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ABSTRACT Deciphering distribution patterns of phosphate-solubilizing bacteria (PSB)
and phosphorus-cycling-related genes in soils is important to evaluate phosphorus (P)
transformation. However, the linkage between PSB number and P-cycling-related gene
abundance in soils, especially soil aggregates, remains largely unknown. Here, we esti-
mated the numbers of PSB and abundances of P-cycling-related genes (i.e., gcd and
bpp) in soil aggregates under different fertilization regimes as well as P-solubilizing per-
formance and plant-growth-promoting ability of PSB. We found that tricalcium phos-
phate-solubilizing bacteria, phytate-degrading bacteria, and gcd and bpp abundances
were more abundant in silt plus clay (silt1clay; ,53 mm) than in macroaggregate (250
to 2000 mm) and microaggregate (53 to 250 mm). Fertilization treatment and aggregate
fractionation showed distinct effects on PSB number and P-cycling-related gene abun-
dance. We found significantly negative correlation between gcd gene abundance and
tricalcium phosphate-solubilizing bacterial number (Col-CaP) and dramatically positive
correlation between bpp gene abundance and phytate-degrading bacterial number (Col-
Phy). P fractions were responsible for PSB number and P-cycling-related gene abun-
dance. The isolated Pseudomonas sp. strain PSB-2 and Arthrobacter sp. strain PSB-5
exhibited good performances for solubilizing tricalcium phosphate. The inoculation of
Pseudomonas sp. PSB-2 could significantly enhance plant fresh weight, plant dry weight,
and plant height. Our results emphasized distinct distribution characteristics of PSB and
P-cycling-related genes in soil aggregates and deciphered a close linkage between PSB
number and P-cycling-related gene abundance. Our findings might guide the isolation
of PSB from agricultural soils and provide a candidate plant-growth-promoting bacte-
rium for agro-ecosystems.

IMPORTANCE Phosphate-solubilizing bacteria are responsible for inorganic P solubili-
zation and organic P mineralization. Elucidating the linkage between phosphate-
solubilizing bacterial number and P-cycling-related gene abundance is important to
isolate plant-growth-promoting bacteria for agro-ecosystems. Our findings reveal dif-
ferentiating strategies of phosphate-solubilizing bacteria in soil aggregates, and the
deciphered P fractions show strong effects on distribution patterns of phosphate-
solubilizing bacteria and P-cycling-related genes. Additionally, we isolated phos-
phate-solubilizing bacteria with good plant-growth-promoting ability. This study
enriches our knowledge of P cycling in soil aggregates and might guide the produc-
tion and management of farmland.

KEYWORDS colony number, fertilization treatment, gene abundance, halo diameter,
phosphorus transformation, plant-growth-promoting ability

Phosphorus limitation is pervasive in both terrestrial and aquatic ecosystems (1, 2)
and affects the growth and development of plants (3). Most P in soils presents

inorganic insoluble (e.g., tricalcium phosphate) and organic insoluble/soluble forms
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(e.g., phytate and nucleic acid) (4, 5). Only orthophosphate (H2PO4– or HPO4
2–) can

directly be absorbed by living plants (6). In agro-ecosystems, the source of soil P is
mainly from the application of inorganic P (IP) (e.g., tricalcium phosphate) and
organic P (OP)-containing fertilizers (e.g., plant and animal residues) (6–8). However,
this externally added P (i.e., IP and OP) can easily get converted into salts and
become insoluble by binding to Ca, Al, Fe, Mg, and Mn (4, 9). The transformation
of plant-unavailable P to plant-available P requires the solubilization for IP and min-
eralization for OP by phosphate-solubilizing microorganisms (4, 8–10). Therefore,
understanding the content of P fractions and abundance of phosphate-solubilizing
bacteria is of great importance to predict and estimate P mobility and turnover as
well as to guide rational fertilization.

The solubilization of IP requires organic acid (e.g., acetic acid, oxalic acid, gluconic
acid, and lactic acid) released by microorganisms (9, 11). Previous studies have
reported that the gcd gene, encoding glucose dehydrogenase, can be found in some
specific bacteria (e.g., Pseudomonas frederiksbergensis and Acinetobacter pittii) and par-
ticipate in the oxidation of glucose to gluconic acid (11, 12). In contrast, the mineraliza-
tion of OP (e.g., phosphoesters and phytate) needs the function of extracellular
enzymes (e.g., phosphatase and phytase) mainly produced by microorganisms (13, 14).
Phytate, accounting for 80% of total soil OP, is the major compound for OP storage in
plants and is extremely stable (5, 15). Phytase (EC 3.1.3.8), alternatively known as myo-
inositol phosphohydrolases, are produced by phytate-degrading bacteria (14, 15).
Earlier studies have reported that the bpp gene, encoding b-propeller phytase, is
widely distributed in soils (15, 16). Consequently, the gcd and bpp genes can be good
biomarkers to evaluate solubilization for IP and mineralization for OP, respectively.

