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Objective: To develop and validate a multimodal MRI-based radiomics

nomogram for predicting clinically significant prostate cancer (CS-PCa).

Methods: Patients who underwent radical prostatectomy with pre-biopsy

prostate MRI in three different centers were assessed retrospectively. Totally

141 and 60 cases were included in the training and test sets in cohort 1,

respectively. Then, 66 and 122 cases were enrolled in cohorts 2 and 3, as

external validation sets 1 and 2, respectively. Two different manual

segmentation methods were established, including lesion segmentation and

whole prostate segmentation on T2WI and DWI scans, respectively. Radiomics

features were obtained from the different segmentation methods and selected to

construct a radiomics signature. The final nomogramwas employed for assessing

CS-PCa, combining radiomics signature and PI-RADS. Diagnostic performance

was determined by receiver operating characteristic (ROC) curve analysis, net

reclassification improvement (NRI) and decision curve analysis (DCA).

Results: Ten features associated with CS-PCa were selected from the model

integrating whole prostate (T2WI) + lesion (DWI) for radiomics signature

development. The nomogram that combined the radiomics signature with

PI-RADS outperformed the subjective evaluation alone according to ROC

analysis in all datasets (all p<0.05). NRI and DCA confirmed that the

developed nomogram had an improved performance in predicting CS-PCa.

Conclusions: The established nomogram combining a biparametric MRI-

based radiomics signature and PI-RADS could be utilized for noninvasive and

accurate prediction of CS-PCa.
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magnetic resonance imaging, nomogram, radiomics, prostate cancer,
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Introduction

Prostate cancer (PCa) was the second commonest male

malignancy in 2020 around the world, causing great harm to

the male genitourinary system (1, 2). The descriptive phrase

“clinically significant” is broadly utilized for differentiating PCa

that might result in morbidity and/or death from harmless PCa

subtypes. Such differentiation is critical because “insignificant”

PCa not causing harm is commonly encountered (2, 3).

Overtreatment of insignificant PCa is considered an important

limitation of prostate-specific antigen (PSA) testing.

The European Association of Urology (EAU)-European

Association of Nuclear Medicine (EANM)-European Society

for Radiotherapy and Oncology (ESTRO)-European Society of

Urogenital Radiology (ESUR)-International Society of Geriatric

Oncology (SIOG) guidelines (2020 version) for PCa summarized

the newest data and advised active surveillance (AS) or watchful

waiting (WW) in PCa cases showing a Gleason score (GS) < 7,

while clinically significant prostate cancer (CS-PCa) patients

with GS ≥ 7 should undergo timely treatment and intervention

because of increased risk of progression and short overall

survival in clinical practice (2). Therefore, accurately

evaluating CS-PCa preoperatively is critical for predicting

long-term prognosis and selecting therapeutic options, which

would result in more personalized and effective treatments.

However, clearly defining CS-PCa is difficult.

The currently applied standard practice of MRI-targeted and

template biopsy shows low diagnostic inaccuracy (4, 5). The

IP1-PROSTAGRAM trial showed higher detection of CS-PCa

with MRI Prostate Imaging–Reporting and Data System (PI-

RADS) > 2 in comparison with transrectal ultrasound-guided

prostate (TRUS) biopsy (6). However, cancer detection rates

(CDRs) are only 6% and 9% for PI-RADS 1 and PI-RADS 2,

respectively (4); high-grade cancer may still be missed especially

with previous MRI showing suspicious lesions. Patients and

clinicians should recognize the considerable uncertainty about

prediction (2).

Currently early individualized detection attracts increasing

attention. With recent progress in high-throughput analytical

tools, radiomics models integrating clinical parameters show

overt advantages in generating critical data regarding tissue

properties otherwise not detectable by the naked eye (7–13).

Indeed, increasing evidence suggests that radiomics could be

superior in GS prediction in PCa over routine imaging strategies

(14–17). However, which sequence and segmentation method

could yield higher clinical benefit have not been evaluated. Thus,

a comparison of the predictive capacity of combinations of

sequences and various segmentation approaches is urgently

required to establish the best radiomics methodology.

Therefore, this study aimed to develop a radiomics model

considering multimodal MRI and evaluate its predictive

potential in CS-PCa with external validation.
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Materials and methods

Participants

The current retrospective trial had approval from the local

Institutional Review Board (Committee on Ethics of

Biomedicine, Changhai Hospital; Committee on Ethics of

Biomedicine, Ruijin Hospital Luwan Branch; Committee on

Ethics of Biomedicine, 989th Hospital of the joint logistic

support force of the Chinese People’s Liberation Army).

