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Summary

Science and engineering rely on the accumulation
and dissemination of knowledge to make discoveries
and create new designs. Discovery-driven genome
research rests on knowledge passed on via gene
annotations. In response to the deluge of sequencing
big data, standard annotation practice employs auto-
mated procedures that rely on majority rules. We
argue this hinders progress through the generation
and propagation of errors, leading investigators into
blind alleys. More subtly, this inductive process dis-
courages the discovery of novelty, which remains
essential in biological research and reflects the nature
of biology itself. Annotation systems, rather than
being repositories of facts, should be tools that sup-
port multiple modes of inference. By combining
deduction, induction and abduction, investigators can
generate hypotheses when accurate knowledge is
extracted from model databases. A key stance is to

depart from ‘the sequence tells the structure tells the
function’ fallacy, placing function first. We illustrate
our approach with examples of critical or unexpected
pathways, using MicroScope to demonstrate how
tools can be implemented following the principles we
advocate. We end with a challenge to the reader.

Introduction

‘Data make no sense!’ fumed Noam Chomsky, back in
1974 at the MIT’s Endicott House, during a meeting of
the Centre Royaumont pour une Science de l’Homme on
Brain and Cognition, putting an end to a talk that had
featured linguistic data. He was right. Data may make
sense as a diagnostic tool – this is the major way data
are used unscrupulously on the World Wide Web in par-
ticular for commercial purposes. In those situations, it
does tell something, but not about the things you are
looking for, rather about yourself. And if you know both
how to use behaviour as a monitor to predict some
future outcome you know exactly what to do. Yet, in our
time of big data and within the academic realm, scien-
tists, not merchants, keep producing a wealth of data
under collective names ending in ‘-ome’ or ‘-omics’ sup-
posed to be the ultimate way to decipher what life is –

an implicit assumption, perhaps and, ironically, also dri-
ven by commercial interests. Armed with arcane tech-
niques with some mathematical flavour, researchers
attempt to have conceptual knowledge emerge magically
out of these huge data-collecting efforts. Three major
approaches are used to this goal: knowledge-driven,
data-driven or context-driven (Bolton, 2015), strikingly
following specific trends of human language principles
(represented by Greco-Latin, Anglo-American or Chinese
linguistic families respectively). Knowledge-driven
approaches entail deduction, i.e. based on a hypothesis
derived from previously acquired knowledge, – for exam-
ple if someone is exposed to a factor which we regard
as a health risk, then they might fall ill. Data-driven
approaches entail induction, i.e. starting from a fact, we
can infer a general trend – for example if some factor is
a health risk, and we meet patients exposed who suffer
from the relevant health issue, we can infer that these
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patients were exposed to that factor. Finally, context-dri-
ven approaches entail abduction [(Ferneda et al., 1995)
and references therein]. A crude view is to see this
approach as a trial-and-error method familiar only to
those who have delved into artificial intelligence – for
example facing a forest at night you shoot in the dark, if
you hear a cry, then you have a handle to start explor-
ing; if not, you try again.
However, conceptual progress is not linked solely to

the data – in fact, data might indeed form a burden.
Conceptual processing results in metadata in a manner
that is not always explicit. For instance, the process of
genome annotation links local sequences to metadata
such as biochemical information. As this fundamentally
connects genotypes to phenotypes, this is highly rele-
vant to biological enquiry. This calls for a specific prereq-
uisite: we must have initiated data collection with a
scientifically meaningful purpose in mind (that is, not
solely aiming at facilitating diagnosis), which is meant to
answer, as widely and accurately as possible, specific
and valid questions posed at the onset of the experiment
collecting the data – and definitely not a posteriori. This
constraint strongly implies that highly relevant metadata
should always be collected prior to data collection.
All the same, we are flooded by genome data merely

because sequencing has become so accessible and cost-
effective (Schmidt and Hildebrandt, 2017), with significant,
large-scale efforts regularly making the headlines of popu-
lar dailies. In early days, when sequencing was extremely
tedious, sequences were obtained with a specific view in
mind, linking them in a straightforward way to relevant and
rich meta-information. With rapid progress and radical
improvements of sequencing techniques, it became
important to start collecting further informative annota-
tions, some of which might be less obvious. The creation
of databanks has always played a central role as refer-
ence repositories of all biological information that could be
linked to DNA and protein sequences. This process of
submission and re-distribution was first performed manu-
ally until, not without some controversy, journals decided
to start accepting articles containing novel sequence data.
Their condition was that all molecular information would
become publicly available so that data sharing would auto-
matically feed into the collection process (Roberts and
Koetzle, 1989; Blaxter et al., 2016). After a long series of
discussions and efforts, this resulted in the establishment
of the International Nucleotide Sequence Database Col-
laboration [INSDC (Karsch-Mizrachi et al., 2018)],
exchanging and updating sequences on a daily basis
between three entry points, DDBJ in Japan (Kodama
et al., 2018), ENA in Europe (Silvester et al., 2018) and
GenBank in the United States (Benson et al., 2018).
As sequencing became cheaper and easier, it became

manifest that manual annotation could not keep up with

output and that one had to resort to automatic annotation
[for early attempts, see (Staden, 1977; Gingeras and
Roberts, 1980; Bossinger, 1988; Scharf et al., 1994)].
Unexpectedly, during the early days of sequencing, it
became evident that sequence libraries already contained
similar entries, usually collected via a common functional
approach. Such observations led to the core idea that
homologous sequences should code for similar structures
and related functions. This working hypothesis has not
been comprehensively tested, although it appears to gen-
erally have been correct with notable, and sometimes
detrimental, exceptions.
As a consequence, it was essential to measure similar-

ity in a fast and efficient way. This resulted in the unprece-
dented success of the BLAST program (Altschul et al.,
1990), which, used under a variety of flavours, is still the
most efficient and widely available way to compare
sequences. Furthermore, similarities were grouped
together using BLAST bidirectionally, creating the Clusters
of Orthologs that are still in use (Galperin and Koonin,
1999), the TRIBEs resource (Enright et al., 2003) and
others that followed. A family of tools, critical both for the
identification of important sites in proteins and their evolu-
tion, allowed the multialignment of protein sequences (Lip-
man et al., 1989). These are now used in a large variety of
software that rest on specific hypotheses monitoring simi-
larities and evolution [see (Pearson et al., 2017; Zam-
brano-Vega et al., 2017; Sievers and Higgins, 2018) for
recent developments in multiple protein sequence align-
ment]. Further tools, in an unlimited number of flavours,
are now used to investigate sequences with the aim of
predicting their function, implicitly validating the inference:
‘sequence tells structure tells function’.
A key requirement remains that the functional output of

all relevant methods should be connected to sequences.
This implies that data are not the raw sequences but tidied
up sequences already associated with method-driven
metadata and multiple classification schemes (Ouzounis
et al., 2003). This requirement goes hand in hand with the
essential compression step that has become key to
streamline the huge amount of sequence data that is
flooding computer memories (Cochrane et al., 2013). To
sum up, data must be split and grouped into functionally
relevant data families. This requires data structuration –

that is further organization of data into appropriate struc-
tures (Wang et al., 2002; zu Siederdissen et al., 2015;
Kruse et al., 2016 ).

