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Abstract

PET imaging is an important diagnostic tool for management of patients with cancer and other 

diseases. Medical decisions based on quantitative PET information could potentially benefit from 

the availability of tools for evaluation of associated uncertainties. Raw PET data can be viewed 

as a sample from an inhomogeneous Poisson process so there is the possibility to directly apply 

bootstrapping to raw projection-domain list-mode data. Unfortunately this is computationally 

impractical, particularly if data reconstruction is iterative or the acquisition protocol is dynamic. 

We develop a flexible statistical linear model analysis to be used with multi-frame PET image 

data to create valid bootstrap samples. The technique is illustrated using data from dynamic PET 

studies with fluoro-deoxyglucose (FDG) and fluoro-thymidine (FLT) in brain and breast cancer 

patients. As is often the case with dynamic PET studies, data have been archived without raw list-

mode information. Using the bootstrapping technique maps of kinetic parameters and associated 

uncertainties are obtained. The quantitative performance of the approach is assessed by simulation. 

The proposed image-domain bootstrap is found to substantially match the projection-domain 

alternative. Analysis of results points to a close relation between relative uncertainty in voxel-level 

kinetic parameters and local reconstruction error. This is consistent with statistical theory.

Keywords

Bootstrap; Sampling variation; PET; Generalized linear models; Image analysis; Gaussian process; 
Spectral analysis; Non-parametric methods; Kinetics and residues

1. Introduction

Positron emission tomography (PET) is a well-established radiotracer imaging technique, 

extensively relied on in both secondary and tertiary clinical care settings, as well as in 

medical research. As the role of quantitative PET in clinical decision making evolves, it 
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is likely that there will be an increasing interest in the availability of practical methods 

for evaluating uncertainty associated with the results reported for an individual patient. 

There is already a significant literature on variance assessment for PET. Much of this 

work has concentrated on the development of analytic approaches based on the linear 

approximations to the reconstruction process – see, for example, (Alpert et al., 1982; Barrett 

et al., 1994; Carson et al., 1993; Huesman, 1977; Ibaraki et al., 2014; Maitra and O’Sullivan, 

1998; Qi and Leahy, 2000; Tanaka and Murayama, 1982; Wang and Gindi, 1997). The 

potential of applying Efron’s statistical bootstrap (Efron and Tibshirani, 1994) in this setting 

was described by (Haynor and Woods, 1989). There have been a number of subsequent 

contributions - see, for example, (Buvat, 2002; Dahlbom, 2002; Lartizien et al., 2010; 

Ibaraki et al., 2014; Kucharczak et al., 2018) - that have attempted to implement variations 

on this approach. The attraction of the non-parametric bootstrap is that it does not involve 

detailed analytic assumptions which may be difficult to justify in a real patient study. So 

far, bootstrapping methods for PET image data have concentrated on re-sampling in the 

raw measurement domain. We refer to such list-mode or sinogram sampling techniques 

as projection-domain methods. The work here is stimulated by (Huang et al., 2020), who 

used a combination of physical phantom studies and numerical simulations to develop an 

image-domain bootstrapping strategy for PET data. The approach is based on a sub-ordinate 

Gaussian structure, a particular type of Gaussian copula form (Joe, 2014), with the ability 

to capture the Poisson-like nature of voxel-level measurements as well as relevant spatial 

and temporal covariances. In the context of standard clinical PET-FDG studies, involving 

imaging over a relatively short duration time frame between 45 and 60 minutes after tracer 

injection, (Huang et al., 2020) proposed sub-dividing frame data in order to obtain the near-

replicate information needed to estimate unknown parameters in a proposed image-domain 

simulation model. This technique was illustrated using data from a clinical PET-FDG lung 

cancer study.

The work here develops a more flexible procedure for image-domain bootstrapping. This 

new approach is applicable in situations where there may be a complex temporal structure in 

the measured PET data – a near-constant temporal structure is intrinsic to the method used 

in (Huang et al., 2020). In addition the latter work relied on a parametric Gamma-model 

form to represent the marginal distributions of voxel-level data and a parametric spatial auto-

regressive (SAR) form to represent covariance patterns. The method here uses the empirical 

distribution of re-scaled data and a non-parametric approach for analysis of the spatial 

correlation structure. The purpose of this report is to describe the modeling techniques 

involved in a novel image-domain bootstrapping method and to numerically demonstrate its 

performance relative to the standard projection-domain bootstrapping technique. Similar to 

(Huang et al., 2020) the proposed approach is only applicable to situations where the PET 

data have a temporal extent – e.g. dynamic PET studies. In this setting suitable modeling of 

the dynamic data enables us to identify an associated set of residuals that can be manipulated 

to construct a viable model-based image-domain bootstrapping procedure.

The technical framework for the methodology is set out in Section 2 with some illustrative 

examples presented in Section 3. The examples come from dynamic studies with PET-FDG 

and PET-FLT in brain and breast-cancer patients. Apart from the distinctive temporal 

patterns arising in these data, the studies come from different scanners - one using a 
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traditional analytic filtered-backprojection (FBP) reconstruction method and the other an 

iterative maximum likelihood (ML) approach. Residual diagnostics demonstrate how the 

generalized linear modeling adapts to varying nature of the data. A kinetic mapping 

technique is applied to the bootstrap-simulated datasets in order to produce parametric 

images of metabolism and associated voxel-by-voxel standard errors. Section 4 presents 

numerical simulation studies, matched to the real data. These studies explore performance of 

the novel model-based bootstrapping technique relative to the projection-domain list-mode 

bootstrapping approach. In addition we examine if performance is impacted by the nature 

of the data reconstruction process used. The results are very promising, demonstrating that 

the efficient model-based image-domain bootstrapping substantially matches performance of 

the projection-domain approach, regardless of what data reconstructed scheme is used. The 

paper concludes with a discussion in Section 5.

2. Methods: Basic models and analysis techniques

The input data for the approach is a 4-D dynamic PET dataset represented by an N × T 
array, {zij; i = 1, ., N, j = 1, …, T} . Here N represents the number of voxels in the field 

of view and T is the number of time-frames in the PET acquisition. zij is the reconstructed 

PET-measured tracer concentration value at the 3-D voxel co-ordinate, xi, at a time tj 
corresponding to the mid-point of the j’th time-frame of scanning. We begin by providing a 

formal mathematical description of the model, highlighting the various unknowns that must 

be estimated before it can be used for bootstrapping.

2.1. Statistical modeling of the image-Domain data

Let the true mean and variance of the PET measurement zij be denoted μij and σij2 , 

respectively. The proposed approximation of measurements has the structure of a general 

linear model in which the error process, while allowed to be non-Gaussian and non-

stationary, is linked to a sub-ordinate Gaussian process. The starting point for the 

specification is a set of data-dependent basis vectors, denoted X = {μk, k = 1, 2, …, K}, 

that have the ability to approximate local mean values, μij. The method used to identify 

X is described in Section 2.3 below. The statistical model for zij is expressed as a sum of 

systematic and random terms. The basic version is given by

zij = μij + σijϵij ; ϵij = Q(ηij) with ηij ∼ N(0, 1)

μij = xj′αi ; σij = σiϕj ; ∑
j = 1

T
ϕj

2 = T (1)

Here xj is the j’th row of X and αi is a vector of unknown coefficients. Note that the 

systematic part of zij, here μij, is approximated by a linear form. The model is referred to 

as a generalized linear model because errors are allowed to be non-Gaussian and the scale 

factors, σij, are not assumed constant (Seber, 2015). In (1), σij is a product of spatial (σi) 

and temporal (ϕj) factors. The constraint on ϕ is required for identifiability. A key part of (1) 

is that the error term ϵij is related to a sub-ordinate Gaussian variable, ηij, by a (unknown) 

Q-transform. In statistical parlance, the inverse of Q defines the normal-quantile plot for the 
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collection of measurement errors (R et al., 2020). We assume Q is strictly monotone and, 

for identifiability, scaled so that var(ϵij) = 1. Monotonicity of Q is a requirement for the 

distribution of the measurement errors to be well-defined; it does not restrict the flexibility 

of the model to adapt to arbitrary distributional forms for the error. Strict monotonicity 

implies that the quantile mapping is invertible. If the model errors have a continuous 

distribution - a very plausible approximation for PET and many other types of medical 

imaging data - then Q must be strictly monotone. The sub-ordinate Gaussian η-process, 

η = {ηij, i = 1, 2, …, N, j = 1, 2, …, T}, is assumed to have independent temporal 

components, matching the formal Poisson structure of PET (Vardi et al., 1985), and a 

common stationary spatial auto-correlation, consistent with physical phantom measurements 

and simulations, see, for example, (Huang et al., 2020). Note that the concept of using a 

simple sub-ordinate stationary process, like η here, to describe dependency in multivariate 

data is well established. (Joe, 2014) provides a treatment of many instances which have 

proved useful in applied statistical work.