Individuals who underwent radical prostatectomy with pre-

biopsy prostate MRI were searched in the hospitals’ databases.

Exclusion criteria were: (1) no histological confirmation of PCa

with baseline MRI in our institutions (2) no PSA test within 8

weeks prior to baseline MRI; (3) a history of previous therapy for

prostate cancer; (4) poor quality of MR images (such as

susceptibility artifact); (4) time from baseline MRI to surgical

procedure exceeding 12 weeks.

Eventually, 201 cases were identified and enrolled in

Changhai hospital from January 2016 to December 2019 as

cohort 1. The primary cohort was randomized into the training

set (n = 141) and test set (n = 60) at a ratio of 7:3. Next, 66 and

122 cases were enrolled from January 2019 to December 2021 in

Ruijin Hospital Luwan Branch and 989th Hospital of the joint

logistic support force of the Chinese People’s Liberation Army,

respectively, as cohorts 2 and 3 (external validation sets),

respectively. The study flowchart is shown in Figure 1A.
Clinicopathologic data

Clinicopathology factors, including age, BMI, PSA levels,

location of each tumor and GS post-prostatectomy, were retrieved

from patient records. Radical prostatectomy samples underwent

sectioning from apex to base at 3- to 5-mm intervals, and the PCa

borders were delineated. All pathological GSs obtained from

surgical samples were categorized as follows: GS < 7

[International Society of Urological Pathology (ISUP)] grade 1

PCa considered clinically insignificant; GS ≥ 7 (ISUP grade 2 and

above) defined as clinically significant PCa (2, 3).
Imaging and image analysis

Prostate MRI was carried out on a 3.0T MR scanner with an

abdominal phase array coil without endorectal coil, following a

4-h fasting period and enema treatment with glycerin (20 ml).

Routine sequences, including sagittal T2WI, axial high-

resolution T2WI, axial DWI, axial T1WI and gadolinium

contrast-enhanced T1WI, were applied. Supplementary

Table 1 shows axial T2WI and DWI parameters utilized for

PI-RADS and radiomics model development.
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The PI-RADS (version 2.1) score for each case was assessed

by three radiologists, including ZH.L., GD.J. and PY.X. with 8, 9

and 12 years of experience in MRI diagnosis, respectively,

blinded to pathological data with the exception of tumor

location. Any discrepancy among the three observers was

resolved by discussion until at least two of them agreed.
Image segmentation

The T2WI and DWI DICOM data acquired pre-biopsy were

imported into the Radcloud radiomics platform (Huiying

Medical Technology, China. http://radcloud.cn/). Since the

original images were obtained from distinct cohorts, their

normalization was critical to minimize signal variations for

subsequent radiomics analysis (PyRadiomics package, class

radiomics.imageoperations.normalizeImage; using the

following formula: f(x)=s(x−mx)/sx, where f(x) indicates the

normalized intensity; x indicates the original intensity; m refers

to the mean value; s indicates the variance; s is an optional

scaling, by default, it is set to 1. While reserving the diagnostic

intensity discrepancy, the signal discrepancy in MR parameters

was decreased). In addition, the resampling used (the

radiomics.imageoperations.resampleImage function (the

default interpolator is Bspline).

Two different segmentation methods were employed: (i)

lesion segmentation, which only delineates the border that best

fits the lesion area; (ii) whole prostate segmentation, which

delineates the whole prostate region. Regions of interest

(ROIs) were obtained by manual delineation in individual

slices for each MR image (T2WI and DWI with b = 1500 s/

mm2) by the above two segmentation methods in all specimens.
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The first radiologist (GD.J.), who was blinded to clinical

data, independently carried out the segmentation process for

every case on the platform, comprising lesion segmentation and

whole prostate segmentation, respectively. Then, ROIs were

utilized to obtain volumes of interest (VOIs) in all cohorts.