Data structures

Genome sequence data are strings of the four DNA
nucleotide bases. Experimentally obtained, they are
associated with a first range of metadata such as
sequence quality, fragment length or methodology-
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oriented paired-ends sequencing (Bianchi et al., 2016).
Subsequently, when sequences begin to be organized
with the aim of specific biological understanding, we
have long reads, contigs and also repeats, G+C content,
tetranucleotide frequencies and a plethora of sequence
descriptors [see (Weinel et al., 2002) as an example].
Furthermore, genome sequences are implicitly associ-
ated with available knowledge about biology, based on
the notion that they must code for genes with their regu-
latory regions and especially protein coding sequences
(CDSs). More recently, a large family of RNAs [regula-
tory ‘noncoding’ RNAs (Hor et al., 2018), riboswitches
(Serganov and Nudler, 2013), ribozymes (Wilson and Lil-
ley, 2015) and other miscellaneous RNAs (Nelson and
Breaker, 2017)] completed the picture. As relevant meta-
data, this involved the tagging of gene sequences for
control regions (Nikolaichik and Damienikan, 2016) as
well as other elements of genome organization, and of
course the source of the sequence, often a scientific arti-
cle. Taken together, all these pieces of metadata must
form an explicit data structure that will be recognized by
a variety of database schemas.
The core data object associated with multiple metadata

tags is usually a DNA sequence, the ‘genomic object’
(Fig. 1). However, in some databases the choice is differ-
ent: the Genes section of FlyBase includes information on
Drosophila genes that has been curated from the literature
and sequence databases. In this way, the scientific article
is the key field connecting other fields together in the data-
base (Gramates et al., 2017). It should be obvious, then,
that input and extraction of information from such diverse
data collections will lead to widely different pathways to
discovery. An inconspicuous but immense (ongoing) effort
in this domain is undertaken by all participants of the
INSDC (Karsch-Mizrachi et al., 2018), who endeavour to
set up data structures in order to collect and make freely
available nucleotide data sequences described in scien-
tific articles, patents or deposited directly at one of its
three entry points (DDBJ, ENA, GenBank). An important
point here is that how data is structured has a far-reaching
impact on data annotation quality. Data structures affect
the ease with which a community of investigators can sub-
mit annotations. They can facilitate, or alternatively pre-
vent, accurate annotation. Furthermore, discoveries made
in experimental laboratories depend heavily on the quality
of the data annotation, organization and user-friendliness
of a variety of databases designed for the community by
investigators essentially unknown to the end users. Work
on data structures is therefore vital for biological and medi-
cal research but rarely brought into the limelight. Here, for
the sake of brevity, we restrict our discussion to prokary-
otic genome data.
A further step involving data structuration appears

when a subset of genome-derived data is organized into

specialized databases. A first key step in this effort was
the attempt to create data structure-aware databases of
proteins, as developed by SwissProt (Bairoch, 1982; Bair-
och and Boeckmann, 1991) and the Protein Identification
Resource [PIR (Barker et al., 1983; Sidman et al., 1988)],
now united as the UniProt protein annotated database
(UniProt Consortium, 2018). Subsequently, query lan-
guages devoted to biological sequence management
such as the ACNUC language (Gouy et al., 1984) were
developed. First microbial databases with a minimal data
structure were then meant to make whole genome
sequences and annotation available to the community
(Higgins and Danchin, 1990; Kunisawa et al., 1990). A
further refinement was based on statistical analyses of
the genome structure, leading to the discovery of the key
role of horizontal gene transfer in bacterial genomes
(Medigue et al., 1991). Links with the previously known
restriction maps (Kroger et al., 1990; Medigue et al.,
1990) allowed the building up of a more evolved data
structure that resulted in the reference Colibri database
for the Escherichia coli genome (Medigue et al., 1993)
based on the concept of genomic object as its core item.
This database also combined gene annotation with speci-
fic methods meant to extract biologically relevant
sequence-based information, as first illustrated in the
case of Bacillus subtilis (Moszer et al., 1999). With the
explosion of microbial genome data, it now seems essen-
tial that new work begins to build up on these past works
[for a discussion see (Borriss et al., 2018)] at a time when
it appears that interest in building up specialized data-
bases relying on high level data structures is vanishing.

The annotation process

Annotation is the action of associating specific metadata
to entries in a data collection. It heavily depends on the
data structure (you do not annotate an object that has
not been previously explicitly identified and properly
defined). A previous review in this journal identified a
standard flow chart for the annotation process (Siezen
and van Hijum, 2010). In this section, we restrict our
brief review to the automatic annotation of genomic
objects (genes and other specific features identified as
nucleotide sequences) and some of its consequences.
Annotation can be made automatic by chaining a series
of methods into a ‘pipeline’ that begins from identifying
the genomic object. The most common object is the pro-
tein coding sequence (CDS), located within an open
reading frame (ORF), i.e. with a proposed translation
start site. A popular software, PRODIGAL, created at the
Department of Energy Joint Genome Institute, is often
used to identify bacterial translation start sites (Hyatt
et al., 2010). However, despite its qualities, it remains
imperfect as our knowledge advances. For instance, the
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genomic G+C content is highly variable, and this may
influence ribosome initiation addressing so that rule-
based approaches mimicking biological behaviour should
still be explored (Makita et al., 2007). Automatic valida-
tion of starts can be obtained via alignment of the CDSs
of multiple orthologous genes (the initiation codon and
ribosome binding sites should be somewhat conserved).
Routinely, however, much of automatic annotation still
conflates CDSs and ORFs and this is perpetuated by

the unfortunate habit of many investigators to use the
name ORF instead of CDS. This introduces an ambiguity
that frequently contaminates annotation at a very early
step, with disastrous consequences downstream, includ-
ing readily avoidable yet catastrophic mistakes that can
propagate to review-level articles (Kyrpides and Ouzou-
nis, 1998). Automatic identification of translation starts
sometimes requires manual annotation. An example of
this situation, fairly conserved in Bacteria, is the

ID   NC_000913; SV 2; ; DNA; ; PRO; 4639675 BP.
XX
AC   NC_000913;
XX
DE   Escherichia coli K-12 MG1655, chromosome circular, complete sequence
XX
OS   Escherichia coli K-12 MG1655
OC   .
XX
FH   Key             Location/Qualifiers
FT   source          1..4639675
FT                   /db_xref="taxon:511145"
FT                   /db_xref="MaGe/Organism_id:1482"
FT                   /db_xref="MaGe/Species_code:ECK12M"
FT                   /db_xref="MaGe/Sequence_id:2672"
FT            /mol_type="genomic DNA"
FT                   /organism="Escherichia coli"
FT                   /strain="K-12 MG1655"
FT   gene            190..255
FT                   /gene="thrL"
FT                   /locus_tag="b0001"
FT   CDS             190..255
FT                   /db_xref="MaGe:11137926"
FT                   /experiment=" publication(s) with functional evidences,
FT                   PMID: 3112412, 6811557"
FT                   /function="1.5.1.8 : Threonine"
FT                   /function="3 : Regulation "
FT                   /gene="thrL"
FT                   /inference="ab initio prediction:AMIGene:2.0"
FT                   /locus_tag="b0001"
FT                   /note="Evidence 1b : Function from experimental 
evidences
FT                   in the studied species; PubMedId 3112412, 6811557; 
Product
FT                   type l : leader peptide"
FT                   /note="/Experimentally based evidence: the ThrL leader
FT                   peptide controls by attenuation the expression of the
FT                   thrLABC operon, which encodes four out of the five 
enzymes
FT                   of threonine biosynthesis pathway, in response to the
FT                   threonine and isoleucine level; ThrL is a 21 aminoacid long
FT                   peptide, with eight threonine and four isoleucine residues
FT                   as regulatory points during attenuation;"
FT                   /product="thr operon leader peptide"
FT                   /transl_table=11
FT /translation="MKRISTTITTTITITTGNGAG"
…..