While the model in (1) can capture non-stationarity (in mean and variance) and rather 

general correlation patterns, it has limited ability to adapt to the local skewness of PET 

data. Such skewness is particularly important for iteratively reconstructed PET data. Thus a 

more elaborate form of the model is needed for our proposed image-domain bootstrapping 

procedure. (Scheuermann et al., 2013; Mou et al., 2017) used Gamma-distributions to model 

the local skewness of iteratively reconstructed PET measurements of scanned physical 

phantoms. In a Gamma-distribution, the ratio of the mean to the standard deviation is the 

square-root of the shape parameter. This quantity is inversely proportional to the skewness 

of the distribution. As the shape parameter increases, skewness diminishes and the Gamma-

distribution formally converges to a Gaussian form. Using the fit of the basic model in (1) 

to define μij, σi and ϕj, we let κij =
μij

σiϕj
. The refined statistical modeling approach uses κij 

as a surrogate variable for representing deviations from the product form of the variance and 

the assumed distributional structure. This leads to a more elaborate generalized linear model

zij = μij + σijϵij ; ϵij = Q(ηij ∣ κij) ηij ∼ N(0, 1)

μij = xj′αi ; σij = σiϕj ; ∑
j = 1

T
ϕj

2 = T (2)

where Q(·∣κ) is strictly monotone for each fixed κ-value and is assumed to be slowly varying 

as a function of κ. For identifiability, a scaling constraint involving Q is also required. For 

this with h2(κ) = var(Q(η∣κ)), we require ∑ijℎ2(κij) = NT . Obviously, model (2) reduces 

to model (1), when the transform Q does not vary with κ. If Q(·∣κ) corresponded to a 

scaled Gamma distribution then, based on (Mou et al., 2017), κ would increase with dose 

or sensitivity. And with increasing κ, Q becomes linear. Indeed model (2) will converge to 

model (1), with Q ≡ 1, as these factors increase. This is in line with the results reported by 

(Mou et al., 2017). Thus the structure in (2) gives the ability to adapt to distributions that 

vary from being highly skewed to ones that are substantially Gaussian. In light of this the 

model gives the ability to accommodate both the skewed nature of iteratively reconstructed 

(ML) PET data and the Gaussian nature of analytically reconstructed (FBP) PET scans 
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(Scheuermann et al., 2013; Mou et al., 2017). Regardless of Q, the variance structure 

specified in the model ensures that with particular choices for σ, ϕ and h, the specification in 

(2) accommodates the situation where variance is directly proportional to the mean - similar 

to what (Huesman, 1977) proposed for PET ROI data. For this, let h(κ)2 be proportional to 

∣κ∣, ϕj = ϕj and choose σi proportional to σi. In this situation the model in (2) could also be 

viewed within the Gaussian copula framework used by (Lennon and Yuan, 2019) to model 

time-series of count data.

Since the temporal components of the sub-ordinate Gaussian are assumed independent with 

a common stationary spatial structure, the covariance of η can be written in the form of a 

Kronecker tensor product, ΣN ⊗ IT, where ΣN is a N × N matrix representing the spatial 

correlation pattern and IT is an T-dimensional identity matrix. Spatial stationarity implies 

that the covariance can be diagonalized using the Fourier transform (Brockwell and Davis, 

1991), i.e. ∑N = ℱN
t ΛNℱN where ℱN is the matrix mapping an N-vector to its 3-D sine 

and cosine Fourier coefficients. The action of ℱN is of course computed using the standard 

3D fast Fourier transform (FFT). The matrix ΛN is diagonal with elements, λ = {λi, i = 1, 

…, N}. λ, which will need to be estimated, has elements corresponding to the discretely 

sampled 3-D spectral density or power spectrum of η (Brockwell and Davis, 1991). While η 
has a stationary spatial structure, the measurement error in either (1) or (2) is neither first nor 

second order stationary in a spatial sense.

It is important to appreciate that even though the model specification in (2) has substantial 

flexibility it should only be viewed as a device for obtaining reasonable inferences - here 

the computation of approximate variances of imaging biomarkers. The general context of 

modelling in science is worth keeping in mind - approximate models, such as (2), will 

not be correct to arbitrary precision but in a practical environment they often very useful 

(Box, 1976). Before providing details of how the various unknowns in (2) are specified, 

we describe bootstrapping procedures for PET based on our model and also based on a 

non-parametric model-free approach.

2.2. Bootstrapping techniques

Bootstrapping is a general statistical technique that may be used to evaluate the sampling 

distribution of a statistic, e.g. a relevant biomarker, that might be of interest. In particular, 

the bootstrap sample can be used to obtain bias and variance characteristics of a computed 

summary statistic, and also to formally access associated hypotheses that might be of 

interest (Efron and Tibshirani, 1994). Here we consider two possibilities for creating 

bootstrap samples for PET data: a well-established Projection-Domain approach and the 

novel Image-Domain approach developed here. The Image-Domain method uses Eqs. 

(1) and (2); the Projection-Domain is based on the raw count data before it has been 

reconstructed. It is helpful to record the steps involved in bootstrap simulation by these 

techniques. This is provided below. We also describe a simple recycling scheme that could 

be important where it is not practical to retain a large number bootstrap replications.

2.2.1. Projection-Domain bootstrap: Fully non-parametric—This approach 

involves random sampling (with replacement) from the number (Ne) of detected events. 
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If events are binned into count arrays, this is equivalent to drawing a random sample from 

a multinomial distribution with Ne trials and probabilities proportional to the observed 

counts in binned array. Each simulated count array is processed to produce a bootstrap 

reconstruction, z*. Repeating the process NB times leads to a projection-domain bootstrap 

sample, ℬP = {zb, b = 1, 2, …, NB}. If raw data are binned count arrays before reconstruction, 

there would also be the possibility to sample bootstrap counts using an inhomogeneous 

Poisson process with mean values proportional to the observed array counts. While this 

ensures that the simulated data is fully Poisson and more variable than the multinomial, 

because such sampling would not correspond to list-mode re-sampling, we do not use it 

here. Note that as the count-rate increases, there will be little percentage difference between 

counts produced by either sampling method.

2.2.2. Image-Domain bootstrap: Model-based approach—Let X, α, σ, ϕ, κ, Q
and λ be the estimated values of the various unknowns in (2). Bootstrap simulated data, 

zij∗ , are generated by first creating an array ξ∗ = {ξij
∗ , i = 1, …, N, j = 1, 2 . , T} with elements 

corresponding to a random sample of size NT from a standard Gaussian distribution with 

mean zero and unit variance. With ℱN representing the normalized 3-D mixed sine and 

cosine transform (computed by the standard 3-D FFT) and σij = σiϕj, the simulated data are

zij∗ = xj′αi + σijQ(ηij∗ ∣ κij) where η . j∗ = ℱN
t (λ1 ∕ 2ξ . j

∗ ) (3)

where ξ . j
∗  and η . j∗  are the j’th columns of the N × T-dimensional arrays corresponding 

to ξ* and η*. Repeating the process NB times gives an image-domain bootstrap sample, 

ℬI = {zb, b = 1, 2, …, NB} where zb is the b’th realization of z* in Eq. (3).

2.2.3. Approximate image-Domain bootstrap by recycling—In practical clinical 

settings, data retention protocols can mean that raw list-mode data are not routinely archived 

especially for dynamic studies. In such environments it is also unlikely that there would be 

willingness to retain extensive bootstrap datasets. Hence a simplified alternative to the full 

image-domain bootstrap may be of interest. The proposal here is to retain a set of fitted 

model α-coefficients for a small number of image-domain bootstrap samples (NB
∗ ≪ NB)

and to base further bootstrap inferences on that dataset - ℬI
∗ = {αb, b = 1, 2, …, NB

∗}. To 

justify this, it is important that the coefficients retained are sufficient for the proposed 

inferences and also that the size of NB
∗  is adequate. Under either of the models in (1,2), any 

target parameter, θ, associated with the measurable tracer concentration signal (μi· ≈ x′αi) 

is readily expressed in terms of the associated model coefficient - i.e. θi = f(μi·) = f(x′αi) ≡ 
g(αi). Recall that a basic property of maximum likelihood is that if αi is an optimal estimator 

of αi then θ i = g(αi) is optimal for θi, c.f. (Rao, 1973). Thus if the errors in (1) are Gaussian 

and a corresponding weighted least squares procedure is used for estimation of coefficients, 

the α-coefficient data can be expected to be sufficient in a statistical sense.
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We propose a novel recycling procedure to help enhance the value of the retained limited 

data ℬI
∗. In the approach samples are generated by sampling from ℬI

∗ a set of say 

NB values at each voxel and then, by application of a spatial filtering process, create 

a recycled bootstrap dataset ℬI
∗ = {zb, b = 1, 2, …, NB} where z ij

b = xj′αi
b. Importantly, the 

recycled ℬI
∗ data is only created at the time that inferences are being considered – so there is 

no need to retain extensive bootstrap samples. This recycling scheme can be motivated 

by the fact that the sampling distribution of α-coefficient estimates is approximately 

Gaussian. Note that since the error terms in (1) are independent, Gaussian approximation 

of the natural weighted least squares estimates of coefficients follows by application of 

a multivariate version of Lineberg’s central limit theorem - see in Theorem 1 (Bardet et 

al., 2008). The approximation implies a common Gaussian distribution for the deviations 

Di = (αi − αi) ∕ σi = [X′W X]−1X′W −1 ∕ 2ϵi where W is the diagonal matrix with elements 

wj ∝ ϕj
−2 for j = 1, 2, …, T. Under model (1), Di is mean zero with covariance var(Di) 

= ΣK = [X′WX]−1. Di is a spatially invariant transformation of the error process and also 

of the underlying sub-ordinate Gaussian process η. Thus for (1) the N × K array, D, with 

rows Di’s, is strictly stationary in a spatial sense. Now if the error in (1) is exactly Gaussian 

the covariance of D has the Kronecker product form ΣN ⊗ ΣK, where ΣN is the spatial 

covariance of η. Thus simulated realizations of D can be produced by creating a N × K array 

whose rows are independent samples from a K-dimensional Gaussian with zero mean vector 

and covariance ΣK and then transforming the columns of the array by multiplication by the 

matrix ℱN
t ΛN

1 ∕ 2
 as in (3). So when Gaussian approximation of α-coefficients is reasonable, 

bootstrap samples can be produced by

α i
b = αi + σiDi

b ; i = 1, 2, …, N b = 1, 2, …, NB (4)

where Db is obtained by first sampling, independently for each row, from the distribution 

of (αi − αi) ∕ σi and then filtering, column-by-column, the resulting N × K dimensional 

array using ℱN
t ΛN

1 ∕ 2
. Recycling follows this process but uses the empirical distribution 

of the bootstrap dataset Di
∗ = {(αib − αi) ∕ σi, b = 1, 2, …, NB

∗} for the sampling from the 

i’th row. An obvious modification of this would be to use the full set of Di
∗’s, 

D = {(αib − αi) ∕ σi, b = 1, 2, …, NB
∗ , i = 1, 2…, N}, for row-wise simulation. This approach 

would rely more heavily on the accuracy of the Gaussian approximation for its justification.