Next, two radiologists (ZH.L. and GD.J.) repeated

segmentations for 30 random cases one week later for

observer’s agreement analysis. Additionally, segmentations

were performed under the supervision of a senior radiologist

(F.S.), with 14 years of related work experience, for avoiding

overt lesion misidentification.
Radiomics feature extraction and
reduction

Based on the derived VOIs, four groups of features were

obtained: (1) first-order features, quantifying voxel intensity

distribution on MR scans; (2) shape features, reflecting the 3D

features of VOIs; (3) texture features, quantification of region

heterogeneity differences, including gray-level co-occurrence,

run length, size zone and neighborhood gray-tone difference

matrices; (4) higher-order features, encompassing transformed

first-order statistics and texture features, including logarithm,

exponential, gradient, square, square root, local binary pattern

[LBP] and wavelet transformations. In all, 1409 radiomics

features were respectively obtained with the above platform

from each VOI, based on the Python software package

“pyradiomics” (version 6.1). Features complied with the image

biomarker standardisation initiative (IBSI) standard (18).

For each cohort, inter- and intra-observer correlation

coefficients (ICCs) were determined to assess feature robustness.
A

B

FIGURE 1

Study flowchart and nomogram workflow. (A) Study flowchart. Cohort 1, Changhai Hospital; Cohort 2, Ruijin Hospital Luwan Branch; Cohort 3,
989th Hospital of the joint logistic support force of the Chinese People’s Liberation Army. (B) Workflow for nomogram analysis.
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Features with ICCs above 0.9 were subsequently utilized for model

building, with excellent feature reproducibility.

Based on the two different segmentation methods, ten types

of models were obtained: Model 1, DWI (lesion + whole

prostate); Model 2, DWI (lesion); Model 3, DWI (whole

prostate); Model 4, T2WI (lesion + whole prostate); Model 5,

T2WI (lesion); Model 6, T2WI (whole prostate); Model 7, lesion

(DWI + T2WI); Model 8, whole prostate (DWI + T2WI); Model

9, whole prostate (DWI) + lesion (T2WI); Model 10, whole

prostate (T2WI) + lesion (DWI). For selecting optimal features

related to CS-PCa in each model, the variance threshold

algorithm, Select-K-best and the least absolute shrinkage and

selection operator (LASSO) algorithm were employed.
Radiomics signature building

The selected features (non-zero coefficients in the LASSO

algorithm) were employed to develop a radiomics signature for

scoring patients in the 10 models, respectively. The predictive

value of the radiomics signature was assessed by determining the

area under the receiver operator characteristic (ROC) curve

(AUC) and Delong test in the training set.
Nomogram model establishment

The predictive abilities of clinical variables and the radiomics

signature were assessed by univariate logistic regression analysis.

Parameters with p<0.05 were subsequently combined to build

the nomogram model by multivariable logistic regression

analysis (p<0.05). Next, the nomogram was examined for

performance in each cohort. Figure 1B shows the

nomogram’s workflow.
Statistical analysis

The distribution of continuous data was evaluated by the

Kolmogorov-Smirnov test, and the t-test or Wilcoxon test was

utilized for comparing these data. The Chi-square or Fisher’s

exact test was performed for qualitative data analysis. In the

variance threshold approach, a threshold of 0.8 was applied, so

that the eigenvalues of the variance smaller than 0.8 were

removed. The select-K-best approach, which belongs to a

single variable feature selection method, retained all features

showing p<0.05. In the LASSO model, the L1 regularizer

constituted the cost function, applying 5 as the cross-

validation error and 1000 iterations at most (11–13).

Sensitivity, specificity, accuracy, positive predictive value

(PPV), negative predictive value (NPV), positive likelihood

ratio (PLR) and negative likelihood ratio (NLR) were
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determined. The goodness of fit for the monogram was

