
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2021) 78:5107–5122 
https://doi.org/10.1007/s00018-021-03831-9

REVIEW

Cardiac regenerative capacity: an evolutionary afterthought?

Phong D. Nguyen1 · Dennis E. M. de Bakker1 · Jeroen Bakkers1,2 

Received: 11 January 2021 / Revised: 23 March 2021 / Accepted: 29 March 2021 / Published online: 5 May 2021 
© The Author(s) 2021

Abstract
Cardiac regeneration is the outcome of the highly regulated interplay of multiple processes, including the inflammatory 
response, cardiomyocyte dedifferentiation and proliferation, neovascularization and extracellular matrix turnover. Species-
specific traits affect these injury-induced processes, resulting in a wide variety of cardiac regenerative potential between 
species. Indeed, while mammals are generally considered poor regenerators, certain amphibian and fish species like the 
zebrafish display robust regenerative capacity post heart injury. The species-specific traits underlying these differential 
injury responses are poorly understood. In this review, we will compare the injury induced processes of the mammalian and 
zebrafish heart, describing where these processes overlap and diverge. Additionally, by examining multiple species across 
the animal kingdom, we will highlight particular traits that either positively or negatively affect heart regeneration. Last, we 
will discuss the possibility of overcoming regeneration-limiting traits to induce heart regeneration in mammals.

Keywords Regeneration · Repair · Evolution · Scar · Extracellular matrix · Inflammatory response · Cardiomyocyte · 
Proliferation

Introduction

Regeneration is an injury induced process that can be con-
sidered as a combination of multiple synergistic processes 
that act not only to limit the injury, but also generate new 
cells to replace the loss of tissue. This regenerative response 
varies widely within the animal kingdom and can be viewed 
at multiple biological levels ranging from regeneration of a 
whole body part, a specific structure or organ, a tissue and 
to an individual cell [1]. When viewing organ regeneration, 
in particular the heart, there is considerable variation [2]. 
Mammalian hearts for example typically lack a regenerative 
response upon injury, and instead form a permanent scar. 
Other species, including the fish species Medaka (Ory-
zias latipes) [3, 4] and cave-dwelling Astyanax mexicanus 
[5], show a similar limitation when it comes to cardiac 

regenerative capacity. In contrast, a wide range of species 
have been shown to contain robust cardiac regenerative 
capacity, including the giant danio (Devario aequipinnatus) 
[6], goldfish (Carassius auratus) [7], newts (Notophthalmus 
viridescens) [8, 9], Mexican Axolotl (Ambystoma mexica-
num) [10–12] and surface-dwelling Astyanax mexicanus [5]. 
However, the most commonly used animal to study cardiac 
regeneration is the zebrafish (Danio rerio), which was first 
reported in 2002 to contain a robust regenerative capacity 
from amputation of ventricular tissue [13]. Following this 
seminal study, there have been a plethora of studies examin-
ing the cellular and molecular mechanisms contributing to 
the regenerative response.

Interestingly, cardiac regenerative capacity does not only 
differ among species, or even sub-populations as is the case 
with Astyanax mexicanus, but also between genetically 
identical organisms at different life stages. Indeed, several 
mammalian species have been reported to have a short time-
window after birth where they retain regenerative capacity 
of the heart. For example, neonatal mice can regenerate their 
heart from injury either via amputation [14] or myocardial 
infarction (MI) [15] during the first 7 days post birth, with 
some indication that the regenerative window is restricted 
to the first 2 days post birth [16]. The neonatal pig also dis-
plays this phenomenon whereby its regenerative window lies 
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within their first 2 days post birth [17, 18]. Additionally, 
there have been clinical reports of human newborns recover-
ing from a MI to various degrees [19, 20].

In this review, we will describe the heterogenous distri-
bution of cardiac regenerative capacity between species. In 
doing so, we hope to shed light on the processes and traits 
which cumulatively allow for successful heart regeneration. 
To achieve this goal, we will first describe processes occur-
ring in mammalian heart repair and zebrafish heart regenera-
tion, indicating where the two process overlap or diverge. 
Next, we will broaden our scope to include additional spe-
cies, identifying traits that either positively or negatively 
affect heart regeneration. Lastly, we will discuss whether 
these differential processes and traits can be overcome to 
allow for heart regeneration in mammals.

Repair vs regeneration: differences between poor 
and robust regenerators

The repair response following heart injury is shared between 
zebrafish and mammals. This includes processes involving 
regulation of cellular stress, the immune system and extra-
cellular matrix deposition that limit the deleterious nature 
of the injury and secures immediate survival. There are 
some differences in this repair response when comparing 
between zebrafish and mammals. Meanwhile these differ-
ences become more apparent as time progresses, whereby 
non-regenerating hearts continue to form a mature and per-
manent scar while regenerating hearts enter a new phase to 
replace the lost tissue. Here, we will highlight the shared and 
differential processes between heart repair and regeneration.