Earlier studies have reported that tricalcium phosphate-solubilizing bacteria and
phytate-degrading bacteria can promote plant growth via enhancing soil availability P
(17–20). Recent studies have reported that PSB mainly belongs to Gram-negative bac-
teria (e.g., Acinetobacter, Citrobacter, Massilia, and Pseudomonas) (3, 21–24), whereas
some are Gram-positive bacteria (e.g., Bacillus) (17). For instance, Bacillus subtilis strain
KPS-11 can produce indole-3-acetic acid and extracellular phytase, which in turn signif-
icantly promotes vegetation properties including height, fresh weight, and dry weight
of potato (Solanum tuberosum L.) (17). Consequently, extensive efforts have been
made to provide candidate PSB for agro-ecosystems (13, 14, 25, 26). From the practical
viewpoint, the application potentials of soil-derived PSB for agro-ecosystems would be
better when considering biosafety and bacterial adaptability to the environment.
Therefore, disentangling distribution patterns of PSB in agricultural soils is useful to
guide isolation of PSB.

Soil aggregates regarded as microenvironments can determine nutrient distribution
and gas (e.g., oxygen and carbon dioxide) circulation (8, 27) and therefore affect micro-
bial distribution (8, 28). Studies involved in phosphorus cycling are mainly about phos-
phorus fractionation in environments and gene abundance of phosphate-solubilizing
bacteria in different habitats (e.g., soils, sediments, and water), as well as PSB isolation
(3–9, 13–17). However, a limited study has reported culturable phosphate-solubilizing
bacterial abundance in soil aggregates with different fertilization treatments. Fertilization
treatment and aggregate fractionation affect P fractionation (8); therefore, knowing the
effects of fertilization treatment and aggregate fractionation on PSB abundance and P-
cycling-related gene abundance is of great importance to guide PSB isolation and
rational fertilization in agro-ecosystems. For this reason, we collected soils under five fer-
tilization treatments and sieved water-stable soil aggregates (macroaggregate, 250 to
2000 mm; microaggregate, 53 to 250mm; silt1clay,,53mm) (8). In this study, we aimed
to (i) investigate the numbers of PSB and abundances of P-cycling-related genes (i.e., gcd
and bpp), (ii) estimate abiotic (e.g., soil physicochemical factors) and biotic (e.g., gcd and
bpp abundances) factors on numbers of PSB, and (iii) decipher the performance of PSB
for promoting plant growth. Considering that P availability affects the abundances of P-
cycling-related genes (6, 7, 29, 30), we hypothesized that P availability would also
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determine numbers of PSB. Given that P-cycling-related genes can be identified from
PSB (10, 17, 31), we also hypothesized that there would be a close linkage between PSB
number and P-cycling-related gene abundance. To achieve our purpose and address our
hypotheses, we conducted colony plate counting, quantitative PCR, and potted
experiments.

RESULTS
Numbers of phosphorus-solubilizing bacteria and abundances of P-cycling-related

genes in soil aggregates. The numbers of PSB represented by CFU varied in different
soil aggregates (Fig. 1A). The tricalcium phosphate-solubilizing bacterial number (Col-
CaP) (1.60 � 105 to 8.77 � 108 CFU/g soil) was significantly higher in NPK (NPK chemi-
cal fertilizer) and N (single-nitrogen fertilizer, urea) fertilization treatments than that in
CK (control without fertilizer), M (swine manure), and MN (combined swine manure
and N fertilizer) fertilization treatments (P , 0.05). The phytate-degrading bacterial
number (Col-Phy) (4.0 � 104 to 3.27 � 108 CFU/g soil) was remarkably higher in N and
MN fertilization treatments than that in CK, M, and NPK fertilization treatments
(P , 0.05). In five fertilization treatments, the Col-CaP and Col-Phy were basically
slightly higher in silt1clay than that in macroaggregate and microaggregate (P . 0.05;
Fig. 1A). According to permutational multivariate analysis of variance (PERMANOVA)
results, fertilization treatment (R2 = 51.06%, P , 0.001) rather than aggregate