assessed by the Hosmer-Lemeshow test. AUC calculation, NRI,

and the DeLong test were carried out for comparing the

nomogram and PI-RADS V2.1. DCA was carried out for

determining the nomogram’s clinical usefulness by assessing

net benefits at distinct threshold probabilities. The nomogram

was examined with R 3.6.3. The remaining data were assessed

with SPSS (version 22.0, Inc., Chicago, IL, USA) and MedCalc

v19.6.1. P<0.05 was deemed statistically significant.
Results

Patient features

Table 1 lists the features of all patients. Clinicopathological

parameters were similar in the three cohorts (p>0.05). According

to pathological GS based on final surgical specimens, 139/201

(69.2%), 45/66 (68.2%) and 86/122 (70.5%) cases were defined as

CS-PCa (GS ≥7) in the three cohorts, respectively.
Radiomics features

Feature repeatability based on ICCs in distinct cohorts is shown

in Supplementary Figure 1. After inter/intraobserver agreement

analysis, 1239/1409 T2WI (lesion) (87.9%), 1243/1409 T2WI

(whole) (88.2%), 1096/1409 DWI (lesion) (77.8%) and 1199/1409

DWI (whole) (85.1%) features had excellent robustness and were

subsequently utilized in radiomics analysis (inter- and intra-

observer ICCs ≥0.9). There was excellent reproducibility for VOI

size of lesion segmentation (ICC of T2WI, 0.931; ICC of DWI,

0.910) and whole prostate segmentation (ICC of T2WI, 0.942; ICC

of DWI, 0.913). Eventually, optimal features were obtained with the

LASSO algorithm for each model and presented in

Supplementary Table 2.
ROC analyses of the radiomics signature

The selected features were utilized for the radiomics

signature (RS) in each model, respectively. The detailed ROC

curve analyses for the 10 models, PSA and PI-RADS are listed in

Table 2. ROC curves and their comparisons (Delong test) are

shown in Supplementary Figure 2. Among the 10 models, PSA

and PI-RADS, whole prostate (T2WI) + lesion (DWI) was

determined to have the best performance by ROC curve

analysis in the training set (AUC=0.967, specificity=90.9%,

sensitivity=92.8% and accuracy=92.2%). The ten optimal

features of whole prostate (T2WI) + lesion (DWI) are shown

in Figure 2. The correlation analysis of selected features is shown

in Supplementary Figure 3.
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Logistic regression analysis and
nomogram model establishment

Univariate analysis showed the RS, PSA and PI-RADS had

significant associations with CS-PCa. Then, predictive model

development employed multivariate logistic regression analysis of

the selected risk factors (PI-RADS, OR=7.688, p=0.011; RS,

OR=7.650×105, p=0.002) in the training set (Table 3). The

radiomics signature also showed a high predictive value for CS-

PCa in the test and validation sets (Table 4). The regression formula

was as follows: prediction probability=−10.943+9.527*RS+1.742*PI-

RADS. Figure 3 shows the monogram.

AUCs for the nomogram were 0.967, 0.964, 0.945 and 0.942

in the training set, test set, validation set 1 and validation set 2,

respectively. The Hosmer-Lemeshow test revealed the

nomogram model had favorable calibration in all cohorts

(p>0.05); details are listed in Supplementary Table 3. In all

data sets, the nomogram showed elevated AUCs in comparison

with the PI-RADS utilized alone. The DeLong test demonstrated

significant differences (all p<0.05). NRIs were 0.326 to 0.372,

showing the nomogram had an improved clinical utility

compared with the PI-RADS for CS-PCa (Table 5 and

Figure 4). DCA of validation cohorts confirmed the

nomogram’s superiority over the PI-RADS at large probability

thresholds (Figure 5).
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Discussion

This work showed that whole prostate (T2WI) + lesion

(DWI) was the best segmentation for radiomics model

building. According to the AUC, NRI, and DCA results, a

radiomics nomogram was developed, which seems to have

higher predictive ability than the PI-RADS for CS-PCa in

three hospital databases. Clinicians can use this model to more

accurately screen patients with CS-PCa before surgery and

conduct individuated treatments.

The European Association of Urology’ Guidelines on

Prostate Cancer recommend active surveillance and follow-up

observation for PCa patients with a Gleason score (GS) < 7,

whereas clinically significant prostate cancer (CS-PCa) patients

with GS ≥ 7 should undergo timely treatment and intervention

because of increased risk of disease progression and short overall

survival (2). Therefore, accurate clinical assessment is vital for

patients to choose the best treatment.

In recent years, multiparametric MRI has been increasingly

utilized for PCa’s qualitative evaluation (19, 20). The Prostate

Imaging Reporting and Data System (PI-RADS) was proposed

for better standardization of prostate MRI performance and

image interpretation. PI-RADS guidelines v2.1 in 2019

introduced the concept of biparametric magnetic resonance

imaging (including T2WI and DWI only) to simplify prostate
TABLE 1 Clinical characteristics of patients with prostate cancer in all cohorts.