2.3. Specification of unknowns in the image-Domain model

As indicated earlier, the model in (2) has a number of unknowns all of which need to be 

defined before image-domain bootstrapping is possible. We begin by describing how the 

basis set, X, is specified and after that consider the other elements.

The goal in basis selection is to choose a configuration that is physiologically interpretable 

and has the ability to approximate the measured time-course data at all voxels in the volume. 

A clustering scheme is used to identify clusters of time-courses that have self-similar 
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shapes. If a basis can be found to represent the average time-course in such clusters, 

then it can be expected that a simple scaling of the representation for the average will fit 

individual time-course data in the cluster. In light of this, the basis selection is optimized 

so that the set of cluster means are well represented. But because the number of clusters 

is quite small (typically on the order of 100–200) relative to the number of voxels, 

evaluation of the objective function for assessment of any candidate basis set based on 

the reduced cluster-mean data is computationally efficient. A generalized cross-validation 

criterion is used as an objective function for basis set assessment. Backwards elimination, 

a well-established type of greedy algorithm in statistical model selection (Friedman et al., 

2001), is used for optimization of the basis. In general the initial basis is taken to be 

the cluster means. However, in the case that the time-course information is well-sampled 

in time, a physiologically-based modeling process is used so that instead of raw cluster 

means being used as the initial basis, a set of model-based predictions of the cluster 

mean time-courses are used. As some clusters may contain a relatively small number of 

voxels and as a result may be noisy, the modeling step acts as a well-grounded noise 

suppression scheme. Modeling also enhances physiologic interpretability of the final set of 

basis elements selected.

Detailed implementation of the above basis selection scheme substantially follows 

(O’Sullivan, 1993; O’Sullivan et al., 2014). The process is implemented in two steps. 

The first step applies recursive hierarchical clustering to partition the data into a large 

set of clusters, {Cl, l = 1, 2, … L}, with the property that the data in each cluster has 

a similar shape pattern: i.e. if i ∈ Cl then for a suitable constant ai, zij ≈ aiμjl where 

μjl = 1
∣ Cl ∣ ∑i ∈ Clzij for j = 1, 2, …, T is the mean time-course for the l’th cluster. 

Step 2 takes the collection of mean time-course patterns associated with each of these 

clusters as an initial set of basis elements XL = {μ1, …, μL} and applies a cross-validation 

guided backwards elimination procedure to construct a final subset XK = {μ1, …, μK} ≡ X
with the property that voxel-level data can be adequately represented by a non-negative 

linear combination of the columns of X. In the case that well-sampled time-course of PET-

measured data is acquired and we have access to the time-course of the tracer in the arterial 

blood, the second step is modified by replacing each of the cluster mean time-courses by a 

modeled time-course. A non-parametric residue modeling process is used for that. This is 

reviewed in Section 3.1 below. Modeling helps to ensure that the final set of basis vectors 

satisfy physiological constraints linked to the basic principles of blood-tissue exchange 

(Meier and Zierler, 1954).

Specification of the Unknowns, apart from X—With X fixed, an unconstrained 

weighted least squares procedure, with a simple fixed temporal weighting scheme, is used 

for estimation of αi’s in (1). The simple weighting scheme and associated ϕ-values are

wj
0 = e−tjζdtj ∕ μ̄j

∗ ϕj
0 ∝ 1 ∕ wj

0 for j = 1, 2, . , T (5)
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Here μ̄j∗ = max(μ̄j, m) where μ̄j is average of the reconstructed concentration values over the 

j’th time-frame and m is taken to be a fraction (0.1) of the maximum of these μ̄j values. 

The duration of the scan time-frame is dtj and e−tjζ, with ζ the decay constant for the 

radio-tracer isotope, is the standard tracer decay factor. While the estimates of αi based on 

these simple weights may not be optimal, under general conditions weighted least squares 

estimates are unbiased and also consistent, as the scale of the error diminishes (Seber, 2015). 

In addition the Gauss-Markov theorem tells us that if weighting is inversely proportional 

to the variance of the measurement error, least squares will have minimum variance among 

all unbiased estimators (Seber, 2015). In practice, unless there is a substantial discrepancy 

between optimal weights and simplistic weights, the latter will typically be highly efficient 

– see (Romano and Wolf, 2017). In the bootstrapping setting, the unbiasedness property of 

weighted least squares is important as it ensures that the data simulation process is also 

unbiased. The use of weighted least squares is also helpful in simply justifying the Gaussian 

approximation underlying the proposed bootstrap recycling procedure.

Residuals from the least squares fit are used to estimate the other unknowns in (2). The 

motivation for this comes from

rij ≡ zij − xj′αi ≈ zij − xj′αi = σijϵij ≡ σiϕjϵij
so   rij ≈ σiϕjℎijeij   with   ℎij

2   = V ar( ∈ij ) (6)

and eij = ϵij/hij has mean zero and unit variance. From (6), natural conditional estimates of ϕ 
and σ are

ϕj
2 = 1

N ∑
i = 1

N
wij(σ, ℎ)rij2 and σi

2 = 1
T ∑

j = 1

T
wij(ϕ, ℎ)rij2 (7)

where wij(σ, ℎ) = σi−2ℎij
−2 and wij(ϕ, ℎ) = ϕj

−2ℎij
−2. ϕj

2 values are scaled so that ∑jϕj
2 = T . For 

any specified h, (7) can be iterated, starting with σ constant, to obtain converged values ϕ(ℎ)
and σ(ℎ). These are maximum likelihood estimates when eij is standard Gaussian. With hij = 

1, the converged values in (7), denoted ϕ and σ, are used as estimates of ϕ and σ in model 

(1). This is important for specification of κ. The set of κ-values are defined by κij =
zij

σiϕj
where zij = xj′αi.

For estimation of Q, we restrict to piecewise constant approximation as a function of the 

κ variable. With κ(0) = −∞ and κ(l) the l
L × 100 %’th percentile of the κij values, let Il 

be the interval (κ(l−1), κ(l)], for l = 1, 2, …, L. Piecewise constant approximation means 

Q( ⋅ ∣ κ) = Q( ⋅ ∣ l) for κ ∈ Il. Our experience is that Q is a smooth function of κ so that a 

modest value for L (in the 50 to 100 range) seems to be quite adequate. As Q is piecewise 

constant, its variance is also piecewise constant - V ar(Q(η ∣ κ)) = ℎ(κ)2 = ℎl
2 for κ ∈ Il. This 

implies hij = hl for κij ∈ Il. Similar to (7), a conditional estimate of hl given σ and ϕ is
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ℎl
2 = 1

∣ Il ∣ ∑
κij ∈ Il

wij(σ, ϕ)rij2 with wij(σ, ϕ) = σi−2ϕj
−2

(8)

normalized so that ∑lℎl
2 = L. Combining (7) and (8), provides an iteration for joint 

estimation of σ, ϕ and h. This defines σ and ϕ. The converged σ values are inflated 

by multiplication by T
T − K  where K is the number of columns of X. This is to ensure 

there is adjustment for the bias arising from fitting the α-coefficients at each voxel. Such 

adjustments are standard in most parametric model fitting settings - see (Kutner et al., 2013; 

Seber, 2015) for its use in linear regression.

The converged values of σ and ϕ are used to compute scaled residuals ϵ ij = rij ∕ σiϕj. 

The empirical distribution of these scaled residuals, El = {ϵ ij ; κij ∈ Il}, is used to evaluate 

Q( ⋅ ∣ l). Here we match order statistics of El to the corresponding quantiles of a standard 

normal distribution - Nl = {ηij ; κij ∈ Il}. This is simply the standard normal quantile-

quantile plot procedure - c.f. (R et al., 2020). The inverse map allows arbitrary quantiles 

of the standard normal to be mapped to quantiles of El.

For estimation of λ, the full set of normalized residuals, η, are mapped to the imaging 

domain and using the 3-D FFT their 3-D periodogram is evaluated for each time-

frame. Averaging these periodograms over time-frames, with weights ϕj
−2, produces the 

final estimate of the required power spectrum, λ. Using the Weiner-Khinchine theorem 

(Brockwell and Davis, 1991), the inverse 3-D FFT of the power spectrum provides the 

corresponding of the 3D spatial auto-correlation function ρ. This completes the specification 

of all unknowns in the image-domain bootstrapping model. Before investigating the 

reliability of the bootstrapping method, we first present some illustrations of the technique 

with real data. Model diagnostics are an essential part of any statistical modeling process, 

particularly if model-based bootstrapping is of interest. This aspect is highlighted in the 

examples.

