
1Scientific Data |           (2022) 9:375  | https://doi.org/10.1038/s41597-022-01468-2

www.nature.com/scientificdata

Advancing early warning 
capabilities with CHIRPS-
compatible NCEP GEFS 
precipitation forecasts
Laura Harrison    ✉, Martin Landsfeld, Greg Husak, Frank Davenport, Shraddhanand Shukla, 
William Turner, Pete Peterson & Chris Funk

CHIRPS-GEFS is an operational data set that provides daily bias-corrected forecasts for next 1-day 
to ~15-day precipitation totals and anomalies at a quasi-global 50-deg N to 50-deg S extent and 
0.05-degree resolution. These are based on National Centers for Environmental Prediction (NCEP) 
Global Ensemble Forecast System version 12 (GEFS v12) precipitation forecasts. CHIRPS-GEFS forecasts 
are compatible with Climate Hazards center InfraRed Precipitation with Stations (CHIRPS) data, which 
is actively used for drought monitoring, early warning, and near real-time impact assessments. A rank-
based quantile matching procedure is used to transform GEFS v12 “reforecast” and “real-time” forecast 
ensemble means to CHIRPS spatial-temporal characteristics. Matching distributions to CHIRPS makes 
forecasts better reflect local climatology at finer spatial resolution and reduces moderate-to-large 
forecast errors. As shown in this study, having a CHIRPS-compatible version of the latest generation 
of NCEP GEFS forecasts enables rapid assessment of current forecasts and local historical context. 
CHIRPS-GEFS effectively bridges the gap between observations and weather predictions, increasing 
the value of both by connecting monitoring resources (CHIRPS) with interoperable forecasts.

Background & Summary
This article describes a precipitation forecast data set designed to support drought early warning and anticipate 
weather impacts across many regions of the globe. This data set bridges a gap between a resource that is actively 
used for monitoring agro-climatic conditions and the forward-looking information that modern numerical 
weather prediction (NWP) systems provide. The hope in creating this product is that people engaged in weather 
and climate-impact assessments, particularly those doing so to assist vulnerable communities, can more easily 
take advantage of the value of NWP data for new scientific applications, and for timely assessments and com-
munication about high-risk situations. NWP data is a crucial resource for short-term disaster planning, and 
accessibility of weather forecasts has led to uptake in an ever-increasing number of applications.

Numerical weather prediction systems use a powerful computing framework to model key atmospheric pro-
cesses. To help set the initial atmospheric state and to provide up-to-date information about how the current 
atmospheric state is evolving, satellite data and weather observations are assimilated into the model simulations 
several times a day. Weather prediction centers usually run a NWP model multiple times with perturbed initial 
conditions to characterize uncertainty. A major challenge to weather prediction, and a fundamental limit to pre-
dicting weather patterns and precipitation, is the so-called “butterfly effect,” named for the chaotic fluctuations 
in the atmosphere that amplify small anomalies over time1. Inaccurate representation of the current state and 
absent or poor parametrization of complex atmospheric processes in the NWP system also yield inaccuracies. 
Statistical post processing of NWP data is commonly done to correct for systematic errors that arise from res-
olution limitations and errors in the mean state and ensemble spread2. While numerical weather prediction is 
imperfect, users’ tolerance for error is situation-dependent, and, in some cases, a moderately skillful forecast can 
be invaluable.
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In this data descriptor article, we present CHIRPS-GEFS, a precipitation forecast data product based on pre-
dictions from the widely used National Oceanic and Atmospheric Administration (NOAA) National Centers 
for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS). CHIRPS-GEFS is an opera-
tional data set that uses quantile matching to increase the spatial resolution, remove systematic bias, and adjust 
the variance of deterministic precipitation forecasts from the newest version of this state-of-the-art numer-
ical weather prediction system, GEFS version 12 (v12)3. CHIRPS-GEFS uses the Climate Hazards InfraRed 
Precipitation with Stations precipitation data product4 (CHIRPS) and GEFS v12 2000 to 2019 reforecast data5 
for spatial downscaling and bias correction of 0.25-degree to 0.5-degree resolution GEFS v12 real-time ensemble 
mean forecasts. CHIRPS is a gridded merged satellite-station precipitation data product with a 40+ year record, 
quasi-global extent, and ~5 km resolution. CHIRPS-GEFS provides daily-updated 0.05-degree resolution fore-
casts for 1-day, 5-day, 10-day, and 15-day precipitation totals, as well as for pentads—the primary periodicity 
for CHIRPS data. CHIRPS and CHIRPS-GEFS data are produced by the University of California Santa Barbara 
(UCSB) Climate Hazards Center (CHC).

CHIRPS-GEFS is designed to support operational seasonal precipitation monitoring and impact forecasting 
by providing a version of GEFS forecasts that are compatible with CHIRPS data. CHIRPS is widely used for 
drought early warning, agro-climatological monitoring, and historical climate impact and trend assessments6,7. 
The goal is to produce forecasts and estimates with similar distributions, specifically, by adjusting the GEFS 
forecast mean and variance structure to be similar to CHIRPS. Matching distributions to accurate gridded pre-
cipitation estimates constrains forecasts to better reflect the local climatology, and it is a necessary preprocessing 
step for comparing forecasts to observed precipitation amounts. While it does not resolve inaccuracy in numer-
ical weather predictions, the quantile matching process used to produce CHIRPS-GEFS removes systematic 
bias errors and can substantially improve the representation of precipitation in areas associated with complex 
terrain. Bias-corrected precipitation forecasts are important source of error reduction in hydrologic forecast 
applications8,9.

CHIRPS-GEFS is available as a downloadable data product, through data viewers, and through regional pre-
cipitation monitoring maps. In this article, we describe CHIRPS-GEFS forecast products and access. We show 
areas of the globe where the temporally varying bias correction produces large and small adjustments, and where 
forecasts for 5-day and 15-day precipitation totals tend to perform well or poorly, according to deterministic and 
categorical skill metrics. We also show an exciting operational application that seamlessly combines CHIRPS 
data and CHIRPS-GEFS forecasts to provide outlooks that support drought early warning in food-insecure 
countries.

Methods
Data sources: Climate Hazards center InfraRed Precipitation with Stations data and NCEP 
Global Ensemble Forecast System forecasts.  Key strengths that make CHIRPS reliable for operational 
monitoring, and a good candidate for forecast bias correction, are its long record for historical context, low latency 
to support operations, low bias, and good performance in validation studies4,10–27. It combines satellite thermal 
infrared cold cloud duration-based precipitation estimates with in situ observations from a large and quality con-
trolled archive of weather station reports from global, regional, and national meteorological networks. CHIRPS 
incorporates a relatively dense gauge network in typically underrepresented places, such as Ethiopia, Somalia, 
Southern Africa, Mexico, and Central America, as well as in the United States, Western Europe, South Africa, 
and Australia. CHIRPS has a low 2-day latency for preliminary pentads (~5 day periods) and a ~2.5 week latency 
for the final version of data for the previous month. CHIRPS has low bias4 compared to the high-quality gridded 
gauge-based Global Precipitation Climatology Centre data, which has a much longer year-plus latency. Low bias 
is primarily achieved by the CHIRPS algorithm for anomaly estimation being centered upon the high-quality ~5 
km-resolution Climate Hazards Center’s Precipitation Climatology28 (CHPclim). CHPclim uses moving window 
local regressions to predict monthly station climate normals using geographic attributes and long-term means 
from satellite precipitation estimates. Estimates are then refined in a two-step process using spatially interpolated 
(inverse distance weighted) model residuals and Global Historical Climatology Network version 229 observed 
monthly means.

GEFS is an advanced NWP system that has been operated by the National Centers for Environmental 
Prediction since December 199230. The latest version, GEFS version 123, was implemented in September 2020 
for operational forecasting and is the first global-scale coupled forecast system at NCEP following the United 
Forecast System (UFS) framework. The system produces operational “real-time” forecasts 4 times daily out to 
16+ days. Significant system advances in GEFS v12 include the Global Forecast System model (GFSv15.1) with 
a computationally efficient Finite-Volume Cubed Sphere (FV3) dynamical core, down to 0.25-degree resolution 
and extended-length forecast outputs, more ensemble members, and improved model perturbation techniques, 
physical parameterization schemes, and global wave forecasts31,32. According to the NCEP Environmental 
Modeling Center (EMC) Model Evaluation Group (MEG), strengths of GEFS v12, compared to previous sys-
tems, include more reliable precipitation forecasts, improved representation of weather events near topography, 
increased ensemble spread, and improved synoptic-scale weather prediction. Relative to the older version, GEFS 
v12 has 25–30% higher Brier Skill Scores for day 1-to-5 quantitative precipitation forecasts in the continental 
United States, smaller errors in tropical cyclone tracks and intensity, and better prediction of the Madden-Julian 
Oscillation and other large-scale indices relevant to precipitation in the tropics and subtropics32. The MEG 
evaluation can be accessed at https://www.emc.ncep.noaa.gov/users/meg/gefsv12/. More on GEFS v12 can be 
found in Zhao et al.3 and on the NCEP webpage https://www.emc.ncep.noaa.gov/emc/pages/numerical_fore-
cast_systems/gefs.php.

To make real-time GEFS forecasts compatible with CHIRPS data, CHIRPS-GEFS bias correction uses 2000 
to 2019 GEFS v12 FV3 Phase 2 “reforecast” data described in Guan et al.5 and produced by NCEP EMC to 
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accompany the GEFS v12 real-time forecasts. These data are managed by NOAA and can be accessed through 
the Registry of Open Data on Amazon Web Services (AWS, https://registry.opendata.aws/noaa-gefs-reforecast/). 
Reforecast data are retrospective weather forecasts that are generated from a fixed NWP model framework. They 
are a valuable resource for statistical correction of weather forecasts, as well as for model developers to diag-
nose model biases2,33. The reforecast data consists of daily GEFS forecasts, out to 16 days, for the period 2000 
to 2019, for 5 ensemble members. The reforecast data were downloaded from https://noaa-gefs-retrospective.
s3.amazonaws.com/index.html. Spatial resolution varies in the reforecast data, from 0.25 degrees for the first 10 
days to 0.5 degrees after that. The reforecast project also includes a once-per-week, 11-member forecast to 35+ 
days. For CHIRPS-GEFS, the reforecast data and previous real-time data are used to place the current day’s 0000 
UTC GEFSv12 real-time forecast in historical context. CHIRPS-GEFS uses the ensemble mean from both the 
reforecast data and the real-time forecasts.

An integral part of the implementation of the GEFS at NOAA was the simultaneous production of two 
reanalysis data sets and this companion reforecast data set. In post processing raw forecasts, it is ideal for the 
training data to have similar bias and error characteristics, so efforts were made by the NCEP EMC and the 
NOAA Earth System Research Laboratories (ESRL)/Physical Sciences Laboratory (PSL) to use modeling system 
configurations similar to the operational GEFS v12. However, these are not identical. Some characteristics are 
described here and details are provided by Guan et al.5 and Hamill et al.2. The Phase 2 reforecast data used initial 
conditions from the ESRL/PSL 20-year reanalysis and were generated from FV3 GFS/ensemble Kalman filter 
(EnKF) hybrid analyses and EnKF 6-hour forecasts with the incremental analysis update (IAU) replay process to 
improve accuracy and reduce noise5. The reanalysis’ control and perturbed members were run at coarser res-
olution than the real-time forecasts due to limited computational resources2. Among other differences are the 
boundary conditions, with the reforecast using Optimum Interpolation Sea Surface Temperature data instead of 
a more sophisticated two-tiered SST procedure5. Data-availability differences between reforecast and real-time 
data include fewer daily ensembles members (5 versus 31) and fewer initialization cycles per day. For a sense 
of the differences in bias that the non-identical configurations may produce, Hamill et al.2 compared reforecast 
data to a 2-year-long set of separate retrospective forecasts that closely mimic operational real-time GEFS v12 
data production. They found similar errors in near-surface weather variables in both the reforecast ensemble 
mean and the retrospective ensemble mean, based on its first five ensemble members, and reported that even 
though there would be some differences, reforecast data should provide acceptable similarity for post processing. 
For impacts of these differences on CHIRPS-GEFS bias correction, deeper investigation into statistical qualities 
of the reforecast versus real-time ensembles would be worthwhile in the future as more data becomes available.

CHIRPS-GEFS bias correction: Rank-based quantile matching.  Bias correction is a post-processing 
step that involves comparing the forecast to historical model forecasts and historical observations, ideally using 
a historical record that provides a representative sample of the possible distribution of precipitation outcomes. 
While the overall aim is to improve forecast skill, the choice of correction strategies depends on the issue being 
targeted, and these, in turn, depend on user needs. For example, experiments in improving probabilistic precip-
itation forecasts have shown success using training data and historical forecast analogs34. Researchers have used 
bias-corrected weather to seasonal forecasts to drive land surface models to better anticipate flood events35,36, 
streamflow37,38, root-zone soil moisture deficits39, and potential drought40.

The method currently used in CHIRPS-GEFS production is a type of quantile matching, a common method 
of systematic bias correction and data downscaling that performs well for modeled hydroclimatic data5,9,41–44. 
The National Weather Service, for example, uses quantile matching to remove bias and calibrate 6-hourly fore-
casts in their U.S. National Blend of Models using multi-location past-60-day observations45. In quantile match-
ing, forecast data are first translated from precipitation amounts into percentiles, based on historical forecast 
cumulative distribution functions, and then these are mapped to equivalent quantiles based on each location’s 
historical target distribution. In other words, if the original forecast amount was ranked high or low compared 
to past forecasts from 2000 to present, the bias-corrected forecast amount is equivalently ranked high or low 
compared to the observational record for the same period. This process adds local spatial information, increas-
ing the effective resolution of the forecasts, and also produces forecasts that have statistical distributions that are 
similar to the observational data set. Hence, the resulting forecasts are both higher resolution and interoperable 
with CHIRPS observations.

Operational CHIRPS-GEFS data are a bias-corrected 0.05-degree version of the 0.25-degree resolution Day 
1 to 10 and 0.5-degree resolution Day 11 to Day 16 GEFS real-time 00 UTC ensemble mean forecasts for total 
precipitation from https://ftp.ncep.noaa.gov/data/nccf/com/gens/prod/. This spatial-temporal resolution is 
comparable to the reforecast data, as described above.

On a daily basis, ensemble mean 6-hour forecast amounts are downloaded and summed for each of the 16 
days. Day 11–16 data are resampled to 0.25-degree resolution with bilinear interpolation, and the daily totals are 
accumulated to the 16-day period. The rank-based quantile is calculated using sorted historical reforecast values 
and previous real-time forecasts for the same 16-day period for each pixel. Historical daily CHIRPS values are 
accumulated for the same time period and quantile-ranked for the same historical period. The corresponding 
CHIRPS rainfall amount is backed-out from the percentiles and used as the new CHIRPS-GEFS estimate. This 
16-day estimate is then disaggregated to daily values using the original GEFS daily fractions of the 16-day pre-
diction. These daily CHIRPS-GEFS values are accumulated to the 5-day, 10-day, 15-day CHIRPS-GEFS products 
every day. On the first day of each pentad and dekad, accumulations for those periods and the following two 
pentads are totaled as well.

Downscaling the GEFS 0.5-degree Day 11–16 forecasts to 0.25-degree resolution with bilinear interpolation 
introduces some precipitation changes, including smoother edges along storm precipitation gradients. Bilinear 
interpolation is not a mass-conserving approach. This influence was deemed acceptable for the purposes of 
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this data product and upon consideration of the fact that storm details are uncertain at 11 to 16-day lead-times. 
A benefit of the smoothing at that step is that 0.5-degree edge discontinuities from those long-lead forecasts 
are not retained in the final data. The quantile matching makes use of the GEFS 16-day period percentiles at 
0.25-degree; these are simply regridded to match the CHIRPS 0.05-degree resolution for that step.

Reforecast data is also downscaled and bias-adjusted using the same procedure as with the real-time data. 
This historical archive was used for skill assessments presented in this article.

Data Records
CHIRPS-GEFS is available for public use as a downloadable data product, through interactive data viewers, 
and as regional monitoring maps. Operational and historical CHIRPS-GEFS data, based on bias-corrected 
GEFS v12 real-time data, from October 2020 to present, and Phase 2 reforecast data46 from 2000 to 2019, are 
located on a public data server. These data can be found at the UCSB CHC CHIRPS-GEFS webpage, where the 
CHIRPS-GEFS Precipitation Forecasts data repository47 (https://doi.org/10.15780/G2PH2M) is also located. 
Users can cite the data as: “CHIRPS-GEFS Precipitation Forecasts. CHIRPS-GEFS Data Repository https://doi.
org/10.15780/G2PH2M (2021). Data was accessed on [DATE].” The data are for use in operational precipitation 
monitoring and forecasting applications, for assessments like the current study on forecast performance, and 
for research and development. Data are in GeoTiff format, and are available for multiple variables and perio-
dicities. Table 1 shows the main access points for CHIRPS-GEFS data and two online data viewers that include 
operational CHIRPS-GEFS data. Users can view images of the latest forecast 5-day, 10-day, and 15-day totals 
and anomalies at the CHIRPS-GEFS webpage, and can view and download time series (CSV format) and explore 
more images at the UCSB CHC and USGS Early Warning eXplorer (EWX) viewers.

Table 2 shows the update schedule for operational CHIRPS-GEFS data. The CHIRPS-GEFS data product 
includes daily-updated gridded 1-day, 5-day, 10-day, and 15-day daily forecast precipitation totals (mm), anom-
alies (mm), and standardized anomalies (z-scores), for quasi-global 50-deg N to 50-deg S extent at 0.05-degree 
resolution. Daily CHIRPS-GEFS updates are typically available shortly after the release of the GEFS forecast. 
Anomalies and z-scores are computed based on the entire reforecast and operational data record. File naming 
convention for 5-day, 10-day, and 15-day CHIRPS-GEFS indicates the day of GEFS forecast release and first 
day of the time period, which are the same. For example, the CHIRPS-GEFS 5-day forecast on January 1st is the 
forecast precipitation total for the 1st to the 5th.

A second type of data update is also provided to support standard CHIRPS data temporal frequency and 
accumulations. On the 1st, 6th, 11th, 16th, 21st, and 26th day of each month, daily forecast amounts from that 
day’s run are aggregated to pentads, the primary computing and update time step for CHIRPS v2 preliminary 

Resources Description Specifications Access

CHIRPS-GEFS 
precipitation forecast data

Forecast 1-day, 5-day, 10-day, 15-day, 
pentad, and dekad precipitation totals 
for January 2000 to December 2019 and 
October 2020 to present.

50-deg S to 50-deg N at 0.05-deg 
resolution.
Format: GeoTiff.

UCSB Climate Hazards Center. The CHIRPS-
GEFS Precipitation Forecasts data repository46 
contains all data and current forecast images  
https://doi.org/10.15780/G2PH2M.

CHC Early Estimates

Maps for monitoring conditions for past 
~5 days to 3 months and region-specific 
seasons (CHIRPS final and preliminary 
data). A “+ Forecast’’ version shows a ~15 
day outlook (CHIRPS-GEFS).

Precipitation totals, % average, 
historical rank, and more, for 
multiple regions.
Format: PNG and GeoTiff.

UCSB Climate Hazards Center Monitoring and 
Forecasting webpage https://chc.ucsb.edu/monitoring

Early Warning Explorer 
(EWX) Next Generation 
Viewers

Graphical interfaces featuring multiple 
data sets including historical CHIRPS-
GEFS (UCSB CHC EWX) and time series 
combining CHIRPS and CHIRPS-GEFS 
pentads (USGS EWX).

Time series for administrative 
and crop regions; images for user-
defined extent.
Format: GeoTiff, PNG and CSV.

UCSB CHC EWX https://chc.ucsb.edu/tools/ewx
USGS EWX https://earlywarning.usgs.gov/fews/
software-tools/1

Table 1.  CHIRPS-GEFS Precipitation Forecasts: Data Access and Selected Data Viewers. Users can access 
CHIRPS-GEFS and CHIRPS data, and data that combines these, from the UCSB Climate Hazards Center. 
Table 1 describes several graphical applications that include CHIRPS-GEFS. Additionally, the CHIRPS-GEFS 
repository contains precipitation anomalies and standardized precipitation index (SPI) data for 5-day, 10-day, 
15-day, pentad, and dekad periods (see Table 2), from October 2020.

Forecast period Update schedule Variable

1-day, 5-day, 10-day, 15-day Daily Total

5-day, 10-day, 15-day Daily Anomaly and SPI

Dekad “First” forecast 16 days before the dekad ends Total, Anomaly, and SPI

Dekad “Last” forecast 1st, 11th, 21st day of the month Total, Anomaly, and SPI

Pentad “First,” “Second,” and “Last” 
forecasts

1st, 6th, 11th, 16th, 21st, 26th day of 
the month Total

Table 2.  CHIRPS-GEFS Precipitation Forecasts: Data Update Schedule. Forecast precipitation totals 
are provided for multiple periods to support applications. Precipitation totals and anomalies are in mm; 
standardized precipitation index (SPI) values are in number of standard deviations from the mean (z score). 
Anomalies and SPI are, at present, computed from all available years.
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data. Pentads are the ~5-day periods that begin on these days of the month (e.g., the 6th pentad has 3 to 6 days, 
depending on the month). Similarly, on the 1st, 11th, and 21st, daily forecast amounts are aggregated to dekads 
to support applications like the GeoSpatial Water Requirement Satisfaction Index (GeoWRSI) that use dekadal 
data. Dekads are the ~10-day periods that begin on the 1st, 11th, and 21st. The pentad and dekad forecast amounts 
are named according to the order of update, with “First” designating the first opportunity to create the forecast 
using GEFS v12 forecasts (i.e., 16 days before the last day of the dekad), “Second” designating the second oppor-
tunity (for pentads only), and “Last” designating the last opportunity (i.e., on Day 1 of the period). GeoTiffs for 
pentad and dekad anomalies and totals are available from October 2020.

Technical Validation
Adjusting GEFS forecasts to local climatology.  What amount of correction is required for GEFS 
forecasts to align with CHIRPS local climatology? The amount of correction varies widely across the globe and 
throughout the year. Figure 1a shows annual mean bias for GEFS reforecast 15-day totals. In this figure, wet-
ter-than-CHIRPS climatology and systematic over-prediction of 15-day totals by GEFS is indicated by positive 
mean bias values, while the opposite is indicated by negative values. GEFS forecast mean bias was calculated for 
each month and then averaged across rainy season months, to focus aggregate results on the rainfall seasons, 
when precipitation forecasts are relevant. Monthly dry masks excluded locations with a monthly average of less 
than 10 mm, according to CHIRPS climatology. In general, one consistent result from Fig. 1a is a tendency to 
increase precipitation in many mountainous tropical and subtropical regions. By design, orographic precipitation 
enhancements in such regions are represented fairly well in CHIRPS, and these are carried through to CHIRPS-
GEFS precipitation forecasts. The CHIRPS-GEFS bias-correction process reduces systematic errors (Fig. 1b), with 
the overall mean absolute bias error going from 24.1 mm for GEFS to 19.7 mm for CHIRPS-GEFS, an ~18% 
reduction.

Figure 1a through Fig. 5 are based on GEFS reforecast, CHIRPS, and CHIRPS-GEFS data for the 5-day or 
15-day periods beginning on the 1st, 6th, 11th, and 16th day of the month. All these exclude dry season months. 
Figure 1b shows the corresponding global distribution of annual average error for the GEFS reforecast and 
CHIRPS-GEFS, and is discussed later.

GEFS has a large annual average positive bias of higher-than 40 mm in some areas of the globe, including in 
central Mexico, Central America, northern South America, the Andes and Himalayan Mountain ranges, and 
in southern China, Papua New Guinea, and localized areas of central Africa, the Ethiopian Highlands, and the 
western montane United States (Fig. 1a). GEFS has positive bias, by more than 5 mm for the annual average 
15-day period, across the northern United States including in the Midwest, from Mexico’s northern mountains 
through most of Central America, in northern South America, the Andes range, eastern Brazil, in parts of 
central Europe, central and northern Asia, in the area from southern China to Myanmar and Thailand, and in 
northeastern and western India. GEFS has positive bias in portions of East Africa (Rwanda, Burundi, Tanzania, 
western Ethiopia), West Africa (Cameroon, Gabon), and Southern Africa (Zambia, central Angola, northern 
Zimbabwe, eastern South Africa). GEFS has negative bias, by more than 5 mm on average, in parts of central and 
northern Africa, Senegal, northern Australia, central South America, western India, the Yucatan peninsula, and 
the United States Gulf Coast.

GEFS’ systematic bias changes throughout the year, as shown by the monthly mean bias in January, April, 
July, and October (Fig. 2). This is unsurprising, given that drivers of weather change too, but higher bias in 
particular months can be problematic for forecast users. In Ethiopia, for example, GEFS overestimates by large 
amounts during the Kirempt season (e.g., in July) and in October in the southwest. In central Brazil, the bias 

Fig. 1  Annual mean bias and global error characteristics for GEFS reforecast data compared to CHIRPS, based 
on 15-day precipitation totals from Day 1, 6, 11, and 16 of each month during 2000–2019. Annual mean bias (a) 
shows the annual average of differences in GEFS reforecast and CHIRPS monthly means. Annual average error 
(b) shows the distribution of GEFS reforecast and CHIRPS-GEFS errors (product - CHIRPS). Both panels are 
based on in-season pixels, which are defined by monthly average CHIRPS > 10 mm.
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changes markedly by season, from a high negative bias in October to an expansive wet bias in April. In the 
Midwestern and northern United States, GEFS also shows a more expansive wet bias in April than in January, 
July, or October. In some areas, like in southern China and the Andes mountains, GEFS means are higher than 
CHIRPS means throughout the year.

The CHIRPS-GEFS downscaling procedure corrects for systematic errors in GEFS forecasts that vary 
spatially and temporally. To assess the efficacy of the CHIRPS-GEFS approach, we began by calculating the 
per-pixel difference between GEFS and CHIRPS, and CHIRPS-GEFS and CHIRPS for 15-day periods. These 
were calculated for each month, for in-season pixels, and then averaged across the year. We then looked at the 
histogram of the resulting differences (Fig. 1b), to identify the distribution of annual average errors in these 
two products. CHIRPS-GEFS errors are shown as gray bars and GEFS errors are overlaid as hollow red bars. A 
desirable pattern is more small errors (higher bars close to 0 mm) and fewer large magnitude errors (lower bars 
at larger precipitation values). As shown in Fig. 1b, the bias-correction procedure has this effect, and results in 
CHIRPS-GEFS having overall lower errors for global rainy seasons compared to GEFS. GEFS 15-day errors 
more commonly involve over prediction of observed amounts than under prediction, as shown by the higher 
proportion of positive versus negative moderate to large positive errors. Part of this is due to the lower limit of 
under prediction being zero precipitation, while over prediction can range from marginal precipitation amounts 
to very high amounts. As shown in Fig. 1b, the CHIRPS-GEFS bias correction particularly reduces GEFS forecast 
errors for moderate-to-high rainfall amounts, and it results in a global 15-day error distribution that has a higher 
proportion of small errors, e.g., errors within −10 mm to 10 mm of CHIRPS values (51% for CHIRPS-GEFS and 
43% for GEFS). Errors in categories ranging from 10 mm to 40 mm occur less often in CHIRPS-GEFS, globally, 
with probabilities in those categories reduced by around 15 and 25 percent at 10 mm to 20 mm and 20 mm to 
30 mm, respectively, and by around 30 percent to 40 percent for errors that are higher than 40 mm.

Next, we show performance of the 5-day and 15-day CHIRPS-GEFS precipitation forecasts by correlations 
and mean absolute errors for the historical record, compared to CHIRPS data for these periods. As described in 
Data Records, multiple outlets use forecast amounts for these periods. In the Usage Notes section, probability of 
detection scores for 15-day CHIRPS-GEFS in Africa are presented while describing an operational application 
of the CHIRPS-GEFS for seasonal monitoring. In that discussion we also examine the performance of 5-day 
forecasts during the 2020–2021 season in key regions of Kenya, Angola, Zambia, Zimbabwe, and Madagascar.

Pearson correlation coefficients for 5-day and 15-day CHIRPS-GEFS, compared to CHIRPS (Fig. 3), indi-
cate the ability of forecasts to predict deviations from average. It should be noted that correlations are nearly 
entirely driven by the information coming from the GEFS forecasts. The conversion to CHIRPS-GEFS adjusts 
the GEFS values to make them more “CHIRPS-like,” while also approximating the historical context of the GEFS 
forecast. Wet extremes forecasted by GEFS translate into wet extremes in CHIRPS-GEFS. Areas with very low 
correlations (R < 0.3) are where there should be low confidence in the forecasts, such as in parts of Central and 
West Africa and the Amazon region of South America. In many other areas, correlations for January, April, 
July, and October indicate moderate to good skill in forecast 5-day precipitation totals. In many of these areas, 
15-day forecasts have lower but still identifiable skill. Some of the regions with primarily moderate (R 0.5 to 0.7) 
and high correlations (R > 0.7) are the United States, Western Europe, and Eastern Europe, southeastern South 
America, southern Central Asia, eastern China, parts of East and Southern Africa, and Australia. Globally, cor-
relations are higher in January, April, and October than in July, which indicates generally higher forecast accu-
racy in those months. Exceptions are in eastern China, southern Brazil, eastern Mexico, northeastern Ethiopia, 
and central and southern Australia, where July correlations are not substantially lower. 15-day forecasts also have 

Fig. 2  Monthly mean bias for GEFS reforecast data compared to CHIRPS, based on 15-day precipitation totals 
from Day 1, 6, 11, and 16 of each month during 2000–2019. Mean bias for January (a), April (b), July (c), and 
October (d) shows the difference in GEFS reforecast and CHIRPS monthly means. Shown for in-season pixels, 
which are defined by monthly average CHIRPS > 10 mm.
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high correlations in some areas, including in the Western and Midwestern United States in January, in central 
and northern Australia in April, and in eastern Brazil in January and October.

In Africa, a region where CHIRPS data is actively used by the Famine Early Warning System Network (FEWS 
NET) and other organizations for seasonal monitoring and drought early warning, forecast correlations indi-
cate moderate to good 5-day and 15-day forecast performance in areas of East Africa, Southern Africa, and 
western North Africa during rainy season months. Some of the highest 15-day correlations in Africa are during 
important rainy season months, for example, in northeastern Ethiopia in July and April, in Kenya in April, in 
Zimbabwe and southern Mozambique in January, and in the Sudanian zone of West Africa in October. Very 
low correlations indicate low forecast skill in the Sahel, coastal West Africa, and in Central Africa in the DRC, 
Republic of the Congo, and Gabon.

Mean absolute error of the bias-corrected GEFS forecasts highlight the areas where forecast amounts have 
historically been less reliable (Fig. 4). These indicate non-systematic errors associated with rains not materializ-
ing in the forecast location in the forecast period, which can be from GEFS model deficiencies and the inherent 
challenges of weather forecasting. Extreme precipitation events and warm season, deep moist convection-driven 
precipitation are notorious challenges for numerical weather prediction systems48,49, and CHIRPS-GEFS data are 
not immune to this problem. Remotely sensed data, including CHIRPS, also struggle with estimating extreme 
high rainfall amounts13,50, though since we are comparing CHIRPS-GEFS to CHIRPS, the main source of the 
large errors shown here would be the GEFS reforecast.

As shown in Fig. 4, the magnitude of errors follows climatology, with 5-day errors typically under 10 mm 
for drier rainy season months. In wetter months and locations errors are typically between 10 mm and 20 mm. 
With higher rainfall magnitude there is greater potential for larger errors. The 15-day forecast errors exhibit a 
similar spatial pattern to the 5-day errors, and error magnitudes correspond to the three-times larger accumu-
lation interval as well as expected lower skill at longer lead time. Figure 4 shows especially large 15-day mean 
absolute errors in January near northern Mozambique and Madagascar, in July and October in parts of Central 
America, in April in central Kenya and southwestern Tanzania, in July in India’s Western Ghats Mountains and 
in the Himalayas, and in the Maritime Continent. In southeast China, while the 15-day correlations indicated 
decent skill at forecasting the sign of precipitation anomalies, large 15-day errors indicate the influence of poorly 
forecast large storms, which unbiasing cannot correct for. In the Amazon rainforest, many areas with low corre-
lations also have high forecast errors, underscoring poor forecast performance there.

Fig. 3  CHIRPS-GEFS 5-day and 15-day Pearson correlation coefficients, as compared to CHIRPS, for January, 
April, July, and October. (Validation data: CHIRPS 5-day and 15-day totals from the 1st, 6th, 11th, and 16th of the 
month, for 2000 to 2019. Shown for in-season pixels, which are defined by monthly average CHIRPS > 10 mm.
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Usage Notes
CHIRPS-GEFS for operational hazards monitoring.  One of many ways that CHIRPS-GEFS can sup-
port operational and custom forecast applications is as an extension to CHIRPS precipitation data. The com-
patibility of CHIRPS and CHIRPS-GEFS allows users to combine precipitation observations during the recent 
past and forecast amounts. By greatly reducing necessary bias correction, spatial downscaling, and temporal 
preprocessing steps, CHIRPS and CHIRPS-GEFS users can more easily use the products to assess the near-term 
risk of agrometeorological hazards like delayed growing season onset and prolonged mid-season dry spells and 
hydrologic hazards like flood risk.

Operational CHIRPS-GEFS applications that support drought early warning at FEWS NET include maps 
and time series graphics, updated every ~5 days, that show recent CHIRPS precipitation and an outlook using 
the next ~15 days (three pentads) of CHIRPS-GEFS forecasts. The Early Warning eXplorer, hosted by the United 
States Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, is an interactive 
viewer that shows these time series for administrative and cropping regions. CHC Early Estimates are maps and 
downloadable data, hosted by the UCSB Climate Hazards Center, which show recent and season-to-date pre-
cipitation performance linked with the forecast data (Table 1). In both these applications, incorporated forecast 
amounts are expected to be imperfect, and are plotted with clear distinction from recent data. Recent data comes 
from preliminary CHIRPS for recent weeks, based on satellite estimates and some station reports (source varies 
by region), and higher quality final CHIRPS for the previous month, which is blended with more station reports.

A strength of the forecasts that these applications aim to capitalize on is if there are indications for substan-
tial changes in areas with extreme or concerning precipitation conditions during recent weeks to months. Is an 
area that has been substantially drier than average since the start of their main rainfall season, or during key 
periods of rain fed crop development, forecasted to see wetter conditions? Or are deficits forecasted to inten-
sify in the next two weeks, and further increase risks of severe crop moisture stress and low crop production 
outcomes? Are high precipitation amounts forecasted in an area that has been atypically very wet, which could 
increase the risk of flooding? Based on Fig. 5, which shows a 50% or higher chance of detecting above and 
below-normal 15-day precipitation (purple to black colors), with relatively high precision at 5-km resolution, 
the forecasts have enough skill to support these aims in many areas in sub-Saharan Africa. These scores are 
directly attributable to the GEFS forecast percentile, because CHIRPS-GEFS is derived from quantile-matching 

Fig. 4  CHIRPS-GEFS 5-day and 15-day mean absolute errors, as compared to CHIRPS, for January, April, July, 
and October. Validation data: CHIRPS 5-day and 15-day totals from the 1st, 6th, 11th, and 16th of the month, for 
2000 to 2019. Shown for in-season pixels, which are defined by monthly average CHIRPS > 10 mm.
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to GEFS. Seasons where the short-term outlooks in these applications can be regarded with some confidence 
include October-to-December Short Rains and March-to-May Long Rains in East Africa, February-to-May 
Belg rains in southwestern, central, and northeastern Ethiopia, Kirempt season in northeastern Ethiopia, and 
the October-to-May season in Southern Africa. As shown in Shukla et al.51, several of these regions are at higher 
risk of experiencing acute food insecurity.

CHC Early Estimates and recent CHIRPS-GEFS performance.  To help users understand the value 
of combining recent CHIRPS data with CHIRPS-GEFS, an example of the CHC Early Estimates and a focus on 
2020–2021 forecasts is discussed here. CHC Early Estimates are accessible from the Recent and Seasonal Rainfall 
Monitors at the UCSB CHC website, from https://chc.ucsb.edu/monitoring. Users can view maps and download 
corresponding data showing precipitation totals, anomalies, standardized precipitation index (SPI) values, his-
torical rank, and more for certain regions. These are updated every ~five days with the latest CHIRPS data. A 
“+Forecast” version provides a companion map that is a ~15-day outlook using the CHIRPS-GEFS forecast. The 
Regional and Seasonal Rainfall Monitors show cumulative precipitation during the most recent 1-, 2-, 6-, 12-, and 
18-pentads (5 days to 3 months) and during region-specific agricultural rainfall seasons, respectively.

Figure 6 shows an example of CHC Early Estimates companion maps used to monitor seasonal precipita-
tion conditions during late 2020 in Southern and Eastern Africa. In Fig. 6a, the inset map shows the percent of 
average precipitation for October 1st to November 30th, 2020 based on CHIRPS final for October and CHIRPS 
preliminary for November. The large map shows how the October 1st to December 15th percent of average would 
look if the CHIRPS-GEFS 15-day forecast from December 1st were to materialize. Four regions are outlined 
that food security analysts noted on December 2nd when the map pair became available at the UCSB CHC Early 
Estimates Seasonal Rainfall Monitor. Several of these regions received attention during weekly and monthly 
FEWS NET seasonal hazards monitoring and food security outlooks due to the presence or anticipation of agri-
cultural drought conditions associated with poor rainfall performance.

At the time of map production, the Short Rains season had been below average in eastern Kenya, and no sub-
stantial improvement was forecast (Fig. 6a Box 1). Early season rainfall deficits in southern Angola and northern 
Namibia were forecast to get substantially worse (Fig. 6a Box 2). A region of southern Zambia and northern 
Zimbabwe was forecast to see a notable wet change, with the first half of December bringing heavy rains that 
could eradicate early season deficits and result in above-average seasonal totals (Fig. 6a Box 3). Last, the Early 
Estimate maps indicated that forecast rainfall in southern Madagascar would lessen deficits somewhat, but that 
season-to-date rainfall would remain below-average (Fig. 6a Box 4).

Figure 6b shows how CHIRPS-GEFS “Last” (0-day lead) pentad forecasts compare to CHIRPS final pentad 
observations and climatology for these regions, from September 26th, 2020 to January 31st, 2021. Figure 6b shows 
that, in all four regions, several 5-day forecasts overestimated and underestimated pentad rainfall totals. During 
eastern Kenya’s Short Rains (Fig. 6b.1), there were two wet forecasts that did not materialize in November, 
one of which was completely wrong (below-average rainfall occurred). Despite these cases, the forecasts cor-
rectly predicted key features of the season, including a delayed start to the Short Rains (October in Fig. 6b.1), 

Fig. 5  CHIRPS-GEFS 15-day probability of detection for above-normal (AN) and below-normal (BN) 
precipitation, as compared to CHIRPS, for January to December months in sub-Saharan Africa. Shown for  
in-season pixels, which are defined by monthly average CHIRPS > 10 mm.
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lengthy mid-season dry spells, and season-lasting below-average rainfall (Fig. 6b.2 and b.4), and a switch to 
above-average seasonal rainfall (December in Fig. 6b.3). These results highlight the use of CHIRPS-GEFS in 
seasonal monitoring and forecasting applications like these, and indicate that CHIRPS-GEFS could also be use-
ful for applications focused on predicting rainfall season onset dates and dry spells. A high level of skepticism is 
appropriate in areas of the world where correlation maps, mean absolute error maps, and probability of detec-
tion scores indicate poor performance in 5-day and 15-day forecasts.

Improved forecasts for agro-meteorological monitoring in Ethiopia.  The original motivation 
for CHIRPS-GEFS came from a NASA SERVIR-hosted workshop in Addis Ababa, Ethiopia. Discussions with 
Ethiopian meteorologists and agronomists highlighted their interest in a high-resolution CHIRPS-compatible 
weather forecast. This product would be suitable for guiding agricultural decisions, i.e., decisions about plant-
ing, fertilizer application, irrigation, etc. Figure 7 highlights how the CHIRPS-GEFS downscaling process injects 
detailed spatial information related to orographic rainfall enhancement. Using an example of mean 15-day fore-
casts over the Ethiopian Highlands region during July, one of the wettest months of the year, the CHIRPS-GEFS 
forecasts have much higher spatial definition than GEFS reforecasts (Fig. 7a versus b) and closely mimic the 
CHIRPS mean for the same time periods (Fig. 7c). Users can see further evaluation for Ethiopia at https://
blog.chc.ucsb.edu/?p=443. This blog presents a station-based validation of GEFS and CHIRPS-GEFS dekads. 
CHIRPS-GEFS correlations are substantially better (0.68 versus 0.51) and root-mean-square errors substan-
tially lower (37 mm versus 64 mm per dekad). CHIRPS-GEFS are actively used in dekadal agro-meteorological 
reports that are produced in collaboration with the Ethiopian National Meteorological Agency (https://chc.
ucsb.edu/monitoring/ethiopia). These reports typically present the previous dekads’ CHIRPS observations and 
CHIRPS-GEFS forecasts. What is compelling in these results is how well the CHIRPS-GEFS captures the complex 
structure of precipitation. Furthermore, because these CHIRPS-GEFS forecasts are inter-operable with CHIRPS, 
it supports the rapid identification of mid-season deficits. The ability to reasonably capture orographic rainfall 
influences adds substantial value to GEFS.

In-Development CHIRPS-GEFS Applications.  Currently there are several operational grain forecasting 
efforts being developed based on CHIRPS products. Research has shown that CHIRPS precipitation estimates 
can be an accurate early season predictor of grain yields52 and that a key ingredient for improving grain predic-
tions is to use sub-monthly rainfall totals (as opposed to monthly)53. We expect that combining CHIRPS with 
CHIRPS-GEFS forecasts in these grain forecasting systems can provide earlier indications for changing rainfall 
conditions and this could support reliable estimates made earlier in the season.

One promising area of novel early warning research where CHIRPS-GEFS may be particularly appropriate 
is the use of rainy season onset indicators as operational monitoring and forecasting tools. Shukla et al.51 found 
that CHIRPS-based start of season (SOS) indicators were strongly correlated with end of season remotely sensed 

Fig. 6  Operational CHIRPS-GEFS application example. (a) Operational applications of CHC Early Estimates 
for seasonal monitoring. Inset map shows observed rainfall for October 1st to November 30th, 2020, expressed 
as percent of average based on CHIRPS final and preliminary data. The larger map shows an Early Estimate 
extended 15 days later, based on the CHIRPS-GEFS forecast. (b) Performance of CHIRPS-GEFS pentad “Last” 
forecasts, during September 2020 to January 2021, for the areas outlined by boxes in panel a: Box 1, eastern 
Kenya; Box 2, southern Angola-northern Namibia; Box 3, southern Zambia-northern Zimbabwe; Box 4, 
southern Madagascar.
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Normalized Difference Vegetation Index (NDVI) data, a common measure of plant activity, in eastern and 
southern Africa. Likewise, Davenport et al. demonstrates that CHIRPS-based SOS could increase the accuracy 
of grain price forecasts in the same region. If CHIRPS-GEFS can be used simply to predict early or late seasonal 
onsets, the product could easily be used to reduce the latency of SOS-informed prediction models.

Finally, CHIRPS-GEFS is one of many products being ingested into the Defense Advanced Research 
Projects (DARPA) World Modelers (https://www.darpa.mil/program/world-modelers) Super Models as 
a Service (SuperMaaS) system (https://galois.com/project/supermaas/). This is a proto-type food security 
decision-support system that ingests data and models from a variety of services for real-time input into models 
for crop production, grain prices, conflict and other components of food security analysis. Both CHIRPS and 
CHIRPS-GEFS are currently registered in the SuperMaaS for both real-time viewing, analysis, and as inputs into 
related models.

Code availability
The Interactive Data Language (IDL) software was used to ingest the GEFS forecast data and the CHIRPS rainfall 
estimates, and to create the CHIRPS-GEFS output. IDL is a proprietary scripting language with a well-developed 
library of functions for interacting with large raster data sets, statistical analysis, and intuitive visualizations. IDL 
code used in producing CHIRPS-GEFS is available through the CHIRPS-GEFS47 data repository, at https://doi.
org/10.15780/G2PH2M. Users can follow a link on that page to a directory that contains IDL pro scripts used 
in operational CHIRPS-GEFS production: (1) Retrieve GEFS GRIB forecast files from the NOAA NCEP GEFS 
website for days 1–10 from the 0.25 degree resolution output and days 11–16 from the 0.5 degree output; (2) 
Create 1-day and 16-day forecast precipitation accumulations from these files at 0.25 degree resolution; (3) For 
each pixel, identify the percentile rank of the current forecast compared to post-2000 reforecast and available “real 
time” GEFS for this time period, and then re-grid these to 0.05 degree to match CHIRPS resolution; (4) Produce 
a CHIRPS-unbiased version of the 16-day GEFS forecast by, at each pixel, sorting CHIRPS 16-day amounts for 
the same time period and identifying the CHIRPS amount matching the forecast percentile; and (5) Using these 
CHIRPS-GEFS 16-day forecast totals, produce 16 1-day totals based on the ratios of GEFS forecasts for each day 
versus the 16-day period.
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