Characteristic Cohort 1 Cohort 2 Cohort 3 P value
(n=201) (n = 66) (n = 122)

Age (year, mean ± SD) 58.547 ± 10.351 59.167 ± 10.181 58.492 ± 10.811 0.902

BMI (kg/m2, mean ± SD) 23.977 ± 2.706 23.664 ± 2.734 24.442 ± 2.971 0.153

Tumor location (%) Peripheral zone 99 (49.3) 30 (45.5) 61 (50.0) 0.975

Transitional zone 63 (31.3) 23 (34.8) 39 (32.0)

Peripheral + Transitional zone 39 (19.4) 13 (19.7) 22 (18.0)

PI-RADS (%) 1 0 (0) 0 (0) 0 (0) 0.957

2 60 (29.9) 16 (24.2) 36 (29.5)

3 34 (16.9) 14 (21.2) 24 (19.7)

4 75 (37.3) 24 (36.4) 42 (34.4)

5 32 (15.9) 12 (18.2) 20 (16.4)

Gleason score (%) <7 62 (30.8) 21 (31.8) 36 (29.5) 0.826

7 (3 + 4) 48 (23.9) 15 (22.7) 24 (19.7)

7 (4 + 3) 42 (20.9) 12 (18.2) 25 (20.5)

8 (4 + 4 or 3 + 5 or 5 + 3) 38 (18.9) 11 (16.7) 24 (19.7)

9, 10 11 (5.5) 7 (10.6) 13 (10.6)

Pathological T stage # T2 136 (67.7) 36 (54.5) 66 (54.1) 0.070

T3a 34 (16.9) 17 (25.8) 35 (28.7)

T3b 31 (15.4) 13 (19.7) 21 (17.2)

PSA (ng/ml, median IQR) * 12.600 (7.782, 23.280) 12.525 (7.730, 20.578) 13.485 (9.479, 26.995) 0.493
front
Cohort 1: Training and test sets; Cohort 2: Validation set 1; Cohort 3: Validation set 2.
BMI: Body mass index; PI-RADS: Prostate imaging reporting and data system; PSA: Prostate-specific antigen; IQR: interquartile range.
#The current Union for International Cancer Control (UICC) no longer recognizes pT2 substages.
*Postoperative blood samples.
iersin.org
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MRI (21). Prostate MRI categorizes suspected PCa into low- and

high risk types, considering risk scores from 1 to 5. PI-RADS

grades of 3-5 are recommended to undergo MRI-directed biopsy

(22), which could decrease the amounts of avoidable biopsies.

However, such approach may miss a small portion of CS-PCas

(23), due to low cancer detection rates, i.e., only 6% (0-20%) and

9% (5-13%) for PI-RADS 1 and PI-RADS 2, respectively, in

patient level analysis (4). In addition, the commonly used clinical

application of the PSA shows limitations, including
Frontiers in Oncology 06
overdiagnosis and resulting overtreatment (24, 25). Therefore,

novel methods for timely and accurate PCa risk stratification are

urgently required for improving patient prognosis.

Radiomics is a novel approach that converts traditional

medical imaging findings into data mining and high-

throughput quantitative analysis. The analysis approach of

radiomics provides a non-invasive tool for evaluating the

biological characteristics and heterogeneity of prostate cancer

more comprehensively and quantitatively than morphological
FIGURE 2

Selected radiomics features with associated coefficients in the LASSO model. DWI-l: lesion segmentation of DWI; T2WI-w: whole prostate
segmentation of T2WI. GLSZM: Gray level size zone matrix; GLDM: Gray Level dependence; GLRLM: Gray level run length matrix; NGTDM:
Neighborhood gray tone difference matrix; Wavelet: The wavelet transform decomposes the tumor area image into low-frequency components
(L) or high-frequency components (H) in the x, y, and z axes.
TABLE 2 ROC curve analysis in the training set.