FIG 1 Distribution patterns of phosphate-solubilizing bacteria and P-cycling-related genes and their relationships. (A and B) Numbers of
phosphate-solubilizing bacteria (A) and abundances of P-cycling-related genes (B) in different soil aggregates under different fertilization
treatments. The lowercase letters above the columns denote significant differences among soil aggregates under five fertilization treatments
(P , 0.05), and capital letters represent significant differences among five fertilization treatments (P , 0.05). (C and D) Linear regressions
reflect relationships between gcd gene abundance and tricalcium phosphate-solubilizing bacterial number (Col-CaP) (C) as well as between
bpp gene abundance and phytate-degrading bacterial number (Col-Phy) (D). Asterisks denote significance (***, P , 0.001; **, P , 0.01).
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fractionation (R2 = 0.46%, P . 0.05) showed a significant effect on PSB number (Col-
CaP and Col-Phy) (Fig. 2A). Additionally, Col-CaP was significantly higher than Col-Phy
in the same soil aggregate with CK, M, and NPK fertilization treatments (P , 0.05) but
the opposite for MN fertilization treatment (P , 0.05). Col-CaP was slightly higher than
Col-Phy in the same soil aggregate with N fertilization treatment (P . 0.05). These
results indicated different distribution patterns of PSB in soil aggregates with different
fertilization treatments.

The abundances of P-cycling-related genes varied in different soil aggregates
(Fig. 1B). The gcd gene (4.32 � 106 to 2.20 � 107 copies/g soil) was more abundant in
M and MN fertilization treatments than in other fertilization treatments (P , 0.05),
whereas the bpp gene (1.99 � 105 to 3.42 � 106 copies/g soil) showed no significant
difference among five fertilization treatments (P . 0.05). Basically, gcd and bpp were
more abundant in silt1clay than in macroaggregate and microaggregate with the
same fertilization treatment (Fig. 1B). Consequently, both fertilization treatment (R2 =
14.24%, P , 0.001) and aggregate fractionation (R2 = 14.74%, P , 0.001) showed sig-
nificant effects on abundances of P-cycling-related genes (Fig. 2A). In addition, abun-
dances of gcd-harboring bacteria were significantly higher than that of bpp-harboring
bacteria in the same soil aggregate with the same fertilization treatment (P , 0.01).
These results reflected that fertilization treatment and aggregate fractionation might
influence the distribution and abundance of gcd-harboring bacteria and bpp-harboring
bacteria.

Linear regressions reflected that gcd gene abundance was significantly negatively corre-
lated with Col-CaP (R2 = 0.315, P, 0.001; Fig. 1C), whereas bpp gene abundance was notice-
ably positively correlated with Col-Phy (R2 = 0.158, P , 0.001; Fig. 1D). Soil nonphosphorus
nutrients (i.e., carbon, nitrogen, and potassium) related differently to P fractions (Fig. 2B), and
these physicochemical factors showed different correlations with numbers of PSB (i.e., Col-
CaP and Col-Phy) and abundances of P-cycling-related genes (i.e., gcd and bpp) (Table 1).
Nonphosphorus nutrients (i.e., total carbon [TC], soil organic carbon [SOC], and total nitrogen
[TN]) and P fractions (i.e., total P [TP], labile P, IP, OP, and apatite inorganic P [AP]) were signif-
icantly negatively correlated with Col-CaP (P, 0.05 or P, 0.01 or P, 0.001), whereas only

FIG 2 (A and B) PERMANOVA showing effects of fertilization treatment and aggregate fractionation on PSB number and P-cycling-related gene abundance
(A) and Mantel’s tests displaying influences of soil physicochemical factors on PSB number and P-cycling-related gene abundance (B). Color gradients and
circles denote Spearman’s correlation coefficients. Edge width represents the Mantel’s r statistic for the corresponding correlation coefficient, and edge
color represents the statistical significance based on 999 permutations. Asterisks denote significance (***, P , 0.001; **, P , 0.01; *, P , 0.05).
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OP was significantly correlated with Col-Phy (P , 0.05). Similarly, nonphosphorus nutrients
(i.e., TC, SOC, total nitrogen [TN], total potassium [TK], and available potassium [AK]) and P
fractions (i.e., TP, nonapatite inorganic P [NAIP], and AP) were significantly positively corre-
lated with both gcd and bpp gene abundances (P, 0.05 or P, 0.01 or P, 0.001) (Table 1).
According to canonical analysis of principal-coordinate analysis results, soil physicochemical
factors explained 62.8% and 78.72% of variations in PSB number and P-cycling-related gene
abundance, respectively (Fig. 3). Additionally, P fractions showed significant effects on PSB
number and P-cycling-related gene abundance based on PERMANOVA results.