Extracellular matrix (ECM) deposition

While the adult mammalian heart does not regenerate, it 
is quite efficient at repair. Indeed, patient fatality from the 
direct effects of a MI (e.g., heart rupture) is rare. Instead, 
patients often succumb to mortality from the long-term 
effects such as cardiomyocyte (CM) hypertrophy, cham-
ber dilation and ultimately heart failure. One factor that 
contributes to the prevention of heart rupture and direct 
lethality post MI is the highly coordinated deposition of 
a dynamic extracellular matrix (ECM) network [21]. This 
reparative process can be divided into three distinct phases: 
The Inflammation, Proliferative and Maturation phase [21]. 
During the inflammation phase, necrotic tissue as well as 
the native ECM is broken down through the activity of 
matrix metalloproteases (MMPs) [22, 23]. Simultaneously, 
increased permeability of vessels bordering the injured area 
allows for the influx of fibrinogen, forming a provisional 
fibrin-based matrix network [24, 25]. Through the prolifera-
tion phase, which is marked by the proliferation of (myo)
fibroblasts, the fibrin-based network is gradually replaced 

with fibronectin and collagenous type-III filaments secreted 
by myofibroblasts and macrophages [26–28]. Finally, in the 
maturation phase, the fibrinous collagen type-III network 
will be replaced by collagen type-I filaments, which are 
highly cross-linked and provide robust structural integrity 
and therefore increasing scar stiffness [29, 30]. Although 
these ECM dynamics ensure the immediate survival and 
short-term integrity of heart morphology, the formation of 
a fully matured, permanent scar leads to adverse effects later 
in life [31, 32].

ECM deposition during zebrafish heart regeneration 
also involves the formation of a provisional fibrinous 
network and consequent replacement by collagenous fila-
ments similar to that seen during mammalian heart repair 
[33, 34]. However, differences arise when addressing the 
origin of ECM in the regenerative heart. Besides activated 
fibroblasts, endocardial cells contribute to ECM produc-
tion during zebrafish heart regeneration [35]. In addi-
tion, the source of pro-fibrotic fibroblasts differs between 
zebrafish and mammalian hearts. Upon injury, resident 
fibroblasts of the mammalian heart migrate to the injury 
site, proliferate and differentiate into pro-fibrotic myofi-
broblasts under the regulation of TGF-β [28]. In contrast, 
the pro-fibrotic fibroblasts of the regenerating zebrafish 
heart not only arise from resident fibroblasts but are also 
formed by trans-differentiation of epicardial cells [36–38]. 
Like mammalian fibroblasts, zebrafish fibroblasts are acti-
vated through TGF-β signalling to acquire a pro-fibrotic 
signature, referred to as activated fibroblasts [36]. How-
ever, as regeneration progresses these fibroblasts are grad-
ually de-activated to prevent excessive fibrosis [38] and the 
produced ECM is ultimately replaced by new functional 
myocardium. The regression of the ECM is dependent on 
MMPs (such as mmp2 and mmp14a/b) [39] cleaving the 
collagenous network. However, MMPs might have addi-
tional functions during the inflammation phase. Indeed 
at 4 days post cryoinjury, MMPs are highly expressed 
by vimentin + fibroblasts (including mmp9 and mmp13) 
[40]. In addition, mmp2 and mmp14a/b have been shown 
to be expressed during the inflammation phase 3 days 
post cryoinjury. In contrast, the upregulation of mmp2 
and mmp14a/b only occurs at 7dpi in the apical resection 
model, which lacks necrotic tissue. This suggests that post 
cryo-injury, MMPs could play a role in clearance of the 
necrotic tissue during the inflammation phase. Whether 
differences in MMP expression could underly differential 
scar regression between the injured zebrafish and mouse 
hearts, or whether the difference is due to a change in 
deposition rate, remains to be elucidated. Besides dif-
ferences in the origin and temporal dynamics of cardiac 
fibroblasts and fibrosis, differences in ECM composition 
are also observed between regenerating and non-regen-
erating hearts. Interestingly in neonatal mice, the ECM 
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component Agrin is highly expressed during the regenera-
tive window and is downregulated thereafter [41]. This 
enrichment of Agrin expression is important for promoting 
CM proliferation and injection of this proteoglycan fol-
lowing adult heart injury improves cardiac function [41, 
42]. Whether Agrin is expressed during zebrafish heart 
regeneration has not been reported, however administra-
tion of zebrafish ECM into the MI-induced adult mouse 
hearts facilitated cardiac functional recovery [43]. This 
was similarly observed with injection of neonatal cardiac 
ECM [44]. Thus, showing that ECM components can pos-
sess a pro-regenerative role.

Taken together, ECM depositions like fibrin and col-
lagen are shared between the repair and regeneration pro-
cesses, albeit with differences in their establishment and 
clearance. Like in the injured mammalian heart, collagen 
I is expressed in the injured zebrafish heart at 14 days 
post cryo-injury [45]. Differences between zebrafish and 
mammalian ECM maturation arise after the initial depo-
sition of collagen I. Mammalian hearts maintain the pro-
duction of collagen I fibres resulting in a stiff permanent 
scar. In contrast, the zebrafish heart shows a transient 
de-activation of pro-fibrotic fibroblasts, thereby limit-
ing the amount of deposited fibrosis [38]. In addition, 
the zebrafish heart dissolves the initially deposited ECM 
(including the collagen I network) through the expres-
sion of MMPs. To which extend the reduced deposition 
and/or clearance of the deposited collagenous network 
determines the transient nature of the zebrafish fibrotic 
response remains unclear. In addition, it remains to be 
elucidated which specific differences arise between 
initial scar deposition between the zebrafish and mam-
malian heart. The differences in ECM scar composition 
between regenerating and non-regenerating hearts draw 
parallels to other forms of regeneration. Spinal cord 
regeneration in zebrafish for example display a transient 
stiff ECM that is proposed to stabilize the injury and 
change to a less stiff ECM to facilitate neuron migra-
tion into the injury area ([46], and reviewed in [47]). A 
similar mechanism may happen in cardiac regeneration 
to allow for CM to enter and repopulate the scar. Indeed, 
it has been shown that ECM stiffness correlates to the 
regenerative window in neonatal mice hearts. Whereby 
an increase in stiffness correlated with the lost regenera-
tive capacity, while reducing stiffness by addition of an 
inhibitor at a stage when the regenerative window was 
closed resulted in the maintenance of regenerative com-
petence [16]. Moreover, ECM production is important for 
regeneration and repair as ablating collagen producing 
cells from the injured zebrafish heart leads to impaired 
heart regeneration [38] and ablating myo-fibroblasts 
from the post-MI murine heart leads to decreased sur-
vival [48]. Furthermore, the composition of the ECM 

strongly influences the outcome of the heart regeneration 
and repair processes [49, 50].