Fig. 1. The beginning of the Escherichia coli model genome ENA record.
Similar records are deposited at DDBJ and at the NCBI. The file goes through all annotated genomic objects (here a gene) with specific fields
recording information associated with the sequence data. Throughout several decades of work, the INSDC partners progressively defined new
fields in the record meant to inform the user about the information available at the time of the record depository.
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synthesis of the two subunits of aspartokinase LysC.
The alpha subunit CDS (lysCA) starts with an upstream
AUG codon, while the beta subunit CDS (lysCB) starts
from a codon located way downstream within the same
ORF (Kalinowski et al., 1991). In some situations, a pro-
grammed frameshift within a CDS will produce two pro-
teins, beginning with the same start site but with a
different ORF starting at a specific position. This is the
case of the coding region of subunits gamma (DnaX)
and tau (DnaZ) of E. coli DNA polymerase clamp loader.
The tau chain is the full-length protein; the shorter
gamma protein is created from within the tau reading
frame by a programmed ribosomal -1 frameshift over
codons 428 and 429 followed by a stop codon in the
new frame (Tsuchihashi and Kornberg, 1990).
Subsequently, the gene sequence is linked to a vari-

ety of features, usually meant to propose a function for
the gene and related to specific phenotypes (Xiao et al.,
2015). Most standard annotation efforts rest on pipelines
that apply some form of majority rule, where a multiple
alignment is performed to derive similar sequences and
the most common annotation is accepted (Ekblom and
Wolf, 2014). In such a case, there is some room for the
person coordinating the annotation process to influence
the outcome, in particular via the use of the workflow in
a recursive way – that is a first output is used as an
input to run the workflow again. This will allow, for exam-
ple, correction of CDS start sites and changes in the
domain organization of the corresponding gene products.
This work results in a better annotation, but, of course,
this is considerably more time consuming than running
an automatic pipeline. An example for bacteria is the
workflow used as an input to the MicroScope annotation
platform (Vallenet et al., 2017).
All this progress in the early sequence annotation

methods was achieved using the transitive induction rea-
soning mentioned above: what looks similar in structure
(sequence) should also code for similar functions. This
assumption has had a strong implication in terms of
improving our biological knowledge. Progress happened
mainly when experimental evidence associated a new
function to a novel sequence, against a background of a
highly variable number of literature reports linked to the
first species that were sequenced (Janssen et al., 2005).
In this context, at a meeting organized in 1991 by the
European Union in Elounda (Crete) a completely unex-
pected observation rocked common knowledge: in the
novel sequences present both in a large contiguous
piece of the B. subtilis genome and in a full chromosome
of yeast, more than half of the genes did not look like
anything previously known. These Elusive, Esoteric,
Conspicuous (EEC) genes suddenly showed that both in
terms of sequence and function a vast domain of the
gene complement of organisms was entirely unknown

(Danchin, 2003). This required specific approaches to fill
in the corresponding holes in our knowledge. Despite
some drop in the discovery of novel gene sequences,
extant metagenomic studies show that the situation did
not change drastically since then. This precludes annota-
tion by similarity and we still must annotate newly dis-
covered genes from scratch (Iliopoulos et al., 2001). As
a consequence, experimentally based evidence remains
a critical issue (Chang et al., 2016).
In parallel, many experiments revealed that annotation

by similarity kept producing errors that percolated
throughout databases (Promponas et al., 2015). Many of
these erroneous annotations still lurk in public databases
and have increased in size purely by similarity searches
and ‘novel’ assignments (Gilks et al., 2005). The combi-
nation of ignorance and percolation of errors can be
vividly illustrated by the fact that, quite recently, the first
synthetic genome of a bacterium (Hutchison et al., 2016)
was imperfectly annotated despite the importance of the
experiment and the quality of the sequencing team.
Annotation based on accurately annotated model gen-
ome databases improved the outcome, demonstrating
that there is a need for such knowledge (Danchin and
Fang, 2016). A key question now arises: erroneous
annotation is akin to misinformation, systematically lead-
ing investigators to explore wrong tracks. To be sure,
automatic annotation, which derives from a variety of
software and workflows, looks more and more as ‘the
wisdom of the crowd’. Yet, we all know (or should be
aware of the fact) that knowledge cannot result from an
(anonymous) majority vote (McKee and Stuckler, 2017;
Lazer et al., 2018). Certainly, using a piece of informa-
tion that is frequently right but often wrong has worse
consequences than entirely wrong information (which
can be discarded right away).

Accurate annotation: against majority

Data collection and analysis of genomic sequences, pro-
ducing automatic annotation based on a majority rule,
may result in many pitfalls. An interesting study in the
domain of knowledge acquisition and propagation shows
how the majority opinion being often wrong (this can be
an obvious problem for direct vote in a democracy, as
we frequently witness these days) it may still be possible
to correct the vote of the crowd in a way that will restore
some credibility to the knowledge output (Prelec et al.,
2017). A widely spread solution (often used for peer
review, as we might notice) is to ask all the persons who
are involved in producing pieces of knowledge to
express their opinion as to whether they are confident in
their own response to the task. Unfortunately, this does
not work much better than believing the crowd. People
tend to be confident in what they say, even when they
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are wrong. How could we proceed, then? Prelec and co-
workers suggest to ask people to predict among several
possible answers what they think will be the majority
answer proposed by others and subsequently select the
answer that gained more support than expected. Appar-
ently, this ‘surprisingly popular’ approach gives results
that are much better than those collected from a direct
poll (Prelec et al., 2017).
Yet, we are still far from real wisdom and it may be

somewhat difficult to implement Prelec’s approach in
an automatic annotation pipeline. Furthermore, when
exploring a new dataset we need baselines to test,
using well-established knowledge and in realistic condi-
tions, whether the outcome of any procedure gives the
relevant answer or fails to do so (Danchin and Bra-
ham, 2017). Unfortunately, this type of internal control
is seldom performed, except perhaps in a variety of
learning techniques, where part of the data sample is
kept aside and used to test, after the analysis,
whether the answer has remained stable. This makes
the basis of bootstrapping approaches (Henderson,
2005; Bujkiewicz et al., 2013) as well as jackknife vali-
dation tests in learning approaches (Chou and Zhang,
1995) or cross-validation (Arlot and Celisse, 2010). A
common pitfall is, again, the fallacy of the average
(Denny, 2017): annotating a genomic object using an
average set of genome clades is often misleading.
Non-average annotation is particularly sensitive to the
large component of genomes that arises from horizon-
tal gene transfer. There is also a considerable sam-
pling bias in the genomes retained as interesting
because of our anthropocentric view of what life is
(just observe the number of genomes from pathogenic
bacteria in a real world where such organisms are in
fact a tiny minority).
All these drawbacks have important consequences for