A structural equation model showed close linkage among soil TC, P fractions, gcd
abundance, bpp abundance, Col-CaP, and Col-Phy (Fig. 4A). Soil TC displayed a signifi-
cant positive effect on P fractions, which exhibited significant positive effects on gcd
abundance and Col-Phy, as well as noticeable negative influences on bpp abundance
and Col-CaP. The model displayed a good fit to our data, as indicated by the nonsignifi-
cant x 2 test (sample number = 45, x 2 = 4.013, degree of freedom = 2, P = 0.134).

TABLE 1 Pearson’s correlations between soil physicochemical factors and phosphate-
solubilizing bacterial number and P-cycling-related gene abundancea

Property

Colony no. Gene abundance

Col-CaP Col-Phy Gcd bpp
TC –0.340* 0.088 0.747*** 0.451**
SOC –0.351* 0.017 0.723*** 0.524**
TN –0.348* 0.002 0.755*** 0.469**
TP –0.411** 0.236 0.797*** 0.373**
Labile P –0.576*** 0.043 0.784*** 0.199
IP –0.377* 0.123 0.728*** 0.258
OP –0.296* 0.349* 0.019 0.071
NAIP 0.086 0.203 0.489** 0.845***
AP –0.437** 0.166 0.750*** 0.368*
TK –0.056 –0.083 0.359* 0.748***
AK –0.111 0.134 0.600*** 0.736***
aAbbreviations of physicochemical factors are defined in Materials and Methods. The Col-CaP and Col-Phy
denote tricalcium phosphate-solubilizing bacterial number and phytate-degrading bacterial number,
respectively. Asterisks denote significance (*, P, 0.05; **, P, 0.01; ***, P, 0.001).

FIG 3 (A and B) Canonical analysis of principal coordinates showing effects of soil physicochemical variables on numbers of PSB (Col-CaP
and Col-Phy) (A) and P-cycling-related gene abundance (B). Numbers in parentheses in the axis labels represent the proportion of variance
accounted by the principal coordinates. The significance of soil physicochemical factors was determined by applying PERMANOVA and is
indicated by asterisks next to the variable names.
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Additionally, soil TC and P fractions, rather than gcd abundance, showed strong indi-
rect and direct effects on Col-CaP, respectively (Fig. 4B). Soil TC and P fractions dis-
played both strong indirect and direct effects on Col-Phy, whereas bpp abundance
showed a relatively strong direct effect on Col-Phy. These results indicated that soil TC,
P fractions, and gene abundance would affect PSB number.

P solubilization and plant-growth promoting performance of PSB. We isolated
tricalcium phosphate-solubilizing bacteria to investigate their P-solubilizing potentials.
Isolated PSB (accession numbers OM212979, OM189556, OM189565, OM212980, OM189567,
and OM189570) were identified as Bacillus, Pseudomonas, Massilia, Citrobacter, Arthrobacter,
and Acinetobacter genera according to a phylogenetic tree based on 16S rRNA gene sequen-
ces (Fig. 5A). PSB-2 and PSB-5 displayed better performance for utilizing tricalcium phosphate
than PSB-1, PSB-3, PSB-4, and PSB-6 based on the halo diameter (HD)/colony diameter (CD)
ratio (Fig. 5B).

Subsequently, we evaluated the growth characteristics and tricalcium phosphate-
solubilizing performances of PSB-2 and PSB-5 (Fig. 6). The HD/CD ratios increased with
the incubation time (Fig. 6A and B). The HD/CD ratios for PSB-2 were significantly
higher than that for PSB-5 at the same period (Fig. 6B). Cell densities (optical density at
600 nm [OD600]) and soluble P levels of PSB-2 cultured in liquid National Botanical

