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Bile acids (BAs) were originally known as detergents to facilitate the digestion and
absorption of lipids. And our current knowledge of BAs has been extended to potential
carcinogenic or cancer suppressor factors due to constant research. In fact, BAs were
regarded as a tumor promoters as early as the 1940s. Differential bile acid signals emitted
by various bile acid profiles can produce distinct pathophysiological traits, thereby
participating in the occurrence and development of tumors. Nevertheless, in recent
years, more and more studies have noticed the value of BAs as therapeutic targets.
And several studies have applied BAs as a therapeutic agent for various diseases
including cancer. Based on the above evidence, we acknowledge that the role of BAs
in cancer has yet to be exploited, although considerable efforts have been made to probe
the functions of BAs. In this review, we describe the characteristics of BAs as a double-
edged sword in cancer, hoping to provide references for future cancer treatments.
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INTRODUCTION

Cancer occurrence is a multifactorial process and has emerged as the second leading cause of death
in the world (1). As per the GLOBOCAN 2020 cancer data provided by the International Agency for
Research on Cancer, there were an estimated 10.0 million cancer-responsible deaths in 2020, while
an estimated 19.3 million new cancer cases emerged (2). As one of the most challenging diseases,
cancer seriously threatens people’s quality of life, which imposes alarming situation of cancer. When
normal cells transform into a tumor status, they will acquire a series of hallmark capabilities, that is,
the characteristics of tumor cells, including immortal proliferation, resistance to cell death, and
induction of angiogenesis, etc (3). A comprehensive understanding of these concepts will
increasingly influence the emergence of new options for cancer treatment.

Bile acids (BAs), synthesized from cholesterol in the liver, are not only emulsifiers that promote
lipid digestion and absorption, but also serve as signal molecules to perform different biological
functions. The role of BAs in cancer has always attracted much attention, but its capabilities have
not been finalized although extensive research has been conducted. In the 1940s, bile acids were
initially considered to be tumor promoters due to the tumorigenic effects of deoxycholic acid
(secondary bile acid) (4). Beyond tumorigenicity, the therapeutic potential of BAs has gradually
been tapped in recent years (5–7). The protective or toxic effects of BAs are affected by many factors,
including the species and concentration of BAs, and cell types, etc (8–12). The contradictory role
played by BAs endow them with great heterogeneity, which in turn leads to the complexity of
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diagnosis and treatment. This review discusses the synthesis and
circulation of BAs, with a focus on the role of BAs in cancer,
intending to provide potential options for cancer treatment.
BIOSYNTHESIS OF PRIMARY BILE ACIDS

BAs are amphiphilic molecules produced by a series of enzymatic
reactions with cholesterol as a substrate and are the primary
metabolite of cholesterol in the body (13). The human bile acid
pool is composed of primary bile acids and secondary bile acids.
The synthesis of primary bile acids involves two different pathways,
defined as the classical pathway and the alternative pathway, which
are also called the neutral pathway and the acid pathway,
respectively (14, 15) (Figure 1). Under normal circumstances,
the classical pathway, responsible for about 90% of bile acid
production, is considered the main pathway for bile acid
synthesis. Cholesterol 7a-hydroxylase (CYP7A1) located in the
endoplasmic reticulum initiates the classical pathway and is the
rate-limiting enzyme of this pathway. Then go through the sterol
12a-hydroxylase (CYP8B1) branch and the sterol 27-hydroxylase
(CYP27A1) branch to form the primary bile acids cholic acid (CA)
and chenodeoxycholic acid (CDCA), respectively (Figure 1). As for
the alternative pathway, it is initiated by CYP27A1, which converts
cholesterol into 27-hydroxycholesterol through a hydroxylation
reaction. 27-hydroxycholesterol is subsequently converted into
CDCA instead of CA with the participation of oxysterol 7a
hydroxylase (CYP7B1) (Figure 1). The alternative pathway is the
secondary pathway of bile acid synthesis, accounting for about 10%
of bile acid production, which is generally considered to be
Frontiers in Oncology | www.frontiersin.org 2
activated under pathological states (16–19). After the synthesis of
primary bile acids, taurine or glycine is conjugated to it in a ratio of
1:3 through covalent modification (as known as bile salts), which
improves its solubility while reducing toxicity (7).
TRANSPORT OF BILE ACIDS