the popular domain named ‘systems biology’, when it
solely rests on unvalidated gene annotations. Often-
times, systemic approaches are offered (implicitly) as a
way to explore the wisdom of the crowd, in a situation
where they stem from very incomplete knowledge. For
this very reason, we ought to propose explicit tests for
the validity of approaches of this kind, again via the cre-
ation of baselines built on knowledge that is certain, but
still unfamiliar to the majority of investigators. This
requirement should apply at least for system biology
studies of metabolism. Here is a straightforward exam-
ple. DNA synthesis is a growth requirement for all cells.
Remarkably, synthesis of deoxyribonucleotides does not
follow a path that crowd wisdom would have predicted.
Indeed, the synthesis of deoxyribonucleotides starts with
ribonucleoside diphosphates (NDPs), not triphosphates
(NTPs). This represents a parallel thought process with
the ‘widely unexpected’ capital of Pennsylvania

(Harrisburg, rather than the expected Philadelphia or
perhaps Pittsburgh) used in Prelec’s study discussed
previously. The surprising involvement of NDPs in DNA
synthesis turns the corresponding pathways into a sim-
ple testbed that allows us to investigate whether a model
can predict anything (a common feature of highly redun-
dant models where there are so many adjustable param-
eters that almost anything can be ‘predicted’). Indeed,
using NDPs as precursors has a remarkable conse-
quence for the synthesis of deoxyribocytidine diphos-
phate, then triphosphate, obviously required to make
DNA. It makes DNA synthesis impossible with straight-
forward metabolic pathways. This is because the de
novo synthetic pathway of cytosine nucleotides makes
CTP directly via ATP-dependent transamidation of UTP,
never going through CDP (Fig. 2).
Where does the necessary CDP come from, then?

Any valid model of metabolism should predict that,
unless the model includes specific CDP or CMP
sources, DNA synthesis should not be possible: nucle-
oside diphosphokinase, while reversible, is driven in the
NTP direction by the large excess of ATP over ADP in
the cell (unless perhaps compartmentalized in an ATP-
deficient region of the cell), and the cell maintenance
diphosphatase NudG [YnjG (Fujikawa and Kasai, 2002)]
which might produce CMP from CTP has been selected
for preferring modified nucleoside triphosphates as sub-
strates (Fig. 2). The main solution found by cells is that
RNA, a family of macromolecules, not a small metabo-
lite, is involved in the process: DNA synthesis requires
RNA turnover. This key fact is rarely taken into account

Fig. 2. Pyrimidine metabolism and synthesis of DNA precursors.
Synthesis of DNA uses NDPs as precursors. Pyrimidine biosynthe-
sis does not proceed de novo via CDP, producing directly CTP
instead. ATP large excess over ADP does not allow nucleoside
diphosphokinase to make CDP so that CDP can only come from
RNA degradation, via RNAses and polynucleotide phosphorylase.
The maintenance pyrophosphate hydrolase (NudG) would produce
CMP from CTP, but it is a moonlighting activity derived from its
major substrates which are CTP derivatives modified at position 5
of cytosine.
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in standard metabolism pathways. Yet, if included in the
model, it will provide a straightforward flux diverted to
DNA synthesis, via hydrolysis or phosphorolysis (Dan-
chin, 1997). Phospholipid turnover may also contribute
to this pathway, but in a limited way. Again, this is sel-
dom a feature identified by metabolic models, which,
therefore, show in a vivid way that they are not con-
structed so as to be falsifiable in Karl Popper’s terminol-
ogy (Popper, 1959 [trad 1935]).
The example above illustrates that specific collection

of sequences need to be accurately annotated, with an
emphasis on salient, discriminating features. This was
the raison d’être of the SwissProt protein database,
where protein sequences were directly matched with
experimental data (Bairoch et al., 2004). Emphasis on
connection with properly annotated databases of experi-
mental observations has repeatedly been highlighted but
with not always with positive outcomes. Along this line,
Roberts and co-workers have initiated an effort to con-
struct a database of experimentally validated gene anno-
tations, COMBREX (Chang et al., 2016). Others have
proposed species-specific, not protein-centric (re-)anno-
tation efforts (Ouzounis and Karp, 2002). While this type
of validation is key to allow significant progress from
data accumulation, only very few investigators have
been willing to devote a significant part of their work to
this essential activity. A new business model in this field
is required to create relevant incentives, so that we
reach a sustainable level of experimentally validated
annotations.

Statistical approaches

Even without investigating the way samples are
obtained, where an unlimited number of systematic
errors are the rule – for example, via biases in collecting
sequence data (Mavromatis et al., 2012), a typical output
of genome studies, big data sampling, does not by itself
allow investigators to make discoveries. A vivid illustra-
tion of why this might not work is to understand why a
neuroscientist attempting to understand the function of a
microprocessor, while allowing any kind of big data mea-
surements on its behaviour, would be doomed to fail
(Jonas and Kording, 2017). Genome annotation is meant
to provide enough information so that, by combining
knowledge associated with genes, we could understand
how a genome works in enabling the organism (here,
essentially the microbial cell) to behave (i.e. explore the
environment and proliferate) in a variety of niches.
Important features are, therefore, the accurate definition
of primary data elements (sequences and structures),
the identification of consistent clusters of genomic
objects (via co-evolution), as well as connectivity
between them (functional complexes).

Descriptive (exploratory) statistics

As discussed above, we see that the majority rule can-
not, by itself, produce reliable annotations for arbitrary
collections of sequences. A large number of statistical
approaches have been used to improve the quality of
the output in parallel with automation. An immediate fol-
low up of the majority rule is provided by Bayesian
approaches (Bujkiewicz et al., 2013). What these statisti-
cal techniques do is to assert, all things being kept
equal, that we should find this or that feature with a
probability which is subsequently chosen to be com-
pared to a threshold value, commonly accepted by most
investigators. While this strategy can be fruitful in many
cases, the condition ‘all things being kept equal’ implies
that this approach cannot lead to discovery, revealing
unexpected views on the role of genomic objects, in par-
ticular their connection to other such objects. It is also
unfortunate and commonly observed in biology that
things are rarely kept equal, except in highly related
organisms and environments. In a way, living cells are
extremely ‘imaginative’, challenging our common sense
expectations. Just observing the shape of bacteria (ex-
pected to be quite ‘uninteresting’), we marvel at their
bewildering variety of forms (Kysela et al., 2016). Yet,
this seems to be due to a specific constraint: spherical
membranes tend to be growing with a growth rate based
on the square power of the cell’s radius, while the meta-
bolic pressure creating a cytoplasm goes as the cube
power of this radius (for a sphere). As a consequence,
membranes tend to develop into shapes that are far from
that of a sphere (Harris and Theriot, 2016). Subse-
quently, shapes, and odd shapes in particular, will open
the door for novel functions, for example, see Thiovulum
majus which uses an unusual hydrodynamic power to
get the environmental water medium to approach the cell
and feed it (Petroff and Libchaber, 2014).
Bias in data choice (our anthropocentric view of