FIG 4 (A) Structural equation model (SEM) showing the hypothesized causal relationships among
components, including soil TC, P fractions, gcd abundance, bpp abundance, Col-CaP, and Col-Phy. The
width of the arrows represents the strength of the standardized path coefficient, and values above
the lines indicate path coefficients between two parameters. The red and blue lines indicate positive
and negative path coefficients, respectively. Asterisks denote significance (**, P , 0.01; *, P , 0.05).
(B) The direct and indirect effects of abiotic (i.e., soil TC and P fraction) and biotic (i.e., gcd and bpp)
factors on PSB number (i.e., Col-CaP and Col-Phy).
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Research Institutes phosphate growth medium (NBRIP) media were significantly
higher than that for PSB-5 at the same period (P , 0.05; Fig. 6C). The highest soluble P
levels were observed at day 8, showing 59.98 mg/L for PSB-2 and 22.98 mg/L for PSB-5.
PSB-2 and PSB-5 experienced significantly fast growth from day 1 to day 5 (P , 0.05),
and growth tended to be stable after day 5 (P. 0.05). The soluble P levels of PSB-5 dis-
played a fast increase during 5 days and presented slight fluctuation after day 5. In
contrast, soluble P levels of PSB-2 exhibited significantly fast increases during 8 days
(P, 0.05; Fig. 6C).

FIG 5 (A and B) Neighbor-joining phylogenetic tree of six PSB based on 16S rRNA gene sequences (A) and
halo zones for P-solubilizing performance of six PSB (B).

FIG 6 P-solubilizing performance of strains PSB-2 and PSB-5 in both solid and liquid media. (A) Halo zones for P-solubilizing performance of
strains PSB-2 and PSB-5 for 8 days. (B) Ratios of halo diameter (HD) to colony diameter (CD) of strains PSB-2 and PSB-5. Lowercase letters
above the column denote significance (P , 0.05). (C) Bacterial density represented by optical density at 600 nm and soluble P levels of
strains PSB-2 and PSB-5.
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We further investigated the tricalcium phosphate-solubilizing performance and
plant-growth-promoting ability of strain PSB-2 (Fig. 7). The HD/CD ratios significantly
decreased with the increase in tricalcium phosphate addition amount (P , 0.05;
Fig. 7A and B), suggesting that excessive P addition did not promote P solubilization.
The PSB-2 bacterial suspension enhanced the growth of Chinese cabbage (Fig. 7C),
showing significantly higher fresh weight, dry weight, and plant height (Fig. 7D).
However, the shoot P and root P displayed no significant differences between control
group and experimental group. These results indicated that abundant P addition did
not enhance tricalcium phosphate solubilization, and PSB-2 could be a candidate for
plant-growth-promoting bacteria.

DISCUSSION
P fractions affecting P-cycling-related gene abundance and PSB number.

Fertilization treatments showed a greater effect on PSB numbers than did soil aggre-
gates, which is similar to findings in previous studies reporting that the abundance of
phosphorus-solubilizing bacteria is closely related to NPK or N fertilization application
(32, 33). In addition, both fertilization treatment and aggregate fractionation affected
abundances of bpp and gcd genes, which is similar to a prior finding (34). To our

FIG 7 P-solubilizing performance and plant-growth-promoting ability of strain PSB-2. (A) Halo zones of strain PSB-2 in
solid NBRIP media containing different amounts of tricalcium phosphate (i.e., A1, A2, A3, A4, A5, and A6). (B) Ratios of
halo diameter (HD) to colony diameter (CD) of strain PSB-2 in solid NBRIP media containing different amounts of
tricalcium phosphate. Lowercase letters above the column denote significance (P , 0.05). (C) Plant-growth-promoting
performance of strain PSB-2. (D) Differences in vegetation properties (i.e., plant fresh weight, plant dry weight, plant
height, shoot P, and root P) between the no PSB-2 addition group (CK) and the PSB-2 addition group (Exp). Units for
parameters: g (fresh weight and dry weight), cm (plant height), mg/g dry weight (shoot P and root P). Asterisks
denote significance (***, P , 0.001).
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knowledge, this is the first report that N fertilization treatment and silt1clay tend to
enrich culturable tricalcium phosphate-solubilizing bacteria and phytate-degrading
bacteria. Both inorganic and organic fertilization treatments can alter P fractionation
(7, 30, 35–37) and soil aggregate fractionation (8, 35). Additionally, soil aggregate frac-
tionation also shapes P fractionation (8, 35, 38). Therefore, we might conjecture that
strong effects of fertilization treatment on both P-cycling-related gene abundance and
PSB number might occur via two pathways: (i) directly shaping P fractionation and (ii)
indirectly affecting soil aggregate fractionation.

Prior studies have reported that P components (e.g., available P and inorganic P) affect
abundances of P-cycling-related genes (e.g., bpp, phoD, and gcd) (6–8, 34). For instance,
water-soluble P significantly positively affected abundances of bpp and gcd genes (10). The
abundances of gcd and bpp genes increased toward higher P levels, which is not in line
with findings describing that gcd and bpp are more abundant under conditions with insuf-
ficient P (29, 39, 40). The divergence might be due to differences in phosphorus availability
and P-solubilizing potentials of PSBs among different habitats. The elevated P (i.e., TP, labile
P, IP, OP, and AP) levels decreased numbers of tricalcium phosphate-solubilizing bacteria,
which is consistent with a prior study (41) and differs from an earlier study (42).
Additionally, abundant OP increased the number of phytate-degrading bacteria, which is
in accordance with the previous finding reporting that more phytate-degrading bacteria
can be found in P-sufficient soils than that in P-insufficient soils (14). These results and find-
ings raise the question of why P fractions are so often such good predictors of PSB number
and P-cycling-related gene abundance. One possible reason is that P fractions are utilized
in order—first, soluble orthophosphate ions in soils and then insoluble inorganic/organic P
sources. Previously published literature has reported that inorganic insoluble P can be eas-
ily dissolved, depending on the amount of released organic acids (9, 17, 43, 44), whereas
phytate is relatively hard to be mineralized by soil PSB (5, 14, 15). In addition, it was worth
noticing that carbon and nitrogen levels had certain influences on numbers of PSB and
abundances of P-cycling-related genes, suggesting that the utilization of P sources also
relies on the levels of carbon and nitrogen sources (45). This phenomenon might be due
to strong linkage among carbon, nitrogen, and phosphorus cycles (46).

P-cycling-related gene abundance indicating PSB number. A strong positive link-
age was found between bpp gene abundance and phytate-degrading bacterial number,
which is expected, and this might be because phytate is a relatively stable compound
(5). Additionally, the bpp gene is more conservative and widespread than other phytate-
degrading-related genes (e.g., ptp and hap) (5, 16, 47). A close negative relationship was
found between gcd gene abundance and tricalcium phosphate-solubilizing bacterial
number, which is beyond our expectations, and this phenomenon might be attributed
to nutrient level and microbial interaction. Abundant P sources via fertilization treatment
meet P demand for microorganisms (6, 30, 34), which in turn weaken and even deprive
solubilizing potentials for tricalcium phosphate of phosphate-solubilizing bacteria.
Microorganisms can cooperate directly and indirectly to obtain nutrients from environ-
ment to survive (48). Organic P-degrading bacteria can provide free P for gcd-harboring
bacteria, which might also lead to PSB’s a loss of the ability for P solubilization.
Additionally, large populations of soil microorganisms potentially affect environmental
pH via releasing CO2 (49), which facilitates soil P solubilization and, in turn, affects the P-
solubilizing potentials of PSB. We found Pseudomonas sp. strain PSB-2 and Arthrobacter
sp. strain PSB-5 isolated from same soil exhibited different performances for solubilizing
tricalcium phosphate. This phenomenon is similar to earlier findings describing different
P-solubilizing performances of PSB derived from the same environment (10, 13, 23, 41,
50). Evolutionary history and environmental heterogeneity determine microbial environ-
mental adaptability for utilizing nutrients (e.g., carbon, nitrogen, phosphorus, and sul-
fate) (51). Consequently, different P-solubilizing abilities might potentially affect linkage
between gcd gene abundance and phosphate-solubilizing bacterial number. The colony
plate counting approach has been used to determine the numbers of phosphate-solubi-
lizing bacteria in many studies (14, 42); to our knowledge, this might be the first report
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describing strong linkage between PSB number and P-cycling-related gene abundance
in soil aggregates. We therefore conjecture that the finding might guide the isolation of
PSB from soils.