Innate immune system

The inflammatory response is a well-orchestrated, complex 
process that plays an indispensable role during cardiac repair 
in mammals. The start of the inflammation phase is marked 
by the recruitment of neutrophils to the infarct area, which 
secrete pro-inflammatory signals and attract monocytes to 
infiltrate the infarction. Resident cardiac macrophages have 
been shown to recruit monocytes originally derived from the 
spleen. These monocytes will differentiate into macrophages 
and play multiple roles while occupying the injury site [51, 
52]. This review will conveniently define these roles into 
two phases (M1 and M2), the separation of these states is 
much more complex and still not well understood. Neverthe-
less, these macrophages acquire pro-inflammatory proper-
ties (M1) [53] and together with neutrophils will secrete 
various MMPs that allow for the remodelling of the native 
ECM [54]. At the same time, damaged and dying cells in 
the infarct site will activate the complement system, mark-
ing necrotic cells for degradation and phagocytosis thereby 
clearing the infarcted area of dead and necrotic cells [53, 
55, 56]. Next, during the proliferative phase, apoptotic neu-
trophils are cleared from the tissue through phagocytosis by 
the M1 macrophages, which now progress into a new state 
(also known as M2) that is marked by the secretion of anti-
inflammatory signals [57]. During this phase, a collagen-
ous ECM is produced that is rich in fibronectin. Although 
myofibroblasts are the main contributors to ECM deposi-
tion, it is thought that the M2 macrophages play a regulatory 
role in ECM turnover through the secretion of MMPs and 
their inhibitors, TIMPs (reviewed in [58]). In addition, M2 
macrophages secrete TGF-β ligands, thereby activating the 
collagen production in myofibroblasts [28, 59]. During the 
final maturation phase, collagen deposition is halted and the 
more loosely organized collagen III is replaced with a tightly 
cross-linked type I collagen. The role of the innate immune 
system in this part remains largely unexplored. The role of 
resident cardiac macrophages has also been shown to play an 
important role in activating angiogenesis and CM prolifera-
tion in neonatal cardiac injury [52, 60]. As well as modulat-
ing proinflammatory monocyte macrophages following adult 
cardiac injury [52].

During regeneration in zebrafish, a similar influx of 
neutrophils and a presence of various sub-populations of 
macrophages is observed [3, 61, 62]. A distinct Wt1 + mac-
rophage sub-population, which at least partially arise from 
the hematopoietic niche was identified that displays a 
pro-regenerative transcriptomic signature [63]. It remains 
uncertain how the macrophage populations in the zebrafish 
compare with the mammalian macrophages. Besides the 
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innate immune system, a recent study indicates that the 
acquired immune system plays an indispensable role during 
zebrafish heart regeneration and suggests that differences in 
the adaptive immune system might underlie differences in 
regenerative capacity [64]. It would be interesting to deter-
mine whether these unique macrophage cell states/subtypes 
found in zebrafish could be manipulated in mammalian mac-
rophages to potentially improve regeneration.

Revascularization

During a myocardial infarction in patients, a blood clot 
restricts blood flow of a coronary artery. This limits the 
transport of nutrients and oxygen to the downstream region 
of the heart and cause massive ischemic tissue damage. 
There has been reports suggesting that injury-induced VEGF 
signalling leads to local neovascularization, which is a pro-
cess detrimental to prolonged survival after MI [65–67]. 
Indeed, the initiation of angiogenesis starts as early as the 
inflammation phase and continues well into the proliferative 
phase [66, 68, 69]. First, newly formed vessels are hyper-
permeable due to the lack pericytes and smooth muscle 
cells, allowing the infiltration of leukocytes into the ischemic 
area. Afterwards, under the influence of PDGF, these vessels 
obtain a mural coat existing of pericytes and smooth muscle 
cells reducing permeability [70, 71]. Interestingly, supplying 
murine ischemic hearts with human pericytes reduced vessel 
permeability and leukocyte infiltration, which led to benefi-
cial effects on cardiac remodelling. This indicates that tar-
geting neovascularization could have beneficial effects post 
MI [72, 73]. However, as the infarcted area is remodelled 
into a mature scar largely devoid of living cells, the demand 
for nutrients and oxygen plummets. Therefore, as the scar 
matures the newly generated vasculature becomes obsolete 
and diminishes accordingly [74, 75].

During regeneration, like during repair, the revasculari-
zation is of vital importance. Indeed, revascularization as 
well as lymphangiogenesis of the injury area is important 
for efficient heart regeneration in zebrafish [76–78]. Both 
zebrafish and mammalian revascularization depends on 
VEGF-signalling, which is expressed in the injury area as 
early as 15 h (zebrafish) and 6 h (rats) post heart damage [65, 
76]. Indeed, injury-induced VEGF has been shown detri-
mental to prolonged survival after MI in mammals [65–67] 
and blocking angiogenesis through expression of a domi-
nant-negative Vegfaa blocks cardiomyocyte proliferation and 
heart regeneration in the zebrafish [76]. The biggest differ-
ence is therefore not in the initiation, but in the maintenance 
of the regenerated vessels. Whereas in the non-regenerative 
hearts the new blood vessels have no function as the scar 
matures, regenerated tissue retain their vasculature to sup-
port the newly formed high nutrient-/oxygen-dependent 
CMs. Taken together, revascularization plays a vital role 

during both repair and regeneration, but is only maintained 
following regeneration.