3. Applications to parametric imaging

We present two dynamic PET imaging studies of cancer patients. One is from a series 

reported in (Spence et al., 1998) and involves brain tumor scanning with 18F-labeled 

Fluorodeoxyglucose (FDG); the second comes from a more recent breast cancer imaging 

trial with 18F-labeled Fluorothymidine (FLT) (Kostakoglu et al., 2015). The studies are 

chosen in part because they represent data with different imaging challenges. The brain 

FDG study is from an early generation PET scanner using direct FBP reconstruction. The 

scanner in the FLT study is more recent and uses an ML reconstruction technique. Raw 

projection data are not available for either study. Thus only image-domain bootstrapping is 

practical. In each case the bootstrap generated dataset, ℬI, is processed to map metabolic 

parameters and their associated standard errors. Before presenting the examples, we provide 

some background on the approach used for mapping voxel-level kinetic parameters. This 

material draws on (O’Sullivan, 1993; O’Sullivan et al., 2014).
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3.1. Non-Parametric residue mapping (NPRM) of kinetics

The basic principle of most tracer imaging studies with PET is that the tracer’s interaction 

with the local tissue is linear and time-invariant. While there are situations where this 

assumption is not valid, it is very reasonable for FDG and FLT. The arterial supply is the 

primary system for transport of tracer to tissue, so linearity and time-invariance implies that 

the true tissue concentration, C(x, t), can be described by a convolution between the local 

arterial blood concentration supplied by the output of the left-ventricle (LV) of the heart, Cp, 

and the corresponding impulse-response, or so-called tissue residue function R. Thus

C(x, t) = ∫
0

t
R(x, t − s)Cp(x, s)ds (9)

Typically arterial dispersion effects are below the resolution of the PET scanner and the 

arterial concentration can be well-described by a suitable shift of the LV signal – Cp(x, 
s) = Cp (s − Δx) where Cp(t) is the LV blood concentration and Δx is a suitable delay. 

From basic principles of blood-tissue exchange (Meier and Zierler, 1954), the residue is 

a monotone-decreasing non-negative function - a life-table for the travel-times of tracer 

atoms introduced to tissue at time zero (O’Sullivan et al., 2009). While most tissue in a 

typical volume of interest behaves in the above manner, some exceptions may need to be 

kept in mind. For example, there may be areas between the (venous) injection site and the 

corresponding pathway to the LV where arterial pattern is irrelevant. Similarly, if the bladder 

is in the field of view, its time-course will not follow the pattern in (9). It is appropriate to 

describe it in terms of the outflow for a whole-body blood-tissue exchange process (Meier 

and Zierler, 1954).

There is a substantial literature on modeling techniques for PET time-course data. Most of 

this focuses on the analysis of region of interest data, see, for example, (Huang et al., 1986; 

Vicini and Bassingthwaighte, 2014; Mankoff et al., 2006). But there are also a number of 

techniques for voxel-level analysis. Spectral techniques use a positive linear combination 

of exponentials to approximate the voxel-level residue (Cunningham and Jones, 1993; 

Veronese et al., 2016; Wang et al., 2020). The NPRM approach models voxel-level time-

course data by a positive linear combination of basis vectors, {μk, k = 1, …, K} – referred 

to a sub-TACs (TAC stands for time-activity curve). This is a version of the form used in 

equations (1,2) in which the α-coefficients are constrained to be non-negative. In the NPRM 

setting, the backwards elimination scheme in Section 2.3 is modified by replacing the initial 

cluster-mean vectors in XL by elements based on non-parametric residue modeling of the 

cluster mean data – i.e. μl is replaced by the approximation μl(t) = ∫0
tRl(t − s)Cp(s − Δl)ds. In 

addition, the basis in NPRM is required to always include components corresponding to the 

time-courses for the arterial input function (AIF) and its cumulative integral. The latter is 

referred to as the Patlak basis element because an analysis that only used that term would 

be substantially equivalent to the Patlak approach to evaluation of tracer flux (Patlak and 

Blasberg, 1985).
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As the basis elements are represented in terms of residue functions, 

μk(t) = ∫0
tRk(t − s)Cp(s − Δk)ds, the linear model representation of the PET data leads to the 

approximation of the voxel-level residue as a linear combination of the basis residues {Rk, k 
= 1, …, K}, i.e.

zij ≈ ∑
k = 1

K
αikμk(tj) R(xi, t) ≈ ∑

k
αikRk(t) (10)

Here a very short duration (less than 5 seconds) spiked residue is used to represent the AIF, a 

constant residue is used for the Patlak term.

In the NPRM approach, decomposition of the voxel-level residue is used to create 

summaries variables for mapping tracer kinetics. Suppose TE is the study duration and 

let TB for 0 < TB < TE represent a realistic upper-bound for large-vessel travel-time – 

for human PET studies with FLT and FDG, a value TB of around 5 to 10 seconds is 

reasonable physiologically. The residue over the observed time-frame of the study, [0, TE], is 

decomposed in terms of vascular (RB), in-distribution (RD) and extraction (RE) components 

as

R(t, x) = RB(t, x) + RD(t, x) + RE(t, x) (11)

where

RE(t, x) = R(TE, x) ≡ Ki(x)

RB(t, x) =
R(t, x) − R(TB, x) , 0 ≤ t ≤ TB

0 ,elsewhere
RD(t, x) = R(t, x) − RB(t, x) − RE(t, x)

The apparent rate of extraction of tracer atoms by the tissue is measured by Ki(x). This 

is a measure of flux (see further discussion below). Given the residue decomposition, the 

vascular (large vessel) blood volume, VB(x), as well as the in-distribution flow, KD(x), and 

volume, VD(x), are recovered from RB and RD as

V B(x) = ∫
0

TB
RB(t, x)dt

KD(x) = RD(0) ; V D(x) = ∫
0

TE
RD(t, x)dt

(12)

By the central volume theorem (Meier and Zierler, 1954), the mean transit time (MTT) is 

defined as the ratio volume to flow – VD(x)/KD(x). However this does not take account 

of variation in the time of arrival of the tracer to the local tissue. To address this we 

use a flow-weighted average of mean transit-times associated individual sub-TACs – i.e. 
MTT(xi) = ΣkwikMTTk where MTTk = Δk + VDk/KDk with KDk and VDk obtained from 

k’th component residue (Rk). Here the weights, which are normalized to sum to unity, are 

O’Sullivan et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2021 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proportional to the flow contributions from the different component tissues represented at 

the i’th voxel, i.e wik ∝ αikKDk for k = 1, 2, … K. Thus MTT is written as

MTT(xi) = Δw(xi) + V D(xi) ∕ KD(xi)

= Δw(xi) +
∑k = 1

K αikV Dk

∑k = 1
K αikKDk

(13)

Δw(xi) = ΣkwikΔk. In the case that the individual delays are all the same, Δw(xi) will constant 

across voxels.

While a non-parametric approach is used for specification of sub-TAC residues, it is useful 

to record what the above summary parameters correspond to in the 2-compartmental model 

of Huang and Sokoloff, see (Huang et al., 1986). This model is very widely used in PET 

data analysis. In this model there are four kinetic constants - (k1, k2, k3, k4). The impulse 

response function (a.k.a tissue residue) for the model is a mixture of exponentials

IC(t) = k1(1 − π)e−tλ1 + k1πe−tλ2 (14)

where λ1(2) = 1
2(k2 + k3 + k4 ± (k2 + k3 + k4)2 − 4k2k4) and π =

k3 + k4 − λ2
λ1 − λ2

. When the model 

is applied to PET time-course data, there is typically an adjustment for the fractional blood 

volume (fb), this gives rise to a model representation of the tissue time-course (CT) as

CT(t) ≈ fbCp(t) + (1 − fb)∫
0

t
IC(t − s)Cp(s)ds (15)

Suppose we introduce a simple linear residue Ro defined over the interval [0, TB] by

Ro(t) = 2
fb
TB

(
TB − t

TB
), 0 ≤ t ≤ TB

0, elsewhere

Note ∫0
TBRo(t)dt = fb. As TB → 0, Ro becomes very spiked at 0. For small TB and the 

convolution of Ro with the AIF is approximately fbCp(t). As a result, for sufficiently small 

TB, the 2-compartmental model can be given a residue representation

CT(t) ≈ fbCp(t) + (1 − fb)∫
0

t
IC(t − s)Cp(s)ds

= ∫
0

T
RC(t − s)Cp(s)ds

(16)

with RC(t) = Ro(t) + (1 − fb)IC(t). Decomposing RC as described in Eq. (11) and evaluating 

the residue summary measures gives
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Ki = K1(1 − π)e−λ1TE + K1π + O(λ2)
V B = fb + O(TB)
KD = K1 − Ki + O(TB)

V D = K1(1 − π)(1 − e−λ1TE)
λ1

+ O(λ2) + O(TB)

(17)

where K1 = (1 − fb)k1 and O(x) indicates that corresponding terms vanish as x → 0. If k4 = 

0 then λ2 = 0. Here as TB → 0 with TE large (so e−λ1TE is negligible) the residue summaries 

for the 2-C model become

Ki = K1π = K1k3
k2 + k3

V B = fb

KD = K1(1 − π) = K1k2
k2 + k3

V D = K1
k2 + k3

(1 − π) = K1k2
(k2 + k3)2

(18)

When both k3 and k4 are zero, the 2-compartment model reduces to the 1-compartment 

Kety-Schmidt model (Kety and Schmidt, 1945). Here the parameters become: Ki = 0 (no 

retention), VB = fb, KD = K1 and V D =
K1
k2

. The latter two quantities are the familiar flow 

and distribution volume terms associated with the Kety-Schmidt approach to the quantitation 

of PET studies with 15O-labeled water.

In the two applications, the basis functions used for generation of bootstrap data are the 

same as those used for NPRM kinetic analysis of the original image data (z). Individual 

bootstrap realizations (zb ∈ ℬI) are processed in the same way as the original data using 

the NPRM procedure. If an alternative kinetic or other analysis method was of interest, 

it would be applied to the original data and to the realizations in ℬI. In this way the 

bootstrapping technique could also be used to generate assessments of uncertainties for 

alternative approaches to mapping kinetics, e.g. such as those reviewed in (Wang et al., 

2020).