microbes highlights pathogens) as well as bias in data
importance (abundance of species, versus relevance of
species) plagues all statistical approaches. There are
also many biases in statistics because a probability
depends on the model of ‘randomness’ which is used in
the background, often unknown to the authors (see Ber-
trand’s paradox, Fig. 3). Another difficulty, rarely realized
by many, is that the vast majority of statistical
approaches rely on specific properties of the data sets.
As a matter of fact, data samples are expected either to
differ because of a large variety of additive causes, or of
multiplicative causes. The former case should give a
normal (i.e. Laplace-Gauss) distribution of data items in
the dataset, while the latter should give a log-normal dis-
tribution. As a consequence, one would expect that
investigators begin, before embarking on any type of
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statistical analysis, by plotting their data distribution and
checking whether they are normal or log-normal, com-
pletely haphazard or belong to one of the many other
distribution shapes that have been explored by statisti-
cians. This simple but essential step is rarely docu-
mented in articles reporting on big data collection.
Furthermore, data pre-processing is another step of criti-
cal importance (Karaman, 2017). While rarely made
explicit, it should be an absolute requirement for all big
data collections.
To make the most out of data its connection to meta-

data is a necessity. This is often displayed as involving
matrices made of p items endowed of q qualities (com-
monly named variables), with p usually very large (or in
‘omics’ data often with q >> p as well). A good many
multivariate analysis approaches exist to explore this
type of data (Lebart et al., 1984; Neely et al., 2012,
2013). Their role is to provide a statistical procedure to
explore the data in a pertinent way. In exploratory statis-
tics, the aim of the method is to try and reduce the num-
ber of qualities (viz. variables) that contribute to the data
order. Mathematical methods used to this end rest on
specific hypotheses about the distribution of entities
within the data. Normal or log-normal datasets have
been used to generate a variety of multivariate analyses
based on this widespread yet limited statistical con-
straint. Among those, Principal Component Analysis

(PCA) is quite popular. With this technique, the measure
that monitors the distance between entities of interest
submitted to analysis commonly uses the variance of
each quality or of a linear combination of qualities as a
normalization factor. This is a convenient measure, but
with only indirect links to the investigated processes
(Katagiri and Glazebrook, 2009). To be sure, this does
not always fit with the actual information embedded in
the data (Benzecri, 1973). In contrast, Correspondence
Analysis (CA) makes use of chi-square distances for
classification of objects without a priori knowledge of the
classes (Hill, 1974). This allows introduction of a valid
information measure between characters (Danchin,
1996), which lacks in PCA (Fellenberg et al., 2001). CA
should thus be the preferred method for the study of
large data sets that comprise qualitative variables linked
to quantitative data. The measure used, indeed, creates
a dual space that allows investigators to consider items
and qualities as equivalent, so that the same output can
be used to visualize simultaneously individual items and
their qualities (Fig. 4). This is of considerable help to
associate biological knowledge to large datasets.
Datasets often deviate from the normal or log-normal

distribution. In particular the distribution may be asym-
metrical, have long tails or both. Asymmetrical heavy-
tailed distributions may follow Cauchy’s law that
accounts of the ratio of two independent variables, and

What is the probability that the length of the 
segment in the circle is longer or shorter than the 

side of the equilateral inscribed triangle?

60°
60°

Half of the radius

One third of the space under the tangent Mid-chord outside the half radius circle

Probability
     1/2

Probability
     1/3

Probability
     1/4

60°

Fig. 3. Bertrand’s paradox.
Finding a solution to a straightforward probability question may depend on the context. Investigating the probability for a line to cross a circle
with a length smaller than that of the side of the inscribed equilateral triangle gives different answers if one considers intersection with a radius
of the circle (1/2), position with respect to a summit of the triangle (1/3) or intersection with the homothetic circle with half the circle’s radius
(1/4).
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this is equivalent to Student’s variable of degree 1, com-
paring well with standard statistical tests (Zimmerman
and Zumbo, 1990). Gumbel’s law is used for analysis of
the distribution of extreme values in a data sample. It
has been shown to be important to understand the valid-
ity of sequence alignments compared using the Smith–
Waterman algorithm (Comet et al., 1999; Bacro and
Comet, 2001). In metagenomic studies, the zero-inflated
Poisson model accounts for random events containing
excess zero-count data (Liu et al., 2016). Weibull’s law
is used for samples monitoring entities that degrade with
time, become better with time or exhibit only a random
degradation pattern. It is used for data describing adhe-
sion and transmission of bacterial communities, as well
as reliability of items qualities in the course of time (Gav-
rilov and Gavrilova, 2001; Heathcote et al., 2004; Gus-
naniar et al., 2018). Typically, one should decide of a
specific statistical multivariate analysis on a case-by-
case basis, remembering that the outcome of a study
will heavily depend on this critical choice.
Yet, other methods do not require normality. Let us

point out just one of those here, as it may help us make
some sense from biological data even in the absence of
well-formulated hypotheses. Independent Component
Analysis (ICA) is a dimension reduction technique

(Jutten and Herault, 1988), sometimes nicknamed ‘the
cocktail party’ multivariate analysis. The idea is the fol-
lowing. Consider a cocktail party with some 1000 guests
and five microphones: would it be possible to reconstruct
the conversations of some of the guests? The answer is
positive. It is based on the fact that conversations are
essentially independent from one another (except for
loudness, which is obviously correlated to the number of
guests but does not affect the independence of the con-
versations otherwise) so that one can use the existence
of independent factors in multivariate data and decom-
pose an input data set into statistically independent com-
ponents. Interestingly, this fits with data that are not
distributed along normal or log-normal patterns. ICA can
reduce the effects of noise or artefacts of the signal and
is ideal for separating mixed signals. Widely used for
image analysis, ICA was used for microarray analysis to
extract expression modes of genes (Liebermeister, 2002;
Zhang et al., 2005). A strong reason for including it here
is that the validity of the method in molecular biology
could be confirmed via its substantiation in bacterial tran-
scriptome data. Indeed, genes belonging to operons are
found with ICA to cluster together despite the fact that
the operon information has not been used as input or a
feature of the data, providing thus an independent inter-
nal check of relevance (Carpentier et al., 2004).
These methods permit investigators, under some con-

ditions, to build up valid hierarchical clusters grouping
together items with similar properties (linked to the vari-
ables in the study). The underlying idea, due to Vicq
d’Azyr (Vicq d’Azyr, 1792), is that one can construct per-
tinent classes where objects do not share simultaneously
all the characters defining the objects in a given class
and nevertheless belong to the same class because
they share most of the characters defining a class (Ben-
zecri, 1973). Many approaches can be used to build up
clusters. A method used sometimes, such as conjunctive
consolidation, arranges data into clusters in a semi-auto-
mated way (introducing knowledge of the investigator). It
has been named ‘multivariable analysis’ because it uses
data from multiple variables to ‘explain’ the behaviour of
a very small number of outcomes (Neely et al., 2013). In
general, however, investigators aim at having an auto-
matic way to construct clusters of relevant biological
importance. Perhaps the most often used techniques are
those related to K-means, where, starting from a random
set of possible centres of gravity of clusters one progres-
sively moves them to allow the formation of consistent
clusters. The investigator can influence the outcome by
deciding, at the outset of the computation, the number of
expected clusters (Do and Choi, 2008). Performing this
computation while increasing this number allows one to
find a situation that can be regarded as optimal, consid-
ering the dataset and based on measures such as the

Fig. 4. Correspondence analysis (CA) of the amino acid composi-
tion of a proteome [redrawn and modified from (Riley et al., 2008)].
In CA, the data and their qualitative variables can be swapped so
that they can be visualized within the same spatial representation.
Here, each dot represents a protein extracted from the proteome of
a bacterial species, and spatial distribution of the amino acids is
superimposed on the corresponding cloud of points that differenti-
ates between membrane proteins (blue) and the rest of the pro-
teome. It can easily be observed that large hydrophobic amino
acids (phenylalanine, tryptophan, methionine and leucine) are strong
markers of membranes, while charged and hydrophilic residues (as-
partate, glutamate, lysine and asparagine) would be concentrated
within cytoplasmic proteins.
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silhouette, a measure of clusters cohesion (Kim and
Kim, 2017). Labelling the data within the clusters follow-
ing their construction with metadata that have not been
involved in the computation allows one to examine
whether they are biologically relevant, paving the way to
inferential statistics semi-supervised K-means (Bair,
2013).

Inferential statistics

Once the data are structured, it may be of interest to go
further. The goal of a multiple logistic regression is to
find an equation that best predicts the probability of a
value of the y variable as a function of the x variables. A
standard inference procedure measures the independent
variables on a new individual and estimates the probabil-
ity of it having a particular value of the dependent vari-
able. This can be evolved further, using multiple logistic
regression to understand how the independent variables
are functionally linked to the dependent variables, in an
attempt to discover what might cause the probability of
the dependent variables to change. However, one needs
to be very careful because inferences are plagued with
numerous pitfalls (Shen et al., 2014). Finally, big data
studies may sometimes end up in a situation exactly
opposite to that explored by usual multivariate analyses:
there may appear a multiplicity of features, much larger
than the items in the sampling data set; this yields over-
fitting with multiregression techniques. Partial Least
Square (PLS) regression is an approach that avoids the
overfitting outcomes of most other approaches in this sit-
uation (Fort and Lambert-Lacroix, 2005; Worley and
Powers, 2013).
At this point, most statistical approaches have been

used to provide a diagnostic structure of the data. This
diagnostic can be extended to the construction of mod-
els that will illustrate in a predictive way the behaviour of
the data if more data are included. However, this will not
provide an explanation of the reasons why the data have
been clustered in this or that form. Further knowledge
must be included to advance a preliminary outcome, in
particular via supervised learning. As an example, ran-
dom forests build up many decision trees and end up in
the majority rule (remember the caveat previously dis-
cussed), choosing the tree that got the most votes (Brei-
man, 2001). The process produces interpretable models
that are invariant under scaling, robust to inclusion of
irrelevant features but can overfit (low bias and very high
variance). Random forests, at the expense of inter-
pretability, also support decreasing the variance by
aggregating votes of many trees each built on random
samples with replacement of the training set. Support
Vector Machines (SVM) are yet another supervised
learning algorithm that finds a hyperplane that represents

the largest separation (also called margin) between the
samples of two classes (Ben-Hur et al., 2008). The SVM
technique relies on the definition of distances (often
Euclidian) to output a model building an hyperplane that
has the largest distance to the nearest training data point
of any class. Such max-margin hyperplane is completely
determined by those vectors which lie nearest to it and
are called ‘support’ vectors.

Sequence, structure, function

A prevailing belief across modern molecular biology is
that a gene sequence will define the structure of the
gene product and that structure, in turn, will designate a
unique function. Oblivious to those who subscribe to the
above view is that this logical sequence assumes that
living organisms have somehow been designed to per-
form what they do. In other words, the strong version of
the motto ‘from sequence to structure to function’ directly
leads to intelligent design. By stark contrast, we stress
here that annotating properly gene sequences must start
with a first constructive principle of no intelligent design
in biology. To some extent unexpectedly, this precondi-
tion has many surprisingly positive consequences in
terms of allowing us to understand biological functions. If
one accepts this as a principle (‘there is no design to be
expected’, somewhat in the way of the common princi-
ple: ‘the laws of physics are the same everywhere in the
universe’, there is no centre, there are no special laws),
we are led to a remarkable set of practical conse-
quences. Some illustrations follow.

Fixing carbon dioxide

Biology obeys the laws of physics and, in particular, the
second principle of thermodynamics, which states that
every material system will tend to explore all reachable
space positions and energy levels – this exploration has
often been misidentified as implying disorder, forgetting
that order requires an observer to distinguish it from the
background (Danchin, 2003). In addition, living organ-
isms manage information as an authentic currency of
physics (Landauer, 1996). Organisms use information to
channel the exploration of the universe within the bor-
ders of defined material systems. To define this trajec-
tory, they use Landauer’s principle that establishes that
information can be created without energy consumption
(Landauer, 1961). To follow suit and carry on, living
organisms must, however, use energy to erase the
memory of the processes they used to create that partic-
ular information – that is reset it to its original state. This
implies that creating functions can be a straightforward,
yet highly unforeseeable process. This view should be
developed further, as ‘function’ is a very deep concept
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(Allen et al., 1998). Here we use the concept is the fairly
loose way commonly used by biologists.
Consider as a first example the fact that living organ-

isms are based on carbon chemistry, together with the
information that carbon dioxide is a readily available,
unused, carbon store. ‘Fix carbon dioxide’ becomes an
obvious function of immense interest for life to develop.
Yet, this does not tell us how this function could be
implemented. Any function is built up from material sys-
tems, so that biological systems are compelled to use
what material entities they have at hand or in fact need
to discover. This straightforward observation makes one
realize that the obligatory interaction of this information
management with matter leads necessarily to a broad
range of opportunities. A stark analogy is a stranded per-
son on a desert island, a result of a shipwreck disaster:
all available means, materials and options are consid-
ered to achieve survival, no matter what the design limi-
tations may be. This is the ‘function first’ driving force for
survival and in fact reflects much of the tinkering aspect
of biology. Even a general informational principle (such
as the rules and processes involved in coding nucleic
acids into proteins, the Central Dogma of Molecular Biol-
ogy), while effective after the fact, is constrained to be
embodied into highly specific material entities – in our
case the quasi-universal rules of the genetic code. And
since no one has ever designed this process, this
embodiment is, within the constraints of matter, of
course, purely ad hoc. It makes use of all means at
hand.
Another striking illustration is Ribulose Bisphosphate