Cardiomyocytes

Cardiomyocyte proliferation in mammals is rare and occurs 
at a very low rate [79–81]. However, this does not increase 
nor significantly compensate for the millions of CMs that are 
permanently lost due to myocardial infarction. One strategy 
for the surviving CMs to counteract the reduced function-
ality of the heart is by growing in cell size. Although this 
hypertrophic response is rapid and quite efficient, it is often 
not sustainable in the long term. Indeed, many patients that 
suffered a myocardial infarction end up with pathogenic 
hypertrophy of the heart, ultimately resulting in heart fail-
ure [31, 32]. CMs directly adjacent to the ischemic area, also 
called border zone CMs, respond in an even more dramatic 
manner. In order for them to survive the adjacent infarction, 
they partly dedifferentiate towards a more immature state 
[82, 83]. This occurs through the replacement of a MEF2-
driven gene program, defining adult CM cell fate, with a 
stress-responsive AP-1-driven gene program allowing for 
survival under ischemic conditions [84]. Indeed, knock-out 
of one of these border zone stress responsive factors, nppb, 
results in acute death following myocardial infarction in 
mice [84].

Instead of displaying a hypertrophic response due to car-
diac insult in mammals, regenerative species respond with 
a hyperplastic response. In the zebrafish heart, the CMs that 
are lost by the injury are replaced by proliferation of existing 
CMs in the border zone [85, 86]. In doing so, the heart will 
be restored to its original properties and deposited fibrosis 
will be replaced by new functional myocardium [13, 34]. 
Border zone CMs in the regenerating heart also dedifferen-
tiate and activate a stress program indicated by the expres-
sion of stress induced genes such as members of the AP-1 
complex (i.e., junba, junbb, fosab, fosl1a) as well as nppa 
and nppb, much like mammalian border zone CMs during 
heart repair [84, 87]. However, this cellular reprogramming 
seems much more pronounced because it includes metabolic 
reprogramming from a fatty acid towards glycolysis depend-
ent ATP production [88, 89], as well as the re-activation 
of an embryonic gene program [37, 85]. Indeed, a recent 
study has shown that the transcriptome of zebrafish border 
zone CMs is more similar to embryonic CMs then to remote 
myocardial CMs originating from the same hearts [88]. This 
reversion back to an embryonic state is likely key to unlock 
their proliferative potential as inhibiting their dedifferentia-
tion, including the induction of glycolysis, prevents CMs 
from proliferating effectively [86–89].

Taken together, the reparative heart employs a hyper-
trophic response to deal with the loss of heart functional-
ity, while the regenerative heart instead uses hyperplastic 



5111Cardiac regenerative capacity: an evolutionary afterthought?  

1 3

regrowth. Although the hypertrophic response forms an 
adequate short-term solution, it leads to severe problems in 
the long term, including complete heart failure. Border zone 
CM of both the reparative and regenerative heart dedifferen-
tiate and activate a stress response program. However, this 
response seems to deviate in the regenerative heart, where 
the dedifferentiation results in the initiation of an embry-
onic-like gene program and the induction of glycolysis, 
while in the mammalian BZ many genes with high expres-
sion in neonatal CMs are not induced [84]. The induction of 
the embryonic-like gene program, including the induction 
of glycolysis, might help explain why zebrafish BZ CMs 
proliferate while mammalian BZ CMs do not re-enter the 
cell-cycle. Another explanation for the limited proliferative 
capacity of mammalian BZ CMs might be due to the intrin-
sic properties of cardiomyocyte nuclei. While mammalian 

CMs are mainly polyploid (human) or multinuclear (mice), 
zebrafish CMs are mononuclear and diploid, which has 
been shown to be detrimental for efficient proliferation and 
zebrafish heart regeneration [90–92].

In summary, while the reparative and regenerative 
response show many similarities, distinct differences are 
observed as well (Fig. 1 and Table 1). Specifically target-
ing individual differences might help to stimulate the regen-
erative response in endogenously reparative species such as 
mammals.

Regenerative traits: processes that facilitate 
a positive environment for regeneration

As discussed above, for cardiac regeneration to occur, many 
independent processes have to be precisely regulated and 
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Fig. 1  Comparison of repair vs regenerative response following cardiac injury. Schematic summary of the main processes and their response in 
animals that can either repair or regenerate following cardiac injury. This is also summarized in Table 1
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aligned. Recent studies have indicated the existence of 
regeneration-specific enhancers, which might have origi-
nated from repurposed injury responsive enhancers [93–95]. 
In fact, the loss of regeneration-specific enhancers might 
explain the lack of a regenerative response in some species 
[93]. While positive natural selection might occur on regen-
eration as a single unit, i.e., by maintaining regeneration-
specific enhancer elements, competition for selection will 
likely also occur on the level of the individual processes 
constituting regeneration. In other words, environmental 
changes might force adaptations in a certain trait which is 
beneficial for the survival of the species, while being incom-
patible with cardiac regeneration. The second possibility is 
that a lack of evolutionary pressure (relaxed selection) would 
lead to the disappearance of cardiac regenerative capacity 

due to neutral evolution. The evolutionary mechanism 
leading to limited regenerative capacity is likely to differ 
between animal species and remains currently unresolved 
for mammals. In this section of the review, we will discuss 
the most prominent traits that impact cardiac regeneration. 
Furthermore, we will provide examples of species that have 
adapted these regeneration-compatible traits, likely losing 
the ability to regenerate their hearts in the process (Fig. 2 
and Table 2).