To maintain the versatility of the bile acid pool by enhancing the
utilization of bile acids, the body has designed a complex
transport system involving the liver, intestines, and kidneys to
extensively circulate the limited bile acids, which is defined as the
well-known enterohepatic circulation of BAs. The conjugated
primary bile acids are first secreted into the bile duct through the
bile salt export pump (BSEP), and then stored and concentrated
in the gallbladder (20) (Figure 1). After meals, cholecystokinin is
secreted and stimulates the contraction of the gallbladder to
promote the excretion of bile acids into the intestinal lumen,
aiming to assist the digestion and absorption of food (21). In the
intestine, the conjugated primary bile acids are catalyzed by bile
salt hydrolase (BSH) secreted by gut bacteria, which
deconjugates and reconverts the conjugated primary bile acids
into free primary bile acids CA and CDCA(Figure 1). The multi-
step 7a-dehydroxylation pathway continues to perform
dehydroxylation reactions on CA and CDCA to form
secondary bile acids: CA is converted into deoxycholic acid
(DCA), and CDCA is converted into lithocholic acid (LCA)
and ursodeoxycholic acid (UDCA) (22). The secondary bile acids
can also be conjugated to taurine or glycine to form conjugated
bile acids. Of the secreted bile acids, an estimated 95% are
FIGURE 1 | Overview of enterohepatic circulation of bile acids. The dashed arrow indicates passive absorption.
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efficiently reabsorbed in the ileum through active transport,
while only an estimated 5% are excreted into feces (7, 23)
(Figure 1). Specifically, the distal ileum first actively uptakes
bile acids through the apical sodium-dependent bile acid
transporter (ASBT). The bile acids absorbed into the intestinal
cells are transferred to the basolateral membrane mediated by
ileal bile acid binding protein (IBABP), where the bile acids are
discharged to the portal blood through the organic solute
transporter-a/b (OST-a/b), and subsequently transported to
the liver. In the liver, hepatocytes re-uptake bile acids through
sodium taurocholate co-transport polypeptide (NTCP) and
organic anion transporting polypeptides (OATPs) (24–27)
(Figure 1). The human body goes through this cycle 6 to 8
times per day, which exaggerates the production of bile acids
synthesized de novo (about 0.2~0.6 grams per day), thereby
maintaining a functional bile acid pool (about 3 grams) (15,
17, 27).
BILE ACIDS IN CANCER ANGIOGENESIS

Angiogenesis is the process of establishing new blood vessels
based on existing blood vessels. Tumor angiogenesis is capable of
providing oxygen and nutritional support for tumor cells, which
is a vital factor for tumor growth and proliferation (28). The
normal vasculature, that is, when the intravascular pro-
angiogenic factors and anti-angiogenic factors are in balance, is
basically static. In contrast, during tumorigenesis, the vascular
homeostasis tilts towards pro-angiogenic factors, while anti-
angiogenic factors are inhibited, resulting in the continuous
sprouting of novel blood vessels, which is also known as the
activation of the “angiogenic switch” (3, 29). Tumor angiogenesis
involves a highly complex signal network. Therefore,
traditionally stand-alone anti-angiogenic drugs, such as VEGF/
VEGFR targeted inhibitors, cannot achieve satisfactory
therapeutic effects (30, 31). In this regard, the discovery of new
potential targets or the combination of anti-angiogenic drugs
with other therapies including chemotherapy or immunotherapy
seems to achieve the desired goals (32–34).

In addition to the extensively researched pathways such as
VEGF/VEGFR, PDGF/PDGFR, and FGF/FGFR, bile acids also
play a promising role in tumor angiogenesis to some extent, even
with limited information (Table 1). In the late 19th century,
some scholars have discovered the anti-angiogenic activity of
UDCA and its derivatives, suggesting the potential of BAs for the
treatment of diseases that are accompanied by uncontrolled
angiogenesis, including tumors (39). In contrast, a subsequent
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study on liver cancer found that BAs levels were positively
correlated with the expression levels of VEGFR-2 and CD34,
that is, BAs promoted tumor angiogenesis in liver cancer (35).
Coincidentally, another study showed that CDCA promotes
esophageal cancer angiogenesis and tumor growth via the
COX-2 pathway (36). It was also found that TUDCA can
promote vascular repair and stimulate angiogenesis by
recruiting vasculogenic progenitor cells (40). In addition to
directly participating in angiogenesis, BAs and their
derivatives can also be used as a mediator to complex with
heparin (with anti-angiogenesis and anti-cancer activity) to
increase the absorption of heparin in the intestines, thereby
indirectly exerting anti-angiogenesis effects (38, 41–43).
Reports on the role of BAs in cancer angiogenesis are
limited, and people prefer to develop the mediator capacity
of BAs based on their amphipathic nature to improve the
absorption of anti-angiogenic agents. In fact, BAs frequently
perform the role of promoting cancer angiogenesis due to their
cytotoxicity by stimulating the secretion of pro-angiogenic
factors and recruiting angiogenic precursor cells. Research
gaps on the direct anti-angiogenic effects of BAs allow us to
further explore.
BILE ACIDS IN CANCER CELL
PROLIFERATION AND DEATH