3.2. FDG Brain tumor study

PET studies with FDG play a major role in the diagnosis and management of many cancers 

(Barrio et al., 2020). (Spence et al., 1998) reported on a series of NIH-supported studies, 

conducted at the University of Washington (Seattle), evaluating the ability to measure the 

metabolic rate of glucose consumption in glioma patients, post-surgery. We use data from 

one of these cases. Details of the study protocol, which also included direct arterial blood 

sampling, are provided in (Spence et al., 1998). Briefly, imaging was conducted a 35-plane 

scanner using a 2-D plane-by-plane acquisition process and a direct (FBP) reconstruction 

methodology. The 4-D PET data is an array with N = 128 × 128 × 35 voxels (2.25 × 2.25 

× 4.25mm3) and T = 31 time-frames extending over a 90 minute period. The time-frame 

sequence is: 1(1 min) preinjection, 4(20 sec), 4(40 sec), 4(1 min), 4(3 min) and 8(5 min). 
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The bootstrapping technique is used to evaluate sampling variation in computed metabolic 

images.

Results of analysis are presented in Figs. 1 and 2. NPRM metabolic images and associated 

bootstrap estimates of voxel-level standard errors are in Fig. 1. Note that while the full data 

set is analyzed to produce a full volume of metabolic information, Fig. 1 only shows a single 

transverse slice in which the tumor is most apparent. The results demonstrate a pattern of 

altered FDG kinetics, particularly in FDG-based glucose flux (Ki) and extraction (Ki/K1), 

in the tumor region. Standard errors demonstrate that variability is very much related to the 

scale of the metabolic variable. This pattern is likely a consequence of the overall pseudo-

Poisson characteristic of PET data so areas with high metabolic values (high flow, volume 

etc) also have greater absolute variance. We examine this more formally in Section 4.3. The 

typical percent error, measured by the standard deviation relative to metabolic parameter 

value, is on the order of 10–20% for most metabolic variables, even for the non-linear MTT 

and extraction (Ki/K1) values. As described in (Spence et al., 1998), volumes of interest 

(VOIs) for tumor and normal grey matter were identified using co-registered MRI scans. 

For the present case, the tumor VOI consists of 759 voxels of which 133 are on the slice 

shown in Fig. 1; the normal VOI has 1979 voxels but none of these are on the slice shown 

in Fig. 1. Histograms of the bootstrap-estimated sampling distributions for the95th percentile 

of the metabolic parameters in the VOIs are shown in Fig. 1. These histograms demonstrate 

the ability of the bootstrap analysis to support inferences for comparisons between complex 

imaging biomarkers (here the95th percentile statistic) for VOIs. The differences between 

tumor and normal grey matter VOIs are quite dramatic for flux, MTT and extraction. 

By standard bootstrap analysis (Efron and Tibshirani, 1994) these differences are readily 

confirmed to be highly significant in statistical terms.

Residual diagnostics associated with the image-domain bootstrap are shown Fig. 2. A set of 

seven vectors are identified by basis selection procedure. As described in 3.1, in the NPRM 

setting, two of these basis elements are constrained to correspond to the time-courses for the 

arterial input function (AIF) and its cumulative integral (Patlak element). The cluster mean 

data defining each of the five other basis vectors and their corresponding non-parametric 

residue model fits are shown in Fig. 2(i). The fitted residues for these basis elements are in 

Fig. 2(ii). The fitted time-courses are used in the image domain model - see (2). Temporal 

boxplots of the fully standardized residuals, (zij − μij) ∕ σij, are shown in Fig. 2(iii). These 

boxplots are highly symmetric. Estimates of optimized and initial temporal scaling factors, 

ϕj and ϕj
0 (see Section 2.3) are also displayed. Apart from the initial 3–4 time-frames 

we see that these are remarkably similar to each-other. Boxplots of residuals scaled by 

temporal (ϕj) and spatial (σi) factors and binned by values of κ( = zij ∕ σiϕj) are in Fig. 

2(iv). These boxplots show little or no variation for different κ-bins. In particular, there is 

little indication of variation in the scale of these boxplots. This is confirmed by the estimate 

of h is practically constant. The distributions of the standardized residuals are shown in Fig. 

2(v). The overall distribution is substantially Gaussian in appearance. Perhaps the proportion 

of more extreme values is somewhat less than what one would expect for the Gaussian - 

this is apparent from the quantile plots. The substantially Gaussian structure agrees with 

results reported in (Mou et al., 2017) for PET data reconstructed by FBP techniques. 
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Sample transverse and axial auto-correlations of the sub-ordinate residual process (η) as a 

function of spatial distance are shown in Fig. 2(vi). This is evaluated by inversion of the 

3-D periodogram, i.e. via the Wiener–Khintchine theorem (Brockwell and Davis, 1991). 

The axial pattern shows little plane-to-plane auto-correlation. This is consistent with the 

2D nature of data acquisition. The transverse pattern shows longer range dependence in the 

long-axis of brain cross-section – perpendicular to the scanning bed. This is fully consistent 

with results from elliptical phantom simulations reported in the literature (Huang et al., 

2020; Razifar et al., 2005).

3.3. FLT Breast tumor study

Cellular DNA is replicated during cell division so that its concentration in rapidly 

proliferating tumor tissues can be expected to be higher than in normal tissue. PET FLT 

imaging has the potential to provide an approximate measure of DNA concentration and 

for this reason FLT imaging may be able helpful for diagnosis and treatment planning 

with certain cancers. Our data is from a multi-center American College of Radiology 

Imaging Network clinical imaging trial (ACRIN 6688) which conducted dynamic PET-FLT 

imaging of breast tumor before and during neoadjuvant chemotherapy. The goal was to see 

if PET-FLT imaging could give an early indication of the tumor response – trial results 

are reported in (Kostakoglu et al., 2015). The ACRIN data are part of an anonymized 

cancer imaging archive developed and maintained by the National Cancer Institute (https://

www.cancerimagingarchive.net). The data considered here are from a patient studied at 

baseline (before chemotherapy). The study was conducted on a 74-plane scanner using a 3-D 

acquisition process and ML reconstruction. The 4-D PET data set consists of an imaging 

volume with N = 168 × 168 × 74 voxels (2.97 × 2.97 × 2.01mm3) and T = 45 time-frames of 

acquisition over one hour. The time-frame binning sequence was: 16(5 sec), 7(10 sec), 5(30 

sec), 5(1 min), 5(3 min) and 7(5 min). Note that more than half of the temporal sampling 

is focused on the first 2.5 minutes of the 1-hour acquisition. This is in part because the 

kinetics of FLT (a small molecule) are faster than those of FDG. The left-ventricle of the 

heart was used to directly recover a blood time-course, which after approximate adjustment 

for metabolites provided an arterial input function, Cp, used for kinetic analysis.

Data were processed using the same methods as used for the brain study. NB = 500 

image-domain bootstrap replicates were used for evaluation of sampling variation in 

computed metabolic images. Metabolic images and associated bootstrap estimates of their 

voxel-level standard errors are in Fig. 1. Metabolic images shown are for a transverse 

slice through the tumor region (indicated by an arrow on the flux image). Volume of 

distribution(Vd), flow(Kd) and flux (Ki) show significant enhancement in the tumor region. 

In a compartmental modeling framework, all three parameters have been suggested as 

appropriate ways to quantify FLT time-course data (Kostakoglu et al., 2015). Standard errors 

again demonstrate a pseudo-Poisson characteristic – variability is higher in regions with 

higher values. The typical percent error, measured by the standard deviation relative to 

metabolic parameter value, is on the order of 10–20% for most of the metabolic variables 

displayed. It is again notable that the mean transit time (MTT) and extraction (Ki/K1) appear 

quite stable as is the associated uncertainty measure. VOIs for tumor and contra-lateral 

normal breast were also accessed. The tumor region had 1280 voxels extending over 16 
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slices (3.2cm in axial extent); the normal VOI is not quite as large - 1054 voxels - but with 

a very similar shape. The bootstrap estimated histograms of the sampling distribution of 

the 95th percentile of the metabolic parameters in the VOIs are shown in Fig. 1. Similar 

to the FDG data, differences between tumor and normal VOIs are quite dramatic for all 

parameters, except for the vascular blood volume measure (Vb). These differences are highly 

significant when formally assessed via the bootstrap information.

Residual diagnostics for the analysis are shown in Fig. 2. The presentation facilitates 

qualitative comparisons with the FDG brain results. Eight vectors are identified by basis 

selection procedure. The cluster mean data defining the six non-AIF and Patlak basis vectors 

and their corresponding non-parametric residue model fits are again shown in Fig. 2(i). 

Temporal boxplots of the fully standardized residuals are shown in Fig. 2(iii). These show 

more variability than the corresponding pattern for the FDG data. It is worth noting that 

the model (2) does not imply a common form for these distributions. Similar to the FDG 

data, the optimized and initial temporal scaling factors, ϕj and ϕj
0 match each-other quite 

closely, apart from first few time-frames. Boxplots of residuals scaled by temporal (ϕj) and 

spatial (σi) factors and binned by values of κij( = zij ∕ σiϕj) are in Fig. 2(iv). These are 

quite different from the pattern for the FBP-reconstructed FDG data. Apart from the very 

first bin, the distributions show variation increasing with increasing values of κ - this is 

confirmed by ℎ which is substantially linear as a function of the quantiles of (zij − μij) ∕ σij. 

The distribution of the standardized residuals, [ − 2, 2] × [0, π], show a marked skewness. 

The pattern deviates substantially from the Gaussian – Fig. 2(v). Detailed evaluation of 

the distributions across κ-bins shows that as κ-increases, there is increasing conformity 

to the Gaussian. As discussed in Section 2, in a Gamma distribution κ is proportional 

to the shape parameter and as that parameter increases the Gamma distribution formally 

converges to a Gaussian. Thus the data are in line with (Mou et al., 2017) who showed that a 

Gamma-form was a good approximation for ML-reconstructed data. The directional spatial 

auto-correlation patterns of the scaled residuals are given in Fig. 2(vi). Here it can be seen 

that there is much less distinction between the auto-correlations in the X and Y directions. 

This may be due to the more circular nature of the source (see Fig. 1). Axial auto-correlation 

is much more persistent than in the FDG data. This is consistent with the 3D nature of data 

acquisition and its reconstruction. Interestingly, the full-width-at-half-maximum (FWHM) of 

X-Y auto-correlations (5mm) are quite close to that seen in the FDG brain data. However 

the longer range persistence in auto-correlation is clearly more pronounced in the FLT case. 

Qualitatively the images for the FDG data in Fig. 1 seem rougher than those for FLT. 

Thus the more persistent auto-correlation may in part be associated with the details of the 

reconstruction used. But of course it would be inappropriate to draw any inference about the 

relative resolution properties of these scanners on the basis of the auto-correlation patterns 

in Fig. 2(iv) for the FDG and FLT data. Such comparisons would require data from similar 

objects being imaged in both instruments under similar conditions – ideally using a suitable 

physical phantom study (Scheuermann et al., 2013).
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4. Assessment of performance

The purpose here is to evaluate the performance of the novel image-domain bootstrapping 

technique for PET and make comparisons with the more computationally intensive, but 

fully non-parametric, projection-domain approach. Assessment of variance estimators is 

somewhat complicated because we do not have an analytic formula for the true target 

variance. Hence a number of replicate simulations (NS) are needed to evaluate the true target 

variance with reasonable accuracy. Bootstrapping techniques involve simulation and the 

number of such simulations (NB) also needs to be considered. Apart from the computation, 

in practice the storage requirements associated with retention of bootstrap samples may also 

be a factor. We will report studies in which both modest and large numbers of bootstraps are 

examined.

In mathematical terms, PET has the structure of a linear inverse problem. The raw list 

mode data is a realization of an inhomogeneous Poisson process in which the rate is 

linearly related to the target source. Our studies use a simplified representation of PET 

scanning. This enables us to conduct a more detailed set of studies. We assume that critical 

performance differences between image-domain and projection domain bootstrapping 

methods for real PET scanners should be apparent in a simplified simulation setting, 

provided of course that the mathematical complexity of the simplification is substantially 

similar to PET. We report on experiments with 2-D and 1-D PET scanning models. The 

2-D studies are focused on analytic (FBP) reconstruction only, but iterative ML and analytic 

reconstruction are considered in the 1-D case. Dynamic aspects of both 1-D and 2-D studies 

are based on results obtained for the FDG brain and FLT breast cancer data presented in 

Section 3.

4.1. 2-D Experiments

The overall study structure is outlined in Fig. 3. The 2-D setup focuses on central slice 

containing the tumor. The dynamic source for the selected slice, Fig. 3 A-B, corresponds to 

the models fitted in NPRM mapping of kinetics – see (10). Temporal sampling and tissue 

attenuation are also matched to the real data. A simple scanning model involving Poisson 

sampling of a discretized (attenuated) parallel-beam Radon transform of the source is used 

(Kak et al., 2002; Natterer, 2001). The imaging domain is the unit square, discretized 

to an array of dimension 128 × 128, and the projection domain is the region [− √2, 

√2] × [0, π], discretized to a 183 × 181 sinogram array of distances and angles. Note 

the π-periodicity of the parallel beam Radon transform restricts the angular extent of the 

projection domain. As shown in Fig. 3(C), the discretized dynamic source is projected to 

produce the corresponding dynamic sinogram array of suitably attenuated rates. The scale of 

the rate array is adjusted by a factor corresponding to study dose, τR. This dose is specified 

so that the voxel-level noise in the reconstructed data matches the apparent voxel-level noise 

level of the real data. Independent Poisson count simulation from each element of the scaled 

sinogram array yields the synthetic projection-domain data (y). Each frame of the sinogram 

data is reconstructed analytically using a standard filtered backpojection (FBP) procedure 

with the raw ramp-filter result smoothed by convolution with a Gaussian resolution filter. 

The resolution filter bandwidth is required to be common across all time frames and by 
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grid-search its value is selected in order to minimize the average squared error difference 

between the estimated and true activity summed over frames. This choice of bandwidth is 

to ensure that the uptake image is objectively adapted to the study dose (O’Sullivan, 1995). 

Simulated data are processed using the NPRM procedure in Section 3, to produce a set of 

metabolic maps.

In addition data sets for the projection-domain (non-parametric), the image-domain and the 

approximate image-domain bootstraps are acquired. NB = 25 bootstrap samples are used for 

the projection and image-domain bootstraps; a set of, NB
∗ = 10, samples were used with the 

approximate image-domain method, with NB = 200 samples used in recyclying - see Section 

2.2.3. Note these numbers of bootstrap samples would be viewed as quite small relative 

to what might be used in standard statistical application (Efron and Tibshirani, 1994), 

however, they are likely to be realistic for practical use in most clinical imaging settings. 

The bootstrap datasets were used to evaluate a set of voxel-by-voxel standard deviations in 

estimated metabolic parameters. These values are compared to the true values estimated by 

direct replication. This is indicated in parts D and E of Fig. 3.

Quantitative comparisons between the estimated and true standard deviations were assessed 

on a voxel-by-voxel basis using a simple linear regression analysis and also in terms of an 

overall root mean square error (RMSE) measure. Regression analysis considered the relation 

between the true standard deviation, estimated by replication, with the corresponding values 

evaluated by the bootstrap methods. These regression analysis models are expressed as

σip ≈ ap σip
y ; σip ≈ bp σip

z ; σip ≈ cp σip
z ∗ (19)

for i = 1, 2, …, N. Here σip is the true standard deviation of the p’th metabolic parameter 

estimate for the i’th voxel; σip
y , σip

z  and σip
z∗

, are the values for the projection-domain, image-

domain and recycled image-domain bootstraps. In all cases, the simple linear regression 

analysis models are found to very well describe the relation between the true and bootstrap 

estimated standard deviation. The model R2 exceeds 0.9 for all metabolic parameters and for 

both FDG and FLT simulations – values for flux (Ki) are shown in Fig. 3.

The regression parameters, (a, b, c), in (19) summarize the average bias in the bootstrap 

estimate. If the regression parameter is close to unity it indicates that the bootstrap estimated 

standard deviations are well aligned with the true; a value less/greater than unity, indicates 

over/under-estimation of standard deviation by the bootstrapping method. Table 1 reports 

the values of these regression coefficients estimated from the simulation data. There is little 

indication of significant bias with any of the bootstrapping methods - the non-parametric 

projection domain approach generally tends to under-estimate the true standard deviation 

by an average of 9–10% in both the FDG and FLT settings. In contrast the image-domain 

procedures tend to over-estimate the standard-deviation, typically by around 1–3%. RMSE 

evaluates the mean square deviation between the estimated and true standard deviation at 

each voxel, with these values then averaged over all voxels. If σips is the standard deviation 

in the p’th metabolic parameter estimate at voxel i for the s’th replicate data for the bootstrap 

estimate, the RMSE is given by
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RMSEp•
σ = 1

NNS
∑
i = 1

N
∑

s = 1

NS
[σips − σip]2 (20)

The RMSE values for projection-domain and image-domain methods are denoted RMSEp•
y , 

RMSEp•
z  and RMSEp•

z ∗ . These values are reported in percentage terms in Table 1. There 

is little difference between the alternative bootstraps procedures with the image-domain 

technique out-performing the projection-domain method for some parameters (Ki, MTT, and 

Ki/K1) but not for other parameters (Vb, Vd, and Kd). RMSE values for the approximate 

image-domain bootstrap are consistently the largest. However it needs to be appreciated that, 

in light of the typical standard error of the true standard deviation, the significance of any of 

these differences is small. Standard errors are reported as γxt = ax[ℛλ]xt in Table 1. Note that 

the corresponding standard errors for averaged bootstrap estimates of standard deviations are 

very similar - these are not reported in the table. Further 2D studies with higher and lower 

count rates were also conducted and gave results very much in line with those reported in 

Table 1.

Bootstrapping ROI Averages—For this analysis a nested sequence of grids were used to 

construct a range of ROIs with different sizes and tissue heterogeneity characteristics. Fig. 

4 gives a schematic of the ROI generation scheme as well as summary information about 

ROI size distributions. Comparison between bootstrap estimates of standard deviations of 

ROI averages of flux (Ki) is also shown in Fig. 4. There is no indication that the alignment 

of the bootstrap estimates with the true standard deviations varies by ROI size. Detailed 

assessments of the reliability of the bootstrap estimates is provided in Table 2. These are 

based on an ROI version of (19) and (20) - i.e. the voxel indicator (i) is replaced by an 

indicator of the ROI. Similar to the voxel case, bootstrap estimates perform very well. 

There is no evidence that these results are substantially impacted by the size-distribution 

or positioning of ROIs. The non-parametric and image-domain method (with NB = 25 

replicates) have very similar RMSE reliabilities both for FDG and FLT. Both bootstraps tend 

to under-estimate the true ROI mean standard deviation. However, the amount of bias is 

small - on the order of 10–14% across the different kinetic parameters. Recycling is found 

to lead to more unreliable values - largely due to a greater systematic over-estimation of 

the true ROI standard deviation - on the order of 20% for most parameters. But the overall 

indication from the 2-D experiments is that image-domain bootstrapping scheme is very 

well aligned with the non-parametric projection domain approach and provides a viable 

mechanism for assessments of uncertainties at both the voxel and ROI level.

4.2. 1-D Experiments

These studies have a similar temporal structure to the 2-D simulations but a more simplified 

1-dimensional Poisson deconvolution scanning model from (O’Sullivan and Roy Choudhury, 

2001) is used. The simplified structure allows a detailed investigation of bootstrapping when 

the input data used for kinetic analysis has been reconstructed by methods analogous to the 

direct FBP and iterative maximum likelihood (ML) procedures used in PET. The scanning 
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model is defined as follows: we observe a discretized Poisson process whose intensity is 

of the form ℛ for x = 1, 2, ., N (even) and T = 1, 2, …, T. Here 0 < ax ≤ 1 is a known 

attenuation factor and the matrix ℛ = IT ⊗ Kβ is given by ℱ where Kβ : RN → RN and Kβ 

has the form of a discrete convolution. Letting [ℱKβx]v = ∣ v ∣−β [ℱx]v ≡ xv be the discrete 

Fourier transform, for any vector x ∈ RN, K for ν = ±1, ±2, …, N/2. With β > 0, the action 

of Kβ is to smooth the vector x. If y is a realization of a Poisson with mean τγ, then an 

unbiased estimate of the underlying source distribution λ is obtained by adjusting for the 

y-data by the attenuation factor and applying a least squares (LS) inversion procedure. This 

result is then smoothed to achieve consistent mean square error performance. As FBP is 

essentially equivalent to LS in the 2-D setting (O’Sullivan, 1995), we refer to LS as FBP in 

our 1-D model.

Letting Sh be a smoothing matrix with bandwidth h > 0 the smoothed estimate is

z = IT ⊗ Sℎz(fbp) with z(fbp) = 1
τ IT ⊗ [Kβ′Kβ]−1Kβ′(y ∕ a) (21)

where (y/a)xt = yxt/ax.

If Sh has a discrete Fourier representation, z(fbp) and z are efficiently computed using 

the 1-D FFT. Adapting (Vardi et al., 1985), the EM algorithm can be used to evaluate a 

maximum likelihood (ML) estimate, z(ml), and a corresponding smoothed value z+ = Shz(ml). 

The ML estimator is asymptotically efficient, as τ → ∞, as indeed is the FBP estimator. 

In estimation terms, 1-D scanning model shares some of the essential complexity of PET. 

In PET, Kβ is replaced by the line-integral Radon transform, Kβ′ Kβ. FBP estimation is 

known as filtered backprojection (FBP). Similar to K′K, the operation K′K is Toeplitz 

(Natterer, 2001). In d-dimensions, the eigenvalues of Kβ′ Kβ are proportional to ∣ξ∣−d/2; while 

the eigenvalues of λxt = ∑j = 1
6 αj(x)μj(t) are proportional to ∣ν∣−2β. Studies reported in (Gu, 

2021) show that with a choice of β = 1.35, there is a good agreement between the bandwidth 

optimized mean square error (MSE) estimation characteristic as a function of dose for the 

1-D Poisson deconvolution model, and the corresponding MSE characteristic of 2-D PET 

reconstruction.

In the 1-D case simulations were conducted both for FDG and FLT using source 

distributions consisting of a mixture of six temporal components, NB = 200. The number 

of voxels was set at N = 128. The temporal patterns are matched to those arising in the 

2-D simulations. Spatial patterns are indicated in Fig. 5, together with the transformed 

profiles, Kβαj’s, and the attenuation pattern. Reference dose-values τR were again chosen 

so that the qualitative variability of simulated 1-D data matched that seen at the voxel-level 

in the real FDG and FLT data. Five dose levels, τ = τR/5, τR/2.5, τR, 2.5τR, 5τR were 

examined with FDG and FLT. In the 1-D setting a more extensive bootstrapping process 

was used (NB, NB
∗ = 10 with σ̄•) and the number of replicates was also increased (NS 

= 400). Simulated data were reconstructed using FBP and iterative ML techniques. Raw 

frame-by-frame reconstructions were smoothed by convolution with a Gaussian kernel. 

Similar to the 2-D case, bandwidth was common across all frames, and its value was 
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optimized according to the mean square deviation of the estimated total uptake from the true 

known source. Due to the implicit regularization associated with raw ML reconstruction 

(O’Sullivan, 1995; O’Sullivan and Roy Choudhury, 2001) bandwidths were separately 

optimized for the FBP and ML reconstructions. Results for the middle dose are presented 

in Table 3. Very similar results were found at other doses. Regression analysis again finds 

strong alignment between the bootstrap generated standard deviations and the true values. 

Generally there is a tendency for the methods to underestimate the true standard deviation 

by on the order of 14% for FDG and 7% for FLT. The approximate image-domain bootstrap 

is 2–4% higher than the others. There is little or no difference between the pattern for 

FBP and ML reconstructed data. Raw RMSE values, computed by (20), are typically 16% 

smaller for ML reconstructed than FBP reconstructed data. However this is undoubtedly a 

reflection of the fact that the metabolic parameter standard deviations, summarized by σ̄•
in Table 3, are on the order of 14% lower for data reconstructed by ML versus the FBP. 

In light of this, Table 3 reports RMSE values as a percent of the average true standard 

deviation. The adjusted RMSE values are very similar for FBP and ML. In the case of FDG 

RMSE values are 0.2% lower for FBP; they are 1.1% higher for FLT. In practical terms 

these differences are inconsequential. Results demonstrate the ability of the methodology 

to adapt to the characteristics of the ML data. Overall, the RMSE is 4.5% lower for the 

projection-domain bootstrap than the image-domain approach; the approximate method is 

9.3% higher again. A similar calculation for the RMSE values reported in the 2-D simulation 

but expressed as a percentage of σi2[X′W X]−1, gives values that are remarkably similar to 

this: The image-domain method is 2.8% higher than the projection-domain with the RMSE 

for the approximate method a further 6.3% higher again.

4.3. Statistical interpretation of simulation data

Table 4 reports on a number of further analyses applied to all the simulation data generated 

in 2-D and 1-D experiments. These analyses are applied separately in 1-D and 2-D so 

the table gives the ability to see similarities across the various configurations explored 

and appreciate overall patterns. The focus is on two analyses, (i) the direct systematic 

relation between the projection-domain and image domain bootstrapping methods, and 

(ii), the relation between relative uncertainty in voxel-level kinetic parameters and data 

reconstruction error. For the first analysis we conducted regression analyses, similar to (19), 

relating the voxel-level projection-domain bootstrap standard deviation to the values from 

the image-domain approaches, i.e.

σip
y ≈ αpσip

z ; σip
y ≈ βpσip

z∗ for i = 1, 2, …, N (22)

The estimates of the α and β coefficients are in Table 4. Across all the simulation settings 

we see a very similar pattern. Apart from blood volume (Vb), whose standard deviation by 

the image-domain methods are consistently lower than reported by the projection-domain 

bootstrap, there is remarkably close alignment between the methods.

The relation between voxel-level parameter standard deviation and reconstruction error 

was also examined. Our analysis is motivated by the approximation used in constructing 
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the recycling process for the simplified image-domain bootstrap in (4). The covariance 

of unconstrained α-coefficients should be approximately σi2, where ϕj
−2 is the average 

voxel-level measurement variance in (1) or (2) and W is the diagonal matrix with elements 

(α) for j = 1, 2 …, T. The NPRM kinetic analysis procedure involves fitting the model (2) 

but subject to the constraint that the α-coefficients are non-negative. By (10), the true kinetic 

parameters, θ = (Vb, Vd, Kd, Ki, MTT, Ki/K1), are simple functions of the constrained 

α-coefficients. Assuming the unconstrained α-coefficients are sufficient for the constrained 

values, θ can also be regarded as a function of the unconstrained coefficients. Hence we can 

consider the estimated kinetic parameters as functions of the unconstrained α-coefficients 

θ = g(α) where g : RK → RP (P = 6). By application of the delta method, e.g. (Kutner et al., 

2013; Rao, 1973), the covariance of kinetic parameters can be approximated by ℓα′ V (α)ℓα, 

where ℓα is the K × P matrix whose columns are the gradients of the components of θ 
w.r.t. the α-coefficients. But as discussed in 2.3, V (α) ≈ σi2[X′W X]−1, so we are lead to 

V (θ ) ≈ σi2ℓα′ [X′W X]−1ℓα′ . In general, since the mapping g takes unconstrained α-coefficients 

and maps them to kinetic parameters, g may well be non-linear even for the components 

(Vb, Vd, Kd, Ki) that have a linear dependence on the constrained α-coefficients. Hence ℓα 
may depend on the local α-value. In spite of this, the analysis suggests a relation between 

the voxel-level parameter standard deviation and the standard deviation of the measurement. 

In the simulation setting, the square-root of the weighted mean square reconstruction error 

can be used as an assessment of measurement error: σiR = ∑j = 1
T wj

0[zij − λij]2 ∕ T ≈ σi. 

Motivated by these theoretical considerations, we examined the relation between the relative 

error in kinetic parameters and a scaled reconstruction error, by fitting regression models in 

the form

log(σip ∕ μip) = γ0p + γ1p log(σiR ∕ μip) + error (23)

to each of the simulation datasets.1 Table 4 shows estimates of γ1p as well as the quality 

of fit of the model measured by the R2 statistic. The model fits are remarkably good 

(most in excess of 80%) particularly for (Vb, Vd, Kd, Ki). With MTT the model pattern is 

continues to be remarkably accurate for FLT; but not for FDG. On the other hand the model 

variance pattern for extraction (Ki/K1) is still very reasonable for FDG but not for FLT. 

While these analyses give an understanding of the behaviour of voxel-level kinetic parameter 

variability, they also help to provide some underpinning for the basic theoretical heuristic 

for the approximation used to recycle the image-domain bootstrapping. Further studies were 

conducted in 1-D in order to evaluate the accuracy of the bootstrapping techniques as a 

function of the size of the imaging domain (Badawi et al., 2019). Remarkably, our analysis 

finds that the dependence is very limited. Based on linear regression theory (Seber, 2015), 

the primary factor impacting the RMSE of uncertainty estimation relative to the scale of 

the noise, i.e. var(σ) ∕ σ, is the dimension of the model basis in relation to the number of 

data points (K/T). But in PET, dose constraints mean that reconstruction error will increase 

1The logarithmic transform is used for variance stabilization in fitting.
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with temporal sampling. So the ability to manipulate relative RMSE performance merely by 

increased temporal sampling would be unrealistic.

5. Discussion

The work has presented a novel image-domain approach to bootstrapping PET data having 

a dynamic component. The method is based on a novel general linear model approximation 

of the dynamic source distribution in which the error is described in terms of a sub-ordinate 

Gaussian process that is assumed independent across time-frames and stationary in the 

imaging space. In addition the distribution of error is allowed to adapt to the local skewness 

of the data. Thus there is no requirement for the method to be modified depending on 

whether an analytic or iterative data reconstruction process is used. This removes a number 

of potentially limiting assumptions used in (Huang et al., 2020). The bootstrapping scheme 

in (Huang et al., 2020) also made essential use of the near-replicate nature of re-binned time-

frame data. But this is not required here. In essence, the generalized linear modeling of the 

dynamic PET data used here creates an approximate replicate residual process that provides 

information for data simulation. Conceptually this is similar to information provided by 

time-frame re-binning in (Huang et al., 2020).

Our methodology is illustrated by application to real examples involving the use of dynamic 

PET imaging for the purpose of mapping metabolic parameters of tissues in the field 

of view. The general linear modelling analysis technique enables us to create bootstrap 

replicate data sets for analysis. Application of the NPRM kinetic mapping technique 

to the bootstrap data provides voxel-level estimates of metabolic parameters and their 

associated uncertainties (SEs). Numerical studies motivated by these examples compare the 

image-domain bootstrapping approach to the more computationally demanding but fully 

non-parametric projection-domain approach (Haynor and Woods, 1989). Image-domain 

bootstrapping is found to substantially match the RMSE performance characteristics of 

projection-domain bootstrapping.

The current analysis is implemented in (R et al., 2020) - an open-source statistical 

programming platform. An R-package is currently under development and is expected 

to be available on the CRAN network (https://cran.r-project.org) in the near future. 

In comparison to projection-domain bootstrapping, in which each bootstrap replicate 

requires reconstruction of simulated list-mode data; computation of image-domain bootstrap 

replicates are negligible. But of course significant computation is required to setup the 

image-domain bootstrapping model. For the 3-D data sets analyzed in Section 3, the 

computation of the image-domain model took 1-1.5 hours on a small desktop computer 

configured with a single 3.2 GHz Intel Core i7 processor and 16 GB 2667 MHz DDR4 

memory. Based on our 2-D numerical studies, the computation of the image-domain 

bootstrapping model is less than what would be required for a single ML reconstruction 

of a list-mode time-course data set. In light of this, with iteratively reconstructed PET data 

- the norm in most PET scanners now - image-domain bootstrapping will always be faster 

than the projection-based approach; the difference between them becomes more extreme as 

temporal sampling or the number of bootstrap replicates required increases.
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Of course as computing capabilities grow and it becomes standard to retain list-mode 

data for dynamic PET studies, non-parametric projection-domain bootstrapping may 

become practical as well. Indeed this would be an ideal circumstance because the theory 

underpinning the non-parametric approach is very well developed (Efron and Tibshirani, 

1994). But current PET scanning technology is very far from that now. In addition, current 

archives of well-curated cancer clinical trial PET imaging data combined with associated 

patient outcomes, e.g. National Cancer Institute (https://www.cancerimagingarchive.net), 

do not to our knowledge include any list-mode information. Thus the analysis of image 

uncertainty using data from such archives can only be based on a suitable image-domain 

bootstrapping approach, as we have described here.

For situations where retention of extensive bootstrap samples is prohibitive, we have 

proposed a novel recycling process as an approximate image-domain bootstrapping 

approach. While the RMSE performance of this approximation is not as good as a full 

bootstrap, the results are still quite reasonable. Importantly our studies indicate that the 

performance of the image-domain simulation techniques are not impacted by whether or not 

the reconstruction methodology is analytic (FBP) or iterative (ML).

It would be interesting to use the methods here to examine multiple studies with a similar 

anatomy on the same scanner, in order to develop a practical scanner-specific understanding 

of the study-to-study stability of the image-domain model estimates. If list-mode data were 

available, it would also be possible to use the projection-domain bootstrap to gain some 

insight into this. Specifically such a bootstrap could be used to create replicate projection-

domain scanning data that could be used to estimate image-domain model parameters. The 

collection of model parameters obtained across bootstrap replicates would then provide a 

direct assessment of their sampling characteristics.

There are a number of other medical imaging modalities where subject-specific assessment 

of uncertainty in quantitated imaging measurements are not currently available and the 

techniques here might be useful. For example, dynamic imaging with MR (DCE,DSC) or 

CT are routine in the clinical management of cancer and stroke and the structure of datasets 

is substantially similar to dynamic PET. This will be a focus for future work.
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Fig. 1. 
Metabolic Images with image-domain bootstrap assessment of standard errors: Rows 1–3 

show the Brain tumor FDG data; 4–6 for the Breast tumor FLT data. The mapped parameters 

are shown on rows 1&4 – the location of tumor volume of interest (VOI) on the slice is 

indicated with an arrow. Columns correspond to different metabolic parameters (labeled 

in yellow) with color bars indicating units - see Section 3.1 for definitions. Computed 

standard errors (SE) are on rows 2&5. Rows 3&6 show histograms of the bootstrap sampling 

distributions of the95th percentile of the metabolic parameter in the normal [black] and 

tumor [red] VOIs.
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Fig. 2. 
Diagnostics associated with the Image-Domain Bootstrapping Model (2). Rows 1&2 

correspond to the FDG-Brain data; Rows 3&4 to the FLT-Breast data. Six plots, labeled 

(i) to (vi), are shown for each dataset: (i) raw sub-TACs (dots) and fitted models (lines) 

for the selected basis set - columns of X. (ii) Non-parametric residues corresponding to 

the fitted model - c.f. (10). (iii) Boxplots by time-frame of standardized residuals from 

the unconstrained least squares fit, rij ∕ σiϕjℎij. The simple, ϕj
0 in (5), and optimized, ϕj, 

standard deviations are shown as green and red dots. (iv) Boxplots of scaled residuals, 

ϵ ij = rij ∕ σiϕj, for each κ-bin (each containing roughly 10,000 data points). ℎl-values are 

shown as red points; the red line is for comparison with unity (zero skewness of bin data). 

(v) Histogram of the overall distribution of the standardized residuals and its relation to 

a Gaussian fit (purple curve). Super-imposed are points showing quantiles of standardized 

residuals from different κ-bins (colored from red to dark blue according to bin order) 
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versus corresponding quantiles of the Gaussian (right y-axis). The quantile pattern for the 

overall histogram and the Gaussian fit are shown with dashed black and purple lines. (vi) 

Directional auto-correlation patterns of the normalized residuals, η (see section 2.4), as a 

function of distance in millimeters. X-Y are transverse with Y perpendicular to the scanning 

bed; Z is the axial direction.
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Fig. 3. 
Source distribution, λxt = ∑k=1αk(x)μk(t), for the 2-D simulation experiments. Rows 

corresponds to the FDG-Brain data (A) and FLT-Breast data (B). αk(x) patterns and 

attenuation in (i), time-courses for each component, μk(t) (normalized), are in (ii). Flux 

parameters are in (iii). (C) Dynamic image-domain source leads to a corresponding 

projection domain array. Simulated counts are reconstructed and computed metabolic 

images. Each replicate of the simulation has both non-parametric (projection-domain) and 

model-based (image-domain) bootstrapping. Voxel estimates of average standard deviations 

of flux are shown on rows D and E. The true values are estimated by direct replication, these 

values are compared to image and projection domain bootstraps for a single replicate.
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Fig. 4. 
Schematic for 2-D investigation of Bootstrapping ROI averages. A total of 696 and 676 

ROIs are defined for Brain and Breast, respectively. (A) Grids of rectangular ROIs and their 

size distributions. Estimates of average ROI standard deviations of flux are shown on rows B 

and C - colors correspond to different ROI sizes.
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Fig. 5. 

Scaled spatial patterns (αj) for source distribution (λxt = ∑j = 1
6 αj(x)μj(t)) in 1-D experiments 

(dotted lines); projection domain patterns (Kβαj) are also shown (solid lines). Left - FDG 

studies; Right - FLT studies. Source sub-TACs (μj) are in Fig. 3 A(ii) (FDG) and Fig. 3 B(ii) 

(FLT). Colors of αj’s here match the colors of corresponding sub-TACs in Fig. 3. The solid 

black line is the attenuation pattern.
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