PSB enhancing P availability and promoting plant growth. The isolated Pseudomonas
sp. PSB-2 exhibited good performance for P-solubilizing, and the best P-solubilizing level
was 59.98 mg/L. The solubilizing capacity for Ca3(PO4)2 by Pseudomonas sp. PSB-2 is higher
than that for Pantoea dispersa Cav.cy3 (,50 mg/L) (52) but lower than that for Burkholderia
sp. strain PSB-69 (1,393 mg/L) (25) and Serratia marcescens RP8 (974 mg/L) (53). PSB in our
and other studies are isolated from different environments (e.g., farmland soils, forest soils,
and desert soils) (4, 9, 10, 14, 23), and different PSB showing different P-solubilizing perform-
ance might be due to divergences in nutrient availability-induced environmental adaptabil-
ity at both the taxonomic and phylogenetic levels (54). The Pseudomonas sp. PSB-2 displayed
good performance for promoting cabbage’s growth via significantly enhancing plant weight
and height. This is similar to Burkholderia cepacia ISOP5 for peanut (55), Enterobacter sp.
strain RS1 for chick pea (56), Acinetobacter sp. strain Ac-14 for Arabidopsis thaliana (57), and
Pseudomonas monteilii PsF84 for geranium (58). The inoculation of PSB can alter community
function of soybean rhizosphere bacteria and increase P-cycling-related gene abundance
and thus enhance vegetation properties (24). Previous reports have also reported that inor-
ganic phosphate-solubilizing bacteria can release oxalic, lactic, malic, citric, succinic, and
indole-3-acetic acid to enrich soluble P levels (9, 23, 53, 57). The gcd-harboring bacteria can
release gluconic acid via oxidizing gluconate by producing gluconate dehydrogenase (40,
57). Future studies will investigate the growth-promoting performances of Pseudomonas sp.
PSB-2 for different plants and decipher dynamic changes in rhizosphere bacterial community
and organic acid type potentially produced by PSB-2.

In conclusion, we found distinct distribution patterns of phosphate-solubilizing bacteria
and P-cycling-related genes (i.e., gcd and bpp) in soil aggregates under different fertilization
treatments. We found strong linkages between gcd gene abundance and tricalcium phos-
phate-solubilizing bacterial number, as well as between bpp gene abundance and phytate-
degrading bacterial number. The phosphate-solubilizing bacteria Pseudomonas sp. PSB-2
and Arthrobacter sp. PSB-5 showed good performances for inorganic phosphorus solubiliza-
tion. The phosphate-solubilizing bacterium Pseudomonas sp. PSB-2 could enhance growth
of Chinese cabbage, showing significant increases in plant fresh and dry weight as well as
plant height. Our findings extend the knowledge of mechanisms for distribution patterns
of phosphate-solubilizing bacteria and P-cycling-related genes in soil aggregates and might
guide the isolation of phosphate-solubilizing bacteria. Future work will use multiple techni-
ques (e.g., GeoChip and Illumina MiSeq sequencing) to investigate P-cycling-related bacte-
rial abundance and community composition and optimize condition for P solubilization by
PSB and decipher mechanisms for P solubilization at both the gene and protein levels.

MATERIALS ANDMETHODS
Soil collection and physicochemical property determination. Experimental soil samples were col-

lected from Laiyang Experimental Station in Shandong Province, China, which has applied a summer
maize (Zea mays L.) and winter wheat (Triticum aestivum L.) rotation since it was built in 1978. Five fertil-
ization treatments were used, including CK, N, NPK, M, and MN (8). Each fertilization treatment had three
replicated plots, and soils were sampled in 2017 after winter wheat harvest (8). We fractionated three
water-stable aggregates (i.e., macroaggregate, microaggregate, and silt1clay) by using sieves with dif-
ferent sizes of aperture (8). The obtained soil aggregates were freeze-dried and stored at –80°C for sub-
sequent study. We measured physicochemical properties of soil aggregates previously (8), including TC,
TN, TP, TK, SOC, labile P, AK, IP, OP, NAIP, and AP. The detailed descriptions of fertilization treatment,
plot design, and physicochemical property determination have been reported previously (8).

Measurement of gene abundance and PSB number. We estimated abundances of P-mineralizing-
related genes (i.e., bpp and gcd) for soil aggregates by using quantitative PCR (qPCR). Primer bppF (59-GAC
GCA GCC GAY GAY CCN GCN NTN TGG-39) and primer bppR (59-CAG GSC GCA NRT CAN CRT TRT T-39) were
employed to amplify the bpp gene (16). Primer gcdF (59-CGG CGT CAT CCG GGS NTN YRA YRT-39) and gcdR
(59-GGG CAT GTC CAT GTC CCA NAD RTC RTG-39) were applied to amplify the gcd gene (12). Detailed descrip-
tions of DNA extraction and gene amplification were reported previously (8).

We evaluated the number of PSB using the colony plate counting method (24). Each soil aggregate
(1 g) was added to 10 mL of sterile water. The mixture was shaken at 180 rpm for 30 min and then kept
standing for 10 min. Based on a stepwise dilution strategy, 0.1 mL of 1025 and 1028 diluents were sepa-
rately spread on NBRIP containing Ca3(PO4)2 or sodium phytate solid medium and incubated at 30°C for
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5 days. The NBRIP contained 10 g/L glucose, 5 g/L Ca3(PO4)2 or sodium phytate, 0.25 g/L MgSO4�7H2O, 5
g/L MgCl2�7H2O, 0.2 g/L KCl, 0.1 g/L (NH4)2SO4, 2 mL/L trace element solution, 0.2 g/L cycloheximide,
and 18 g/L agar (21). The trace element solution contained 10 g/L EDTA, 2.2 g/L MnSO4�H2O, 1.0 g/L
FeSO4�7H2O, 0.5 g/L CuSO4�5H2O, 0.3 g/L CoCl2�6H2O, 0.2 g/L Na2MoO4�2H2O, and 0.1 g/L CaCl2. The ini-
tial pH of all media was adjusted to 7.0. After incubation, CFU on each plate were counted, and the num-
ber of PSB was calculated according to dilution degree.

Estimation of tricalcium phosphate solubilization and plant-growth-promoting performance.
Single colonies from the NBRIP containing Ca3(PO4)2 were subcultured by picking and streaking five
times to isolate pure colonies. We gained six strains (i.e., PSB-1, PSB-2, PSB-3, PSB-4, PSB-5, and PSB-6)
and identified them using simple 16S rRNA gene sequencing at Wuhan Qingke Innovation
Biotechnology Co., Ltd. The universal primers 27F (59-AGA GTT TGA TCC TGG CTC AG-39) and 1492R (59-
GGT TAC CTT GTT ACG ACT T-39) were used to amplify the 16S rRNA gene (23). The phylogenetic tree
was built using MEGA6 software.

The isolated PSB (i.e., PSB-2 and PSB-5) were incubated in both solid and liquid NBRIP to estimate
their solubilization potentials for tricalcium phosphate (10). We inoculated PSB seed cultures (OD = 1.0)
to NBRIP and incubated them at 30°C for 8 days. The preparation of seed culture was reported previ-
ously (10). We estimated halo diameter and colony diameter on solid BBRIP at 2, 4, 6, and 8 days. As for
liquid NBRIP, 1 mL of bacterial suspension was collected each day to determine soluble P concentration
and bacterial growth based on the optical density at 600 nm. Additionally, we also inoculated PSB-2 on
solid NBRIP containing 1, 2, 5, 6, 8, and 10 mg/L Ca3(PO4)2 and incubated it at 30°C for 3 days.

We assessed the plant-growth-promoting performance of isolated PSB-2 by using potted experiments.
The experimental potted soils were collected from an uncultivated field in Wuhan, China (30°289N, 114°
219E). The original physicochemical properties and processing of experimental potted soils were described
previously (24). Two potted treatments were designed: 1,000 g of sieved soil plus 500 mL of sterile
water plus 100 NBRIP medium (CK group) and 1,000 g of sieved soil plus 500 mL of sterile water plus 90 mL
NBRIP medium plus 10 mL bacterial suspension (PSB incubated at NBRIP for 3 days; 107 CFU/mL) (Exp group).
Each treatment had five replicates. Chinese cabbage (Shanghai Qing) seeds were purchased from China
National Seed Group, precultivated in sterile nutritious soils, and allowed to grow to about 10-cm length of
sprouts (24). Each sprout with the same growth potential was transplanted to each pot as described above,
and a bacterial suspension containing PSB-2 was inoculated into cabbage rhizosphere. Each plot was placed
in a greenhouse with the cycling treatment of 16-h light and 8-h dark for a total of 20 days. We measured
plant fresh weight, plant dry weight, and plant height. We extracted shoot P and root P via H2SO4-H2O2

digestion and determined P content using molybdenum-blue colorimetry (24).
Data analysis. If not otherwise stated, we estimated significant differences by using the one-way

analysis of variance. Permutational multivariate analysis of variance was conducted using the function
adonis in the vegan package of R. Canonical analysis of principal coordinates was used to estimate
effects of soil physicochemical factors on PSB number and gene abundance using the capscale function
in the vegan package. A structural equation model was built to reflect potential linkage among soil
physicochemical factors, gene abundance, and PSB number using IBM SPSS Amos v.21. For the structural
equation model (SEM), the PC1 value of the first axis of the principal-component analysis, accounting for
99.89% of the total variation, was applied as a proxy for representing P components (i.e., TP, labile P, IP,
OP, NAIP, and AP).
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