Long-term sustained proliferation can be ranked as the most
basic attribute of cancer cells. Normal cells strictly control the
generation and release of growth signals, while cancer cells
deregulate these signal networks through a variety of ways,
such as producing growth factor ligands themselves or
stimulating normal cells to feed back growth factors (3, 44).
Sustaining proliferation signal of cancer cells is habitually
accompanied by the emergence of death resistance. Similarly,
normal cells will evolve multiple alternative mechanisms
to circumvent death during the process of malignant
transformation, including destroying vital sensors in cell death
circuits, up-/down-regulating anti-/pro-death regulators, and
blocking extrinsic ligand-induced death pathways, etc (3).

The degree of hydrophobicity of bile acid (the order of
hydrophobicity is: LCA> DCA> CDCA> UDCA), which is
highly correlated with the number and position of hydroxyl
groups attached to it, is a fundamental determinant of its
biological activity (13). After diligent research, the previous
concept that hydrophobic bile acids act as carcinogens is no
longer completely convincing (Table 2). For the most
January 2022 | Volume 11 | Article 778258
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TABLE 1 | The impact of bile acid on cancer angiogenesis.

Bile acid Target Cancer Model(s) Effect

Total bile acids (TBAs) Endothelial progenitor cell (EPC) Hepatocellular carcinoma Humans Promote (35)
CDCA COX-2 Esophageal cancer Cells and mice Promote (36)
LCA Erk1/2-STAT3-IL-8 Colorectal cancer Cells Promote (37)
DCA-heparin conjugate Basic fibroblast growth factor (bFGF) Murine squamous cell carcinoma Cells and mice Suppress (38
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hydrophobic LCA, the most impressive is the use of its
cytotoxicity to exert anti-tumor effects. For instance, Miko
et al. found that LCA can inhibit the proliferation of breast
cancer cells by activating the TGR5 receptor (45). Following, they
confirmed that LCA suppresses the proliferation of breast cancer
cells by causing oxidative stress (46). Coincidentally, Luu et al.
also declared that LCA exerts anti-proliferation and pro-
apoptosis effects in breast cancer cells by inducing the
expression of TGR5 (47). In addition, LCA has also shown
surprising anti-tumor growth activity in a variety of other
tumors , inc luding human prostate cancer , human
nephroblastoma, neuroblastoma and liver cancer, etc (48–51).
Similar to LCA, the primary effect of DCA, which is ranked
second in hydrophobicity, is also an anti-tumor effect. Lin et al.
found that DCA can limit the proliferation of gallbladder cancer
cells, and further, DCA treatment can significantly inhibit the
growth of gallbladder cancer xenografted tumor in nude mice
(12). Yang et al. pointed out that on the one hand, DCA can
Frontiers in Oncology | www.frontiersin.org 4
inhibit the proliferation of gastric carcinoma cells by arresting
the cell cycle in the G0/G1 phase, and on the other hand, it can
induce apoptosis of gastric carcinoma cells via a p53-mediated
pathway (52). Jang et al. stated that DCA accelerates the
apoptosis of NTCP-positive liver cancer cells by inducing
endoplasmic reticulum stress, especially under hypoxic
conditions (53). Paradoxically, Qiao et al. showed that DCA
can activate ERK in intestinal cancer cells and that elevated ERK
activity can in turn inhibit DCA-induced apoptosis (54). Pai et al.
found that low concentrations of DCA can activate the b-catenin
pathway and stimulate the expression of urokinase plasminogen
activator (uPA), urokinase plasminogen activator receptor
(uPAR), and cyclin D1, further promoting the proliferation of
colon cancer cells (55). Milovic et al. also confirmed that low-
dose DCA can stimulate colon cancer cell proliferation (56). Zhu
et al. observed that DCA accelerates the proliferation of
colorectal cancer cells by activating stromal COX-2 signals
(57). Beyond colorectal cancer, Chen et al. also reported that
TABLE 2 | The impact of bile acid on cancer cell proliferation and death.

Bile acid Target Cancer Model(s) Effect

LCA (or LCA-
conjugate)

TGR5 Breast cancer Cells, mice, and
humans

Suppress proliferation (45)

Oxidative stress Breast cancer Cells, mice, and
humans

Suppress proliferation (46)

TGR5 Breast cancer Cells Suppress proliferation and
promote death (47)

ER stress/autophagy/mitochondrial Prostate cancer Cells Promote death (48)
Caspase 3/7 Nephroblastoma Cells Promote death (49)
Intrinsic mitochondrial apoptotic cell death pathway/extrinsic death
receptor pathway of apoptosis

Neuroblastoma Cells Promote death (50)

Reactive oxygen species (ROS) Liver cancer Cells Promote death (51)
DCA miR-92b-3p-PTEN-PI3K/AKT Gallbladder cancer Cells, mice, and

humans
Suppress proliferation (12)

Cell cycle progression/intrinsic mitochondrial apoptotic cell death
pathway

Gastric carcinoma Cells Suppress proliferation and
promote death (52)

ER stress Hepatocellular
carcinoma

Cells Promote death (53)

ERK Colorectal cancer Cells Promote/suppress death (54)
b-catenin–cyclin D1 and –uPAR Colorectal cancer Cells Promote proliferation (55)
/ Colorectal cancer Cells Promote proliferation (56)
COX-2 Colorectal cancer Cells Promote proliferation (57)
IL-6/STAT3-KFL4, OCT4 Esophageal

Adenocarcinoma
Cells Suppress death (58)

CDCA / Colorectal cancer Cells Promote death (59)
Oxidative stress Colon

adenocarcinoma
Cells Promote death (60)

TGR5-CREB-cyclin D1 Endometrial cancer Cells Promote proliferation (61)
FXR Cholangiocarcinoma Cells and mice Suppress proliferation (62)

UDCA Intrinsic mitochondrial apoptotic cell death pathway Melanoma Cells Promote death (63)
Autophagy Gastric carcinoma Cells Promote death (64)
ER stress Glioblastoma

multiforme
Cells Promote death (65)

DLC1 Hepatocellular
carcinoma

Cells Suppress proliferation (66)

Intrinsic mitochondrial apoptotic cell death pathway/extrinsic death
receptor pathway of apoptosis

Prostate Cancer Cells Promote death (67)

Oxidative stress Colorectal cancer Cells Suppress proliferation (68)
Conjugated bile
acids (CBAs)

NF-kB Cholangiocarcinoma Cells and mice Promote proliferation (69)

Free bile acids NF-kB Cholangiocarcinoma Cells and mice Suppress proliferation and
promote death (69)
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DCA can induce the transformation of esophageal
adenocarcinoma stem cells and improve their anti-apoptotic
ability (58). The hydrophobic third-place CDCA also exhibits
similar contradictory effects to DCA. For example, Powell et al.
showed that CDCA can swiftly induce apoptosis of colon cancer
cells (59). Ignacio et al. also proved that CDCA induces apoptosis
of human colon adenocarcinoma cells through oxidative stress,
and this effect of CDCA is mightier than that of DCA (60).
Instead, Casabri et al. suggested that low-dose CDCA induces the
expression of cyclin D1 by activating the TGR5-dependent CREB
signal, thereby promoting the proliferation of endometrial cancer
cells (61). Interestingly, Dai et al. reached the opposite
conclusion in cholangiocarcinoma, that CDCA suppressed the
proliferation of cholangiocarcinoma cells, and the same
phenomenon was also observed in mice (62). Speaking of
UDCA, which has the weakest hydrophobicity, the most
attractive thing is its anti-cancer properties. Yu et al.
discovered that UDCA prompted human melanoma cell
apoptosis through mitochondrial-related pathways triggered by
ROS (63). Lim et al. observed that UDCA induces the death of
drug-resistant gastric carcinoma cells through the autophagy
pathway (64). Yao et al. verified that UDCA inhibits the
progression of glioblastoma through cell cycle arrest and
apoptosis mediated by endoplasmic reticulum stress (65). The
clues of UDCA’s anti-proliferation and pro-apoptosis effects
have also been located in a variety of cancers, including liver
cancer, prostate cancer, and colon cancer (66–68). In addition,
Dai et al. demonstrated that conjugated bile acids (CBAs) promote
the growth of cholangiocarcinoma from the cellular and mice levels,
while free bile acids inhibit the growth of cholangiocarcinoma (69).
This part of the research is the most intensive and typically focuses
on cell models. Among them, we noticