0.001) was higher than that 
SCE_H; the sensitivity of SCE_H to imatinib (Fig.  5m, 
s; all P < 0.001), bleomycin (Fig.  5n, t; TCGA cohort: 
P = 0.01), docetaxel (Fig. 5o, u; TCGA cohort: P = 0.014), 
sunitinib (Fig.  5p, v; TCGA cohort: P < 0.001), and vin-
blastine (Fig.  5q, w; TCGA cohort: P = 0.017) was sig-
nificantly better as compared to SCE_L, and there was 
no significant difference in the sensitivity of the two stem 
cell subtypes to cisplatin (Fig.  5r, x). These results pro-
vide crucial reference for the chemotherapeutic strategies 
based on GC stem cell subtypes.

Potential small molecule drugs based on DEGs in GC stem 
cell subtypes
Based on the common DEGs (SCE_H/SCE_L) in the 
TCGA and GSE84437 datasets, we examined 12 small 
molecule drugs in the CMAP database. These included 
depudecin, AH-6809, H-89, pivmecillinam, convola-
mine, azapropazone, benzbromarone, triamcinolone, 
W-13, cloxacillin, iopromide, and carteolol (Table  2). 
These drugs could negatively regulate the expression lev-
els of DEGs; thus, alteration of expression levels of the 
up-regulated/down-regulated genes in SCE_H may help 
improve the prognoses of SCE_H patients, and the find-
ings may provide a reference for future drug research.

Generation, evaluation, and validation of prognostic risk 
scoring model
A total of 21 co-prognostic genes were obtained after the 
intersection of the prognostic DEGs between the training 
(Fig.  6a) and the validation sets (Fig.  6b). Subsequently, 
these were used for the multivariate Cox regression anal-
ysis, and a seven-gene-based RS model was generated to 
predict patient OS. The RS of each sample was calculated 
based on the expression of the seven genes and their rela-
tive coefficients as follows: RS = (− 0.295886 × expres-
sion of SLIT2) + (0.0046356 × expression of 
SFRP2) + (0.1338614 × expression of SCRG1) + (− 0.043459 × expres-
sion of MFAP5) + (− 0.014278 × expres-
sion of EFEMP1) + (0.0872369 × expression of 

COL8A1) + (0.1638184 × expression of ABCA8). 
Kaplan–Meier analysis demonstrated that both in train-
ing (Fig. 6c, P = 3.357e − 09) and validation sets (Fig. 6d, 
P = 6.435e − 04), the OS of the low-risk group was better 
than that of the high-risk group. Additionally, the expres-
sion of the seven genes in the high-risk group was higher 
than that in the low-risk group (Fig. 6g); patients in the 
high-risk group had worse clinical results and pathologi-
cal stages (Fig.  6g). Similar results were obtained in the 
validation set (Fig. 6h). The areas under the ROC curves 
for predicting 3-, 4- and 5-year OS were 0.688, 0.696, 
and 0.686, respectively, in the training set (Fig.  6e), and 
0.638, 0.643, and 0.680, respectively, in the validation 
set (Fig. 6f ). Patients in high- and low-risk groups could 
also be distinguished based on PCA (training set: Fig. 6i; 
validation set: Fig. 6k) and tSNE algorithm (training set: 
Fig. 6j; validation set: Fig. 6l). These results indicated that 
the RS model had high accuracy of prediction. In addi-
tion, the qPCR analysis estimated the expression levels of 
the seven genes in samples; among them, expression of 
ABCA8 (P < 0.001), MFAP5 (P < 0.05), SCRG1 (P < 0.05), 
and SLIT2 (P < 0.05) were significantly lower in the GC 
samples (Fig. 7a).

Univariate and multivariate analyses were performed 
to eliminate the interfering factors. In the training set, 
univariate analysis showed that age (P = 0.003), T stage 
(P < 0.001), N stage (P < 0.001), and RS (P < 0.001) were 
the prognostic factors; the hazard ratio (HR) of RS 
was the highest (Fig.  7b). Further, multivariate analy-
sis showed that RS had a strong independent prediction 
ability (Fig.  7c: P < 0.001, HR = 2.099). Similar results 
were obtained in the validation set (Fig. 7d, e).

Biological significance of RS
Differential analysis showed that both in training 
(Fig.  8a, P < 2.22e − 16) and validation sets (Fig.  8b, 
P < 2.22e − 16), the RS of SCE_H was significantly 
higher than that of SCE_L. This suggested that the poor 
prognoses in the high-risk group were closely related 
to CSCs. Moreover, as compared with the low-risk 
group, the high-risk group showed stromal activation 
(e.g., hypoxia, EMT, and angiogenesis), classical onco-
genic pathway activation (e.g., Wnt/β-catenin pathway, 
TGF-β signaling pathway, Notch signaling pathway, and 
p53 pathways), and post-mutation repair arrest (e.g., 
DNA repair and G2M checkpoint recovery) (Fig.  8c, 
d). Correlation analysis further indicated that RS was 
negatively correlated with the infiltration fractions 
of plasma cells (P < 0.05), activated memory CD4+ T 
cells (P < 0.05) and M0 macrophages (P < 0.05), while 
positively associated with the infiltration fractions of 
monocytes (P < 0.05), M2 macrophages (P < 0.05), and 
resting mast cells (P < 0.05) (Fig. 8e, f ).
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Discussion
GC is a primary malignant tumor with strong heteroge-
neity, and can seriously endanger human health [36]. The 
importance of GC heterogeneity for patient therapeu-
tic response and the prognostic assessment for tumor 
site [37], tissue type [38], pathological type, early or 
advanced stage [39], stage of treatment [40], and primary 

or metastatic focus [41] have been recognized. With the 
rapid development of molecular biology and molecu-
lar diagnostic technology, the intratumoral heterogene-
ity of GC has been evaluated at the molecular level. For 
example, molecular phenotypic identification (e.g., HER2 
and VEGF) optimizes diagnoses and treatment strategies 
and promotes the development of precision medicine 

Fig. 5  Prediction of chemotherapeutic response for GC stem cell subtypes. Sensitivity of a camptothecin, b methotrexate, c mitomycin C, d 
doxorubicin, e gemcitabine, f paclitaxel, m imatinib, n bleomycin, o docetaxel, p sunitinib, q vinblastine, and r cisplatin in SCE_L and SCE_H in 
the TCGA cohort. Sensitivity of g camptothecin, h methotrexate, i mitomycin C, j doxorubicin, k gemcitabine, l paclitaxel, s imatinib, t blemycin, u 
docetaxel, v sunitinib, w vinblastine, and x cisplatin in SCE_L and SCE_H in the GSE84437 dataset
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or targeted therapy [29–33]; molecular typing (e.g., Lei 
typing, TCGA typing, and ACRG typing) contributes 
to stratified diagnosis and treatment [17–19]. Since the 
establishment of GC molecular typing is in its infancy, 
and different molecular typing methods do not have a 
simple correlation between each other, this study further 
evaluated the GC heterogeneity from the perspective of 
the genome of human stem cells. The identification of GC 
stem cell subtypes could accurately predict the patient’s 
clinical outcomes, TME status, immune cell infiltration, 
ICG expression, somatic mutation landscape, poten-
tial targeted therapy, and chemotherapeutic response. A 
CSC typing-related RS model was prudently generated 
and validated by cross-platform datasets and different 
algorithms.

CSCs refer to a small number of tumor cells with self-
renewal and strong reproductive ability. They can dif-
ferentiate into a large number of new tumor cells, and 
have a vital relationship with the occurrence, develop-
ment, metastasis, and prognosis of tumors [42]. To date, 
numerous studies have revealed the effect of CSCs in 
occurrence, recurrence, distant metastasis, and drug 
resistance of GC [13, 14]. The prognosis of SCE_H, 
including survival and clinicopathological outcomes, 
was worse in this study, and the findings were consistent 
with previous reports. Investigations of the underlying 
mechanisms showed that the classical oncogenic path-
ways, immune escape, and regulation of stem cell divi-
sion were highly activated in SCE_H; while ferroptosis, 
immune response, and post-mutation repair pathways 
were closely associated with SCE_L. Further analy-
sis showed that SCE_H had higher immune infiltration 
and stromal components, with lower tumor purity; the 
difference observed in immune infiltration was in con-
tradiction with the previous view that higher immune 

infiltration was strongly correlated with better progno-
sis. To further explain this phenomenon, CIBERSORT 
analysis showed that multiple cytotoxic lymphocytes 
were significantly reduced in SCE_H, while the fraction 
of M2 macrophages and regulatory T cells involved in the 
immune escape was higher. Previous studies have found 
that M2 macrophages with immunosuppressive proper-
ties can promote tumor immune escape by upregulation 
of non-classical MHC class I molecules (e.g., HLA-E and 
HLA-G), inhibitory ligands for T cells, apoptosis recep-
tors (e.g., PD-L1, TRAIL, and B7-H4), and SIRP-alpha 
[43, 44]. Moreover, M2 macrophages can accelerate the 
malignant progression of tumors by promoting angio-
genesis and tumor cell migration [43, 44]. Regulatory T 
cells are a unique subset of CD4+ T cells with immu-
nosuppressive properties; these are essential for main-
taining immune homeostasis, self-tolerance, limiting 
excessive inflammation, and preventing autoimmunity 
[45, 46]. In cancers, regulatory T cells can inhibit anti-
tumor immune response, and thus, are considered to 
be the major obstacle of tumor immunotherapy; these 
are recruited into TME through chemokines secreted 
by tumor cells and M2 macrophages [45, 46]. There-
fore, the identification of stem cell subtypes could accu-
rately reveal the TME cell-infiltrating characteristics of 
patients with prognostic differences. Moreover, the find-
ings also showed that a large number of ICGs were highly 
expressed in SCE_H. Abundant reports have shown 
that the up-regulation of ICGs on the surface of tumor 
cells is a key factor of tumor immune escape [28, 47, 48]. 
ICGs can suppress the proliferation and differentiation 
of T lymphocytes, promote the differentiation of Tregs, 
and induce the secretion of cytokines, thereby suppress-
ing the immune response [49]. The elevated expression 
of ICGs indicated that patients with the SCE_H subtype 
may respond better to immunotherapy.

Cancer is a disease of abnormal cell proliferation 
caused by somatic gene mutations, which mainly occur 
in the process of repair of DNA damage, DNA replica-
tion, cell division, and nucleic acid metabolism [50, 51]. 
Under the influence of external physical or chemical 
mutagenesis factors, the number of somatic gene muta-
tions increases further [50, 51]. Therefore, the range, 
type, and frequency of gene mutations, collectively 
known as TMB, can be quite different due to the differ-
ences in tumor types, living environments, and genetic 
characteristics [52]. TMB can cause changes in protein 
sequences; these abnormally expressed proteins can 
act as new antigens which can bind to type I or type II 
major histocompatibility complex and be recognized by 
the immune system when presented on the cell surface, 
thereby activating T lymphocytes to produce immune 
response [50, 51]. Therefore, the immunogenicity of 

Table 2  Potential small molecule drugs for SCE_H patients 
based on CMAP database

Drugs (inhibitors) Correlation coefficient P value

Depudecin  − 0.774 0.00217

AH-6809  − 0.705 0.01563

H-89  − 0.685 0.0025

Pivmecillinam  − 0.564 0.02037

Convolamine  − 0.534 0.00064

Azapropazone  − 0.49 0.00437

Benzbromarone  − 0.455 0.01078

Triamcinolone  − 0.455 0.02243

W-13  − 0.451 0.03879

Cloxacillin  − 0.383 0.00901

Iopromide  − 0.382 0.04279

Carteolol  − 0.316 0.04062
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tumors is closely related to TMB; higher TMB tends to 
induce local immune recognition and improves patient 
survival and clinicopathological outcomes. Our study 
showed that patients with SCE_L subtype had a higher 
frequency of genetic mutations and TMB, which implied 
that SCE_L probably had more expression of neoantigens 
recruiting lymphocyte infiltration. Therefore, the identifi-
cation of stem cell subtypes could reasonably explain the 

characteristics of TME cell-infiltration from the perspec-
tive of somatic mutations.

The biological characteristics of CSCs (e.g., cell cycle 
arrest, DNA damage tolerance and repair, drug efflux, 
and epithelial-mesenchymal transition) [6, 7] and TME 
(e.g., hypoxia, tumor-associated fibroblasts, and chronic 
inflammation) [53–56] jointly sustain cancer stemness. 
This hinders the chemotherapeutic stimulation on 

Fig. 6  Construction and evaluation of a prognostic risk scoring model. Univariate analysis of the a training and b validation sets. Kaplan–Meier 
analysis of the c training and d validation sets. ROC curves of the e training and f validation sets for predicting 3-, 4-, and 5-year OS. The expression 
of seven genes and the proportion of clinicopathological features in the high- and low-risk groups were visualized in both g training and h 
validation sets. Clustering of patients belonging to high- and low-risk groups in the i, j training and k, l validation sets based on PCA and tSNE 
algorithm
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Fig. 7  qPCR analysis for seven genes and independent test of risk scoring model. a The qPCR analysis of expression levels of seven genes in 
GC samples (n = 14) and paired para-cancerous samples (n = 14). b Univariate and c multivariate analysis of the training set. d Univariate and e 
multivariate analysis of the validation set. Statistical significance: *P < 0.05; **P < 0.01; ***P < 0.001

(See figure on next page.)
Fig. 8  The biological significance of RS. a, b Differences in RS between the two stem cell subtypes in a the training and b validation sets (all 
P < 2.22e − 16). c, d Two stem cell subtypes were distinguished by well-defined biological signatures curated from MSigDB database in c the 
training and d validation sets. Statistical significance: *P < 0.05; **P < 0.01; ***P < 0.001. e, f The correlation between RS and TME infiltration cells using 
Spearman’s analysis in e the training and f validation sets. Negative correlation: blue; positive correlation: red. P < 0.05



Page 14 of 17Xiang et al. Stem Cell Res Ther          (2021) 12:563 

Fig. 8  (See legend on previous page.)
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CSCs and increases the difficulty of tumor therapy. 
For instance, Haraguchi et  al. [57] show that GD15 can 
increase the cell proportion of hepatic CSCs in G0/G1 
phase by AKT/GSK-3β/β-catenin signaling pathway, 
enhance the ability of hepatic CSCs to form a ball, and 
increase its resistance to chemotherapy. Sun et  al. [54] 
show that activation of the PI3K/ATK signaling pathway 
upregulates HIF-1α in a hypoxic environment, and fur-
ther, enhances the chemotherapeutic resistance of CSCs. 
Currently, GC is mainly treated by surgery and chemo-
therapy. Hence, understanding the chemosensitivity of 
GC stem cell subtypes is of great clinical relevance. Our 
study showed that SCE_L was more sensitive to camp-
tothecin, methotrexate, mitomycin C, doxorubicin, gem-
citabine, and paclitaxel; while SCE_H was more sensitive 
to imatinib, bleomycin, docetaxel, sunitinib, and vinblas-
tine. Therefore, the identification of stem cell subtypes 
provides a crucial reference for patients undergoing 
chemotherapy. In addition, small molecule drug screen-
ing provided new insights for exploring the mechanisms 
of drug resistance of CSCs. This may help in developing 
new chemical drugs and thus improve the curative effect 
of GC.

Recent studies have focused on the establishment of 
prognostic RS models based on protein-coding genes 
[35], non-coding genes (e.g., lncRNA, miRA, and cir-
cRNA) [58], and CpG island methylation sites [59] to 
evaluate survival outcomes in GC patients. As the gen-
eration of the model is in the preliminary research stage, 
there is still a lack of a widely accepted model for clinical 
applicability. Given that the gene-based RS model may 
be useful for predicting patient OS, an RS model based 
on prognostic DEGs between GC stem cell subtypes was 
constructed; it had high accuracy and prediction effi-
ciency. Further analysis showed that RS was highly corre-
lated with the two stem cell subtypes and the differences 
between high- and low-risk groups were similar to those 
in SCE_H and SCE_L for biological pathways and TME 
cell-infiltrating characteristics. Therefore, the RS model 
is a genetic model associated with CSC typing, which 
may fundamentally elucidate tumor heterogeneity. It 
deserves further clinical prospective studies.

However, the study has certain limitations. First, 
although bioinformatic analysis-based GC stem cell sub-
types have been validated by multiple datasets and algo-
rithms, robust experimental studies are necessary to gain 
more insight into the underlying mechanisms of the GC 
stem cell subtypes. Therefore, we are collecting clinical 
samples to verify these results; however, this will be time-
consuming. Second, an independent external dataset and 
various methods were utilized to confirm the RS mod-
eling algorithm, which was optimal for the current study, 
however, the RS model was constructed and validated 

based on retrospective data from publicly available open 
databases. Thus, large-scale prospective clinical research 
is required to evaluate its effectiveness and practicability.

Conclusion
The identification of GC stem cell subtypes could accu-
rately predict patient clinical outcomes, TME cell-infil-
trating characteristics, somatic mutation landscape, and 
potential responses to immunotherapy, targeted therapy, 
and chemotherapy. The CSC typing-related RS model 
provided an intuitive and accurate method for predicting 
patient OS. These results revealed the complex oncogenic 
mechanisms underlying GC and proposed a promising 
direction for the diagnoses and treatment strategies for 
GC.
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