Regeneration trait: cellular roles of macrophages

As mentioned above, the innate immune system, in particu-
lar the inflammatory response is one of the first responses 
to an injury. Aside from phagocytosing cellular debris at 

Table 1  Comparing adult 
mammalian heart repair with 
zebrafish heart regeneration

Process Repair Regeneration

ECM deposition: fibrin Yes Yes
ECM deposition: collagen Yes Yes
ECM maturation Yes No
ECM clearance No Yes
Innate immune system: neutrophils Yes Yes
Innate immune system: inflammatory macrophages (M1 phase) Yes No?
Innate immune system: anti-inflammatory macrophages (M2 phase) Yes Yes?
Neovascularization Yes Yes
Stress response border zone CMs Yes Yes
Reverting back to embryonic state/metabolic reprogramming No Yes
CM proliferation No Yes
CM hypertrophy Yes No

ECM Deposition

CM
Proliferation

Dedifferentiation

Inflammatory
Response

Induction
of

Glycolysis

Diploid
Mononuclear

Neovascularization

Ambystoma mexicanum
(Axolotl)

Mus Musculus
(Mouse) Homo sapiens

(Human)

Danio Rerio
(Zebrafish)

Oryzias latipes
(Medaka)

Compatible with
regeneration

Unknown

Regenerating

RepairingRepairing Repairing

Regenerating

Incompatible with
regeneration

Regenerating

Astyanax mexicanus
(Cavefish)

Repairing

Astyanax mexicanus
(Surface fish)

Fig. 2  Regenerative traits viewed as pieces of a jigsaw that facili-
tates cardiac regenerative capacity. Summary of the current lit-
erature in regards to a specific regenerative trait and whether it can 
facilitate normal adult cardiac regeneration in Axolotl, Zebrafish, 
Human, Medaka, Mouse and Cavefish. Red represents confirmed trait 

involved in facilitating regeneration. Black represents confirmed trait 
that is incompatible with regeneration. Grey represents traits in which 
have not been directly tested. References for these traits are summa-
rized in Table 2
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the injury area, macrophages also play multiple roles in the 
subsequent cellular responses. For example, they can medi-
ate the fibrotic response and directly contribute to collagen 
deposition [103], promote neoangiogenesis [3, 52, 100, 104] 
and initiate CM proliferation [52, 105]. The importance of 
this cell population becomes apparent when overall deple-
tion or ablation of specific macrophage subsets in zebrafish 
result in impaired regeneration with a decrease in CM pro-
liferation and increase in scar formation [3, 63, 97, 98, 106].

The importance of macrophages during cardiac regen-
eration can also be observed in other species. In Medaka 
fish, heart regeneration does not occur and coincides with 
a delayed and reduced macrophage recruitment [3]. Mean-
while salamanders (axolotl), which are normally pro-
regenerative display an inability to regenerate following 
macrophage depletion [10]. Likewise, macrophage deple-
tion in neonatal mice following cardiac injury during the 
regenerative window resulted in an increase of fibrotic scar 
formation and decrease in cardiac output despite displaying 
a normal CM proliferation rate typically seen during regen-
eration [100]. All together these studies point to the positive 
role of macrophages in creating a permissive environment 
for regeneration.

The primary role of the innate immune system (and criti-
cally the M1 macrophages) is to defend from infection and 
repair damaged tissue. However, it appears that the M2 
phase is an acquired state that plays a key role in the regen-
erative phase. One role for M2 macrophages is to secrete 
signals that stop the pro-inflammatory M1 phase through the 
release of many factors such as TGF-B and IL10 [107, 108]. 
However, this regenerative phase depends on whether the 
initial injury persists or not. When there are chronic injury 
signals, M2 macrophages can instead activate and exacer-
bate fibrosis [103, 109]. Additionally, comparisons between 
the transcriptomes of medaka and zebrafish macrophages 
showed the changes in gene expression profiles were similar, 
however the medaka profiles were less dynamic and conse-
quently there was a reduced and delayed inflammation fol-
lowing injury. This again suggests that medaka macrophages 

still possess the ability to facilitate regeneration but the sig-
nal is not potent enough to induce this phase. Especially 
since exogenous activation of Toll-like receptors agonists 
(which elicits the acceleration of macrophage recruitment 
and neutrophil clearance) in injured medaka hearts boosted 
regeneration [3].

Taken together, it appears that medaka have lost the abil-
ity to regenerate their hearts through adaptations in their 
inflammatory response. These adaptations include less 
dynamic macrophages, delayed neutrophil clearance and 
delayed macrophage recruitment to the injury site [3]. This 
dampening of inflammation follows the theory that there is 
an inverse relationship between organ and limb regenera-
tive capacity and the strength of the inflammatory response 
within the innate immune system [110–112]. However, it 
remains unclear why medaka fish have evolved an altered 
innate immune system. A distinct difference from the regen-
erative zebrafish is that medaka stay longer in their chori-
ons [113], thereby providing medaka embryos with a safe 
environment. Potentially, the prolonged protection by the 
chorion reduced the need for a strong injury response during 
early development. However, whether this resulted in the 
evolutionary adaptations seen in the medaka innate immune 
system, remains unclear.

Regeneration trait: modifying DNA content—
polyploidy and polynucleation

Cells can exist with a varying amount of DNA material 
in the form of polyploidy (more than two sets of chro-
mosomes per nuclei) and polynucleation (more than one 
nucleus). This phenomenon arises through the fusion of 
neighbouring cells or resulting from complete DNA rep-
lication without mitosis or cytokinesis (endoreplication) 
[114]. For example, adult hepatocytes, skeletal muscle, 
certain cell types in the lung, kidney, pancreas and CMs 
are typically polyploid [114]. In CMs, ploidy differs 
between species. CMs of non-mammalian species such as 
fish, amphibians and reptiles are mainly mononucleated 

Table 2  Summary of the known and unknown literature of cardiac regenerative capacity in various species

Ambystoma mexi-
canum (Axolotl)

Danio rerio (Zebrafish) Homo sapiens 
(Humans)

Oryzias latipes 
(Medaka)

Mus musculus 
(Mouse)

Astyanax 
mexicanus 
(Cavefish)

ECM deposition [10, 11] [33, 34] [84] [3, 4] [84] [5]
Neovascularization [10, 11] [76] [67] [3, 4] [73] Unknown
Dedifferentiation [10, 11] [37, 85] Unknown Unknown [84] Unknown
Metabolic reprogramming Unknown [88, 89] Unknown Unknown Unknown Unknown
CM proliferation [10, 11] [13, 96] [79] [3, 4] [14, 15] [5]
Inflammatory response [10, 11] [63, 97, 98] [99] [3] [100] [5]
Diploid mononuclear Unknown [90] [101] Unknown [81, 102] Unknown
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and diploid. While at least 50% of the CMs in mammals 
such as humans, rodents, bats, livestock and even whales 
are multinucleated and polyploid [115]. Initially, mam-
malian CMs are predominately mononucleated and dip-
loid, but this changes after birth. In the mouse heart, CM 
polyploidization commences during the first week after 
birth [102, 116], after the loss of the cardiac regenera-
tive potential period [14, 16], while in humans, the per-
sistence of polyploidy is maintained throughout life [101]. 
It is unclear why humans and mouse whom are both poor 
regenerators evolved to have different compositions of 
DNA content in their CMs (multinucleated vs polyploidy, 
respectively). However, we have grouped these two events 
into one trait of modifying DNA content since as we will 
further discuss, the same end result in both contexts 
appears to modulate cardiac regeneration capacity.

The relation between ploidy and regenerative capacity of 
the heart was established in a survey of more than 120 genet-
ically defined inbred mouse strains with variation in CMs 
ploidy. Furthermore, genetic experiments in mice confirmed 
such a correlation between the percentage of mononucle-
ated CMs and regenerative capacity [91, 92]. In zebrafish, 
a direct correlation between ploidy and regenerative capac-
ity was also established. The majority of CMs in zebrafish 
are mononucleated and diploid [90, 117], however increas-
ing the percentage of polyploid CMs impaired regenerative 
capacity of the heart [90]. While in zebrafish and mice, a 
correlation between CM mononucleation and regenerative 
capacity was established, this correlation seems less clear in 
the porcine heart. In the porcine heart, polyploidization with 
multinucleation occurs over a 2-month period while loss of 
heart regeneration potential occurs at P3 [118].

The benefit of polyploidization is not well understood. 
One idea is that the polyploidy state prevents DNA damage 
[119] since the polyploidy state in hepatocytes have been 
shown to play a tumour-suppressive role in the liver [120]. 
Therefore, the stabilization of the nucleus facilitates the lon-
gevity of the organ and this trade-off for regenerative poten-
tial may allow cells to survive and maintain function. This 
would be important in the context of the heart as its function 
is regular contractions and unstable cells within the heart 
would compromise this role. Another explanation would be 
to support organ growth. It is theorized that the increase of 
polyploidy can support the growth of the cell via increased 
gene expression and therefore maintain higher cellular 
activity [121]. In the case of CMs, a larger cell would allow 
increased metabolic rates for energy production to support 
the metabolically intensive activity of contractions [122].

Taken together, mammals like mice and humans have 
adapted the nuclear content of cardiomyocytes, favouring 
multinucleated or polyploidy nuclei, respectively. While 
these adaptations might have resulted in distinct benefits 
such as a reduced risk of DNA-damage and potent regulation 

of cellular growth, it also limits cardiomyocyte proliferation 
and therefore heart regeneration.

Regeneration trait: energy consumption

Endothermal animals are able to self-regulate their body 
temperature as opposed to ectothermic animals that acquire 
the temperature of their environment. Thus, far adult heart 
regeneration capacity has only been reported in ectother-
mic fish and amphibians and not in endothermic birds or 
mammals and this may be attributed to difference in energy 
metabolism as endotherms have a higher resting rate metab-
olism [123]. This increase in resting rate metabolism is due 
to elevated aerobic metabolism, which is a very efficient 
process of energy production. Aerobic metabolism requires 
oxidative phosphorylation (OXPHOS) that occurs inside 
mitochondria. When less oxygen is available to cells, they 
can revert to glycolysis and lactate fermentation for energy 
metabolism, which generates lactate. While OXPHOS is 
much more efficient in producing energy as in ATP, it leads 
to the generation of reactive oxygen species (ROS), which 
can cause DNA damage. While the adult heart mainly uti-
lizes fatty acids and OXPHOS for the generation of ATP, 
during mammalian development the foetus grows in an oxy-
gen poor environment and the heart mainly utilizes glucose 
and glycolysis for energy metabolism. The transition from a 
low oxygen environment in utero, to an oxygen rich environ-
ment after birth coincidences with a shift in energy metabo-
lism of cardiomyocytes from glycolysis towards the oxida-
tion of fatty acids and OXPHOS [124, 125], 126. This also 
coincides with an increase in ROS production, DNA damage 
and a strong reduction in cardiomyocyte proliferation [126]. 
The increase in OXPHOS activity after birth impairs CM 
proliferation as reducing environmental oxygen after birth, 
inhibiting fatty acid utilization or promoting ROS scaveng-
ing prolongs the proliferative window of cardiomyocytes 
[126, 127].

Besides the negative effects of OXPHOS and ROS pro-
duction on CM proliferation, CM require glycolysis and 
lactate fermentation for efficient proliferation. In the regen-
erating zebrafish heart proliferating CMs in the border zone 
shift their energy metabolism from OXPHOS to glycolysis 
and when this is prevented CM proliferation and regenera-
tion is impaired [88, 89]. Conversely, stimulating glycolysis 
promotes CM proliferation [89]. The regulation of energy 
metabolism is highly complex and involves many pathways. 
Neuregulin 1 (Nrg1) is an agonist for the Epidermal Growth 
Factor Receptor Tyrosine Kinase family which includes 
ErbB1, 2, 3 and 4 [128]. There are several indications that in 
the heart this pathway plays an important role in controlling 
CM proliferation through regulation of energy metabolism. 
First, during development, Nrg1/ErbB2 signalling is impor-
tant for cardiac development as knock out mice for these 
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genes and zebrafish erbb2 mutants are embryonically lethal 
as a result of a thinner myocardium due to reduced CM 
proliferation [129–134]. Second, CM-specific expression 
of a constitutively active form of ErbB2 (caErbB2) results 
in cardiomegaly (large hearts) via increased CM prolifera-
tion [131]. In addition, when Nrg1 is overexpressed specifi-
cally in zebrafish CMs in an absence of injury, the fish also 
develop cardiomegaly by enhanced CM proliferation [135]. 
Third, activation of Nrg1/ErbB2 signalling in mouse and 
zebrafish hearts stimulates glycolysis in embryonic and adult 
CMs [88, 136]. In the context of heart regeneration, Nrg1 
expression is induced in the zebrafish heart upon injury, 
which again is required for the activation of glycolysis and 
induction of CM proliferation [88, 135].

Why is a shift from fatty acid oxidation to glycolysis 
important for CM proliferation? One could argue that since 
mitochondrial OXPHOS generates ROS which is capable 
of inducing a DNA damage response and cell cycle arrest 
[126], 137, it may be better for the proliferative cell to revert 
to a lower energy producing state to reduce ROS production. 
Another argument could be that during proliferation, since 
there is a disassembly of the contractile apparatus [88, 96], 
the high energy consumption is not needed as compared to 
a functionally contracting CM and therefore the more ineffi-
cient energy producing pathway would suffice. Finally, inter-
mediate metabolites produced by aerobic glycolysis may be 
converted into precursors for the biosynthesis of amino acids 
and nucleotides that are essential for cell proliferation and 
growth [137, 138]. In addition, there have been reports that 
components of the glycolytic pathway directly interact with 
cell cycle regulators, which is independent from their cata-
lytic activity, [139, 140] and therefore this pathway may be 
required to activate the proliferation programme.

The trade-off between regenerative potential and metab-
olism can also be seen in Mexican cavefish. This teleost 
species (Astyanax mexicanus) is a single species compris-
ing of two populations. A cave-dwelling (Pachón) and 
surface-dwelling population. About 1.5 million years ago, 
these two populations diverged due to the changing envi-
ronment of the Mexican rivers and caves and resulted in 
the Pachón population losing certain features such as their 
eyes and pigments [141], and instead acquire new traits 
such as highly sensitive taste buds and lateral line neurons 
for navigating in the dark [141]. Interestingly, due to the 
food scarcity within the caves, the Pachón have adapted by 
changing its glucose metabolism [142, 143]. In particular, 
RNA-seq between these fish populations indicate a down-
regulation of glycolysis-related genes [5]. Moreover, the 
Pachón population cannot regenerate its heart following 
injury when compared to their surfacing dwelling coun-
terparts [5]. While yet to be tested, if the surface dwelling 
fish also require a glycolytic switch in their CMs to facili-
tate CM proliferation, this would indicate the regeneration 

trade-off in the Pachón population may be beneficial for 
other functions that allow this species to survive.

Metabolism and endothermy are highly linked since endo-
therms have higher metabolic rates compared to ectotherms. 
The origin of endothermy in birds and mammals is a con-
troversial topic in evolutionary biology. Several hypotheses 
have been proposed to explain its evolutionary origin of which 
the aerobic capacity model received most attention [123, 144, 
145]. Physiological studies indicate that resting and maximal 
rate metabolism are linked so that one cannot increase with-
out the other. The aerobic capacity model proposes that an 
increase in resting rate metabolism supported an increase in 
maximal rate metabolism to allow sustained muscle activi-
ties. High maximal oxygen consumption rates allow sustained 
workloads by aerobic metabolism, which is beneficial for 
many activities such as capturing prey or sustained flight. In 
addition, the increase in resting rate metabolism facilitated the 
regulation of body temperature. The increase in resting rate 
metabolism by mitochondrial OXPHOS requires higher oxy-
gen consumption, which may have resulted in adaptations such 
as a more efficient ventilation system and an increase in blood 
circulation. Numerous adaptations seen in hearts of mammals 
and birds, such as separation of the chambers and increased 
wall thickness, accommodate a more efficient oxygen transpor-
tation to all tissues [146]. Therefore, heart regeneration, which 
depends on the ability of CMs to switch energy metabolism 
from a very efficient fatty acid oxidation to a more inefficient 
glucose metabolism by glycolysis and lactate fermentation, 
may have been a trade-off for an increase in energy demands in 
endotherms. This may not be restricted to only heart regenera-
tion since a comparable metabolic switch towards glycolysis 
was also observed during appendage regeneration [147].

The higher availability of oxygen for energy production 
could in part be due to the aquatic to terrestrial transition 
which began approximately 500 to 400 million years ago 
[148]. Some possible reasons for this transition could be 
due to animals living during the Ordovician–Silurian extinc-
tion event, a period of marine  O2 deprivation [148]. Another 
reason an increase in atmospheric  O2 concentration allowed 
for bigger animals to form and therefore gain a competi-
tive advantage against potential predators [149]. The link 
between animal size and atmospheric  O2 concentration is 
evident as giant animals became extinct when  O2 concen-
trations reduced [150, 151]. While it is tempting to suggest 
that the transition from aquatic to terrestrial environment 
for vertebrates caused the loss of the regenerative trait, it is 
possible this trait developed independently of this transition.

Inducing regenerative traits in species with a poor 
regenerative capacity

All vertebrates can regenerate to an extent, the difference 
lies in the capacity of the particular organ. Thus, one could 
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view regeneration as a dormant process in organs that do not 
regenerate and manipulating this process can reactivate the 
organ’s ability to proliferate. Following this reasoning, there 
have been attempts to boost CM proliferation in mammalian 
hearts. The modulation of both Hippo and ErbB2 signalling 
and most recently the interaction between these two pathways 
can robustly induce CM proliferation and regeneration fol-
lowing injury [131, 152–154]. In all cases, when proliferation 
is induced, a number of cellular and molecular processes are 
activated that involve some of the above-mentioned regenera-
tive traits. For example, mononucleated CMs preferentially 
undergo proliferation compared to binucleated CMs [131, 
155]. Meanwhile both zebrafish hearts via Nrg1 overexpres-
sion and mouse hearts via caErbB2 overexpression switch 
in metabolism towards glycolysis, which is required for CM 
proliferation [88]. In addition, ectopic expression of Pkm2, 
an isoenzyme of the glycolytic pyruvate kinase, in injured 
mouse hearts induces CM proliferation and restored cardiac 
function [156]. While the induction of the Nrg1/Erbb2 path-
way appears to directly affect certain regeneration associ-
ated traits (e.g., metabolic reprogramming), it appears it can 
completely bypass others (e.g., polyploidy) by focussing on a 
specific subset of CMs (mononuclear, diploid). Understand-
ing the factors that can overcome the regenerative block by 
examining interactions between pro-regenerative pathways 
(e.g., Nrg1/Erbb2 signalling) with the traits and processes 
affecting regenerative capacity, will help us develop novel 
methods of inducing CM proliferation and subsequent car-
diac regeneration in mammals.

Concluding remarks

Cardiac regeneration is a multimodal process that requires the 
precise regulation of numerous processes and cell types. It is 
unclear what the origin of cardiac regeneration is, but common 
features such as activation of CM proliferation suggest that it 
may have a common origin. How cardiac regeneration has 
been maintained or lost in specific animals is under extensive 
debate [1]. The loss of cardiac regenerative capacity can result 
from adaptations in any of the traits and processes described 
in this review, including the innnate immune system, nuclear 
organization and metabolism. The heterogeneous distribution 
of cardiac regenerative capacity throughout the animal king-
dom might therefore be a direct consequence of the complexity 
of the regeneration process. Here, we have summarized sev-
eral examples of species that might have lost cardiac regenera-
tive capacity through adaptations in distinctly different traits. 
Therefore, we might consider cardiac regenerative capacity 
as “an evolutionary afterthought”, only when no other traits 
take precedence, cardiac regeneration becomes an evolution-
ary priority to maintain, and this could be explained by either 

the pleiotropy or adaptive hypothesis [1]. In the pleiotropy 
scenario, regeneration would be retained because it is devel-
opmentally tightly controlled to other adaptations. Cavefish 
for example changed their metabolism to adapt to the scarce 
food availability and this metabolomic state is also linked to 
CM proliferation. The adaptive hypothesis predicts that a trait 
is actively being maintained during selection and regenera-
tion would be viewed to being negatively selected over repair. 
In general, the relative body size in poor vs. robust cardiac 
regenerators is anticorrelated, thus the energy and mechani-
cal requirements for the heart to properly function and sus-
tain the body is much higher in bigger and poor regenerators. 
Therefore, the need to quickly repair the injury and maintain 
heart function is being selected over the more slower regenera-
tion process. The energy required to regenerate could also be 
expensive since the CMs themselves undergo dramatic changes 
to proliferate and mature, compared to a more simpler repair 
process. Thus, repair may be favoured in non-cardiac regen-
erators to divert energy expenditure to other energy intensive 
processes/organs. Alternatively, a phylogenetic inertia scenario 
could describe regeneration as this theory predicts the traits are 
being maintained for historical reasons and confer no selective 
advantage or disadvantage, therefore this trait was not yet been 
eliminated from the collection of traits an animal has acquired 
for survival [1]. Comparative studies between species allow 
us to identify differences and similarities between species and 
better understanding of the traits and processes underlying or 
limiting cardiac regeneration in these different species could 
potentially help overcome the limited regenerative capacity in 
mammalian hearts.
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