AUC 95% CI Specificity Sensitivity Accuracy PLR NLR PPV NPV

Model 10 0.967 0.939-0.995 0.909 0.928 0.922 10.206 0.079 0.957 0.851

Model 6 0.929 0.883-0.976 0.841 0.948 0.915 5.962 0.061 0.929 0.881

Model 8 0.920 0.876-0.963 1.000 0.845 0.894 infinity 0.155 1.000 0.746

Model 4 0.911 0.862-0.960 0.704 1.000 0.908 3.385 0.000 0.882 1.000

Model 3 0.909 0.864-0.954 1.000 0.742 0.823 infinity 0.258 1.000 0.638

Model 7 0.903 0.854-0.952 1.000 0.722 0.808 infinity 0.278 1.000 0.620

Model 9 0.899 0.822-0.976 0.864 1.000 0.957 7.333 0.000 0.942 1.000

Model 2 0.888 0.836-0.941 0.886 0.784 0.816 6.895 0.244 0.938 0.650

Model 1 0.837 0.750-0.923 0.727 0.928 0.865 3.402 0.099 0.882 0.820

PI-RADS 0.835 0.766-0.904 0.545 0.969 0.837 2.132 0.057 0.825 0.889

Model 5 0.800 0.707-0.892 0.704 0.866 0.816 2.931 0.190 0.866 0.704

PSA 0.776 0.702-0.851 1.000 0.557 0.695 infinity 0.443 1.000 0.506
frontiers
Model 1: DWI (lesion + whole prostate).
Model 2: DWI (lesion).
Model 3: DWI (whole prostate).
Model 4: T2WI (lesion + whole prostate).
Model 5: T2WI (lesion).
Model 6: T2WI (whole prostate).
Model 7: lesion (DWI + T2WI).
Model 8: whole prostate (DWI + T2WI).
Model 9: whole prostate (DWI) + lesion (T2WI).
Model 10: whole prostate (T2WI) + lesion (DWI).
AUC, area under the curve; PLR, positive likelihood ratio; NLR, negative likelihood ratio; NPV, negative predictive value; PPV, positive predictive value.
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visual representation. Several studies have demonstrated that the

current MRI-related radiomics application could be widely used

for GS assessment in PCa (14–17). Although they found that

multiparametric radiomics models show great potential in

predicting GS, there is currently no comparative assessment of

different combinations of sequences and patterns of
Frontiers in Oncology 07
segmentation for model building, which can yield higher

clinical benefit for CS-PCa with external validation.

The most valuable aspect of the present study is the multi-

pattern approach that enhances MRI-based radiomics by mining

complementary information provided by multi-pattern MRI and

considering the heterogeneity of tumors for predicting differential
TABLE 4 Multivariate logistic regression analysis in the test and validation sets.

Test set (n=60) Validation set 1 (n=66) Validation set 2 (n=122)

OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value

PSA 1.155 (0.904, 1.475) 0.250 1.185 (0.941, 1.492) 0.150 1.001 (0.996, 1.007) 0.627

PI-RADS 14.204 (1.150, 175.495) 0.039 4.751 (0.916, 24.655) 0.064 4.065 (1.833, 9.017) 0.001

Radiomics signature 9.420×106 (1.206, 7.351×1013) 0.047 11624.241 (6.780, 1.993×107) 0.014 1.021 (1.011, 1.031) <0.001
fron
OR, odds ratio.
Bold values mean p<0.05.
TABLE 3 Univariate and multivariate logistic regression analyses in the training set.

Univariable analyses Multivariable analyses

OR (95% CI) P value OR (95% CI) P value

Age (year) 0.967 (0.933, 1.003) 0.068 / /

BMI (kg/m2) 0.891 (0.778, 1.021) 0.097 / /

PSA 1.172 (1.080, 1.271) <0.001 1.391 (0.991, 1.952) 0.056

Location 1.616 (0.950, 2.751) 0.077 / /

PI-RADS 7.120 (3.569, 14.202) <0.001 7.688 (1.594, 37.085) 0.011

Radiomics signature 4.517×104 (899.309, 2268910.875) <0.001 7.650×105 (128.450, 4.560×109) 0.002
t

OR, odds ratio.
Bold values mean p<0.05.
FIGURE 3

The nomogram developed using the training set for predicting CS-PCa, based on the radiomics signature and PI-RADS.
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features involved in CS-PCa (26). Among the factors that affecting

radiomics assessment, segmentation represents the first critical step

of imaging processing. Manual ROI drawing represents the most

conventionally utilized segmentation method nowadays (27). Most

prior studies assessed lesion-derived radiomics models with AUCs

from 0.648 to 0.910 (14–16). Gong et al. (17) investigated the

potential of prostate gland radiomic features in identifying GS, with

an AUC of 0.794 in the validation cohort. However, the various
Frontiers in Oncology 08
patterns of segmentation for model building have been less

discussed and requires further quantitative assessment. Therefore,

in this study, we established multi-pattern segmentations, including

prostate lesions (T2WI or DWI), whole prostate (T2WI or DWI),

and the combination of different methods, which were applied for

radiomics analysis to detect clinically significant prostate cancer.