Carboxylase Oxygenase (RuBisCO), the most abun-
dant enzyme on the planet, responsible for the fixation
of carbon dioxide (Feller et al., 2008). This enzyme,
recruited long before photosynthesis (Yokota, 2017), is
still today very slow despite its functional necessity
and at least a billion years of evolution. It is plagued
by a parasitic side reaction that uses oxygen, within
the very organisms that produce it while fixing carbon
(Erb and Zarzycki, 2018). In other scenarios of struc-
ture recruitment for carbon fixation, more efficient but
still slow systems have naturally evolved at least on
five further occasions, recruiting widely different
enzymes (Fuchs, 2011). Their overall lack of efficiency
motivated a sizeable effort of synthetic biology, which
took up the problem from scratch, but using the
human brain to make it via, this time, an intelligent
design: A seventh, synthetic, fixation process has
recently been developed in vitro (Schwander et al.,
2016). In summary, the basic requirement of important
functions results in convergent evolution via the recruit-
ment of pre-existing structures, when available. With
this example, we can understand that such evolution
processes have strong bearings on genomic object

annotation, where we need to think ‘function first’
rather that ‘follow the crowd’.

Any important need elicits an adaptive function

As other great apes, human subjects long used to eat
with their hands. However, as the role of using garments
to dress oneself began more and more common, in par-
allel with a role in expressing a social status, it quickly
became important that clothes needed to be clean and
shiny. To avoid soiling our hands we used specific tools:
a large leaf, a pair of chopsticks or spoon and fork, even
combining them together. A similar protection against dirt
is prominent in the construction of bicycles or cars. In
the same way, cells tend to create new entities in order
to improve basic functioning (Acevedo-Rocha et al.,
2013).
Let us consider cooking food fast, with a minimum

energy cost. Look at a pressure cooker. Its function is
clear, as it uses the thermodynamic role of high temper-
ature to accelerate considerably the cooking of ingredi-
ents of biological origin. This has a trade-off. Maintaining
a high temperature in a confined vessel will result in high
pressure. Usual cookers would not withstand pressure,
so that one needs to build strong enclosures. But this
results in creating a bomb-like contraption, in any event
of fast or uncontrolled temperature rise. Hence it is nec-
essary to build both a regulation system (this will be a
regulatory valve) and an emergency safety valve, that
will release some steam above a certain pressure
threshold. We observe the same principle in cells, which
multiply in a variety of environments, possessing the
exact counterparts of these valves (Danchin, 2009).
Sugar transport is usually very efficient and might
increase the internal pressure to a deleterious level.
Also, a variety of metabolites and ions may suddenly be
absent in the environment, placing the cell in low osmo-
larity: this would result in membrane disruption, unless
specific safety valves, the mechanosensitive channels
where opening pores in the membrane is reminiscent of
the iris diaphragm movement (Zhang et al., 2016).
Another common example of a key function conserved

in highly reduced genomes is that of the final steps of
RNA degradation. While a variety of endo- and exo-
nucleases degrade macromolecules of RNA, binding of
the substrates decreases as their length shortens all the
way down to approximately 5 nucleotide-long nanoR-
NAs. These molecules can be potentially highly toxic
compounds as their size fits the transcription and repli-
cation ‘bubble’. Hence, there is a need for a nanoRNase
activity, which, indeed is present in all cells. However,
the structure of these enzymes does not arise from a
common descent (Liu et al., 2012), substantiating again
the role of convergent evolution based on function-based
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recruitment of material activities. This same observation,
that any need creates a function, is made everywhere,
again and again, and this makes biology boundaries so
difficult to conceive. On the one hand indeed, biology is
built up from deep concepts (laws), remarkable for their
abstraction – for example rewriting of a text and recur-
sion, systematic development of algorithms. Simultane-
ously, on the other hand, each living organism has to
develop within the material world as a concrete realiza-
tion of those deep and abstract laws.

The future: expert systems for genome annotation

Expert systems are meant to mimic automatically the
reasoning of an expert (Duda and Shortliffe, 1983).
Expert genome annotation systems combine rules,
incomplete knowledge and contradictory evidence [see,
e.g. (Cadag et al., 2007)]. Ideally, such systems should
associate deduction (applying existing rules), induction
(building new rules, e.g. exploring neighbourhoods) and
in a most unlikely development, abduction [suggesting
explanations based on serendipity, see (Ferneda et al.,
1995) and references therein]. The ultimate goal, still not
available today for a robust implementation of automated
annotation, should embody the hypothetico-deductive
approach, that chains a hypothesis (generated by the
context and pre-existing knowledge), deduces predic-
tions from the hypothesis and tests whether the predic-
tions allow for identification of an unexpected object or
conflict with these predictions in order to disprove some
of its features, leading investigators to amend or even
discard the hypothesis. As stressed previously, to make
the most of existing knowledge, these methods should
be based on functional analysis (i.e. start from a sum-
mary of what could be a living organism propagating in a
particular environment), in a way reminiscent of the Syn-
Bio engineering reasoning, to identify contradictions and
propose experiments (in vivo, in vitro, in silico) to the
annotator.

The hypothetico-deductive approach illustrated

In a model paper describing workflows to improve anno-
tation of paralogues, de Cr�ecy-Lagard and co-workers
summarized the best of what can be done at present
using standard approaches [available software web ser-
vices in particular (Zallot et al., 2016)]. This emphasis on
information incorporates constraints such as the impossi-
bility to make DNA without turnover of RNA, discussed
previously. It also rests on the logic of metabolism:
based on enzymes paralogous to those present in pre-
existing pathways, development of novel pathways
involving related compounds is pre-set for emergence of
fully functional pathways [paralogous metabolism (Chan

et al., 2014)]. An example of this situation is the yxeKs-
naByxeMNOsndByxeQ operon of B. subtilis, which
metabolizes sulfur-containing metabolites generated by
accident (Niehaus et al., 2018) and involve a protection
(by acetylation, SnaB)/deprotection (by deacetylation,
SndB) step. Another example would be the outcome of
protein sequence multialigments based on the presence
of indels rather than amino acid similarities (Khadka
et al., 2017). Global discrepancies then suggest reas-
signment of protein function, which can be subsequently
tested experimentally [e.g. illustrated in the differentiation
of agmatinases and arginases (Sekowska et al., 2000)].
Yet another approach would be to look for ‘missing’
genes coding for essential functions. This idea was used
in the identification of several unknown functions coded
by a synthetic genome (Danchin and Fang, 2016). In the
same way, the fact that the lysine biosynthetic pathway
missed a key enzyme in B. subtilis, together with the
observation that protection against misuse of non-protei-
nogenic amino acids is performed by acetylation in
B. subtilis rather than succinylation as in E. coli (Bastard
et al., 2017), led us to make the hypothesis that protein
PatA, annotated as an aspartate aminotransferase (Ber-
ger et al., 2003), might be the missing N-acetyl-L,L-diami-
nopimelate aminotransferase DapX that we identified
correctly by subsequent experiments (Borriss et al.,
2018).

Induction: analysis of neighbourhoods

Induction can proceed via the analysis of co-evolution.
An obvious way to take evolution into account is to look
for conserved syntenies and combine them with meta-
bolic knowledge for example. The approach has been
used in the CanOE strategy (Smith et al., 2012), where
it allowed investigators to infer the anaerobic allantoin
degradation pathway in E. coli K12. A further improve-
ment is to introduce phylogenetic distance: a feature that
has been conserved in highly divergent organisms
should have more weight than when present in organ-
isms that are close to one another (Engelen et al.,
2012). This inductive reasoning is fairly rewarding for
predicting functions, but it is obviously very sensitive to
horizontal gene transfer (HGT). As a consequence, gen-
omes should be, prior to exploration, split into consistent
subgenomes that would take HGT into account (Doolittle
and Brunet, 2016).
In short, a living organism cannot be summarized as

the collection of all its genes and gene products, as we
need to know their structural and functional relationships
as well. Knowledge of entire genome sequences is a
unique opportunity to study the relationships between
genes and gene products at the level of the cell, the unit
of heredity. In most cases, we ignore what relationships
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are involved; however, we know that they do exist and
have only a partial view of them via high-throughput
experiments. Remarkably, this very knowledge provides
us with a methodological handle to study them. Using
‘neighbourhood’ in the broadest sense provides us with
a way to make fruitful inferences via similarity searches
(Benson et al., 1996; Nitschke et al., 1998). When big
data are connected to neighbour information, we may
proceed by induction and extract relevant information
about their biological meaning. Neighbours should be
considered in the broadest sense, making reference to
all the items, of all possible kinds (objects as well as pro-
cesses), that can be related to a particular item. As in all
types of data exploration it is important, first, to organize
the data along a particular pattern, providing the study
with a data structure (Bacon and Anderson, 1986; Clift
et al., 1986; Lawrence, 1986). The first and most intu-
itive relationship between two genes is their proximity in
the chromosome. Here, neighbours are genes that pre-
serve synteny (Bentley and Parkhill, 2004). Although the
concepts of operon, or in a broader sense, of
pathogenicity islands, are clearly related to such proxim-
ity, this kind of relationship is far from sufficient to
explain functional relationships between genes. Further-
more, while genes come together during horizontal gene
transfer, there is a systematic disruption that goes on as
organisms evolve via insertion/deletion of genes, possi-
bly favouring coexpression of functionally related genes
(Fang et al., 2008). In addition, gene loss patterns –

analogous to the study of indels in multialignments,
reveal relationships that cannot be captured by presence
alone (Kunin and Ouzounis, 2003).
As another example of an important neighbourhood,

phylogenetic proximity reveals proximity due to evolution
from a common ancestor. While highly significant, it is
very important to find independent ways to separate
between orthologues (with conserved functions) and par-
alogues, with different, sometimes widely divergent, func-
tions (Brown and Babbitt, 2014). Other neighbourhoods
may involve metabolism of nucleotides, patterns of
nucleotide composition (Dufraigne et al., 2005)], or
amino acids (Pascal et al., 2006). Specific neighbour-
hoods also relate genes contributing to common meta-
bolic pathways. Furthermore, metabolites shared
between pathways are also creating specific links
between genes. This creates another large family of
metabolic neighbourhoods. We must also explore neigh-
bourhoods based on biases in the genetic code usage.
Analysis of this type of neighbourhood is highly reward-
ing in terms of functional inferences [some illustration in
(Nitschke et al., 1998; Szklarczyk et al., 2017)]. Another
useful trend, certainly not utilized as it should be, is prox-
imity in the literature. To be sure, various investigators
have reasons to put together particular genes in the

article they write, and this often might signify some type
of deep, not immediately obvious, connections. The idea
of proximity in articles was at the origin of a smart fea-
ture of the ENTREZ software (Benson et al., 1996). It has
also been at the origin of much research based on auto-
matic exploration of the literature – here too, not used
enough in biological research, other than the identifica-
tion of plagiarism (Nawab et al., 2014). The idea that
two genes can be linked because they are cited in the
same bibliographical source lies at the heart of the iHOP
software resource (Hoffmann and Valencia, 2005).

Abduction: extracting information from phenotypes

Serendipity is a common precondition of discovery. It is
therefore important to invent approaches that would
increase the chances of finding something without a
clear path for discovery. The discovery of cyclic-di-GMP
as a widely present second messenger is a case in
point. As a general path, we may look for a function,
take the cognate genes, compare them with counter-
parts, see with which other CDSs they co-evolve,
express and purify the corresponding proteins, find their
substrates and regulators. Then, if something unex-
pected shows up, start around that particular point. This
is exactly what happened with cyclic-di-GMP, with a long
lag between the identification of the molecule and its
involvement in general regulatory processes (Romling
and Galperin, 2017). This was followed by serendipitous
detection of cyclic-di-AMP and cyclic-di-GAMP (Davies
et al., 2012; Hallberg et al., 2016). In the same way, we
accidentally observed that growth of B. subtilis on S-
methyl-cysteine in the presence of dioxygen was abol-
ished when deformylase DefB was inactivated. This led
us to understand that, contrary to the expectation that
the sulfur atom would be oxidized in the degradation
pathway, the methyl- group was oxidized, unravelling a
completely novel degradation pathway (Chan et al.,
2014).
We end up with a challenge to the reader, as a way of

encouraging serendipitous discovery. Here is an exam-
ple, reminiscent of the story of cyclic-di-GMP before its
discovery. The PhoU protein is widely present in bacteria
and frequently co-regulated with the pst and pho genes
involved in regulation and in transport of phosphate. It
has neither features of a regulator nor of a transporter
subunit. It is widely present in bacteria. Remarkably, it is
uniquely absent from B. subtilis or B. pumilus, but pre-
sent in B. cereus, Listeria, Clostridia sp. and even Molli-
cutes with their streamlined genomes. Transcriptome
studies did not provide further insight, except to empha-
size the importance of the protein. Mycobacteria have
two PhoU paralogues. In Mycobacterium smegmatis, the
absence of the PhoU proteins resulted in a toxic
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phosphate uptake by the Pst system (Brokaw et al.,
2017). Interestingly, impairing translation triggers a phos-
phate starvation response (Pontes and Groisman, 2018).
A plausible conjecture is therefore that PhoU is an
enzyme, producing yet another metabolite, presumably
containing phosphate, that interferes with homeostasis of
phosphate metabolism associated with the ATP control
of translation, perhaps via translation throttle EttA (Boel
et al., 2014).

Conclusion

The future of synthetic biology and biotechnology in gen-
eral rests on accurate biological knowledge. Genome
annotation is a critical step for gene-based discoveries
at the time of big data metagenomics. While a wealth of
automatic annotation pipelines are developing, it
becomes crucial that their input is not systematically
flawed: ‘garbage in, garbage out’. Maintenance of knowl-
edge bases collecting trustworthy information about
model organisms – the list of which being enhanced in a
judicious way – is key to avoid spending huge amounts
of human and financial resources to no avail. Relevant
business models need to be invented to attract scientists
into contributing to educated gene annotation and con-
struction of reference knowledge bases.
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