Following feature selection, 10 optimal features based on the whole

prostate (T2WI) + lesion (DWI) model were selected to develop a
TABLE 5 ROC curve analysis and comparison of prediction models in all data sets.

AUC 95% CI Specificity Sensitivity Accuracy P value NRI

Training set (n=141) PI-RADS 0.835 0.766-0.904 0.545 0.969 0.837 <0.001 0.372

Nomogram 0.967 0.930-1.000 0.886 1.000 0.964

Test set (n=60) PI-RADS 0.843 0.737-0.948 0.556 0.976 0.850 0.01 0.365

Nomogram 0.964 0.904-1.000 0.944 0.952 0.950

Validation set 1 (n=66) PI-RADS 0.824 0.719-0.929 0.524 0.978 0.833 0.01 0.333

Nomogram 0.945 0.869-1.000 0.857 0.978 0.939

Validation set 2 (n=122) PI-RADS 0.796 0.710-0.882 0.942 0.500 0.812 <0.001 0.326

Nomogram 0.942 0.896-0.987 0.907 0.861 0.893
frontiers
AUC, area under the curve; NRI, net reclassification index.
A B

DC

FIGURE 4

ROC curve analysis of the nomogram and PI-RADS for CS-PCa prediction. (A) In the training set. (B) In the test set. (C) In validation set 1. (D) In
validation set 2.
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radiomics signature for preoperative prediction of CS-PCa, with

favorable discriminatory potential (Table 2). A possible explanation

is that the whole prostate (T2WI) model contained phenotypic

features for the entire prostate, while the lesion (DWI) model

involved heterogeneous data describing microcirculation for the

focal lesion.

Since the PI-RADS v2.1 introduced the biparametric

prostate MRI, which was widely recognized by radiologists and

urologists, several prior studies extracted radiomic features from

T2W and DWI (14, 16, 28, 29). Thus, combining biparametric

MRI and deep mining of correlations among distinct radiomics

features could allow a comprehensive assessment of tumor

heterogeneity, which might increase the predictive efficiency

and potentially guide in distinguishing cases requiring

individualized treatments (30–32).

The second noteworthy aspect of the current study is that the

radiomics signature and PI-RADS were combined to develop a

radiomics nomogram with improved discriminatory ability,

which constitutes a visualization tool to predict CS-PCa.

Zhang et al. reported a radiomics nomogram model, which

did not incorporate the PI-RADS v2 score, showed an AUC of

0.910 (15). Montoya et al. reported that the use of radiomics

model failed to outperform PI-RADS v2.1 scales and their

combination did not lead to further performance gains

(AUC=0.830, p>0.05) (28). However, our results showed that

the nomogram model incorporated subjective evaluation

exhibited a higher AUC compared with the PI-RADS alone

(p<0.05) in all cohorts. NRI analysis determined the predictive

value was improved by using the nomogram in lieu of the

traditional PI-RADS v2.1, and good clinical usefulness was

demonstrated by DCA. These data suggest the developed

nomogram could be utilized to guide clinical practice.

The third vital aspect of this study is that we had two actual

external validation datasets, adding value to our previous
Frontiers in Oncology 09
reports. Using external cohorts is very helpful for overcoming

the weakness that the developed model has no exposure to a

validation cohort in the training phase.

However, the current study still had some limitations.

First, an important drawback of the current retrospective

trial was its relatively small sample size. This implies

selection bias and low generalizability of the obtained

results, although external validation cohorts were analyzed.

Therefore, larger multicenter studies are warranted for

reducing the effects of selection bias on model accuracy.

Secondly, the imaging segmentation approach was manual

rather than semi-automatic/automatic delineation, favoring

subjective errors, with no suitability for large data

processing (33). Thirdly, the current work failed to develop

and validate deep learning tools for the prediction of CS-

PCa, which may show more advantages and deserve further

investigation (34).
Conclusion

Overall, based on preoperative biparametric MRI [whole

prostate (T2WI) + lesion (DWI)], a quantitative radiomics

signature was built. The nomogram model combined with the

radiomics signature and PI-RADS had improved clinical benefit

in comparison with the subjective evaluation only in predicting

clinically significant prostate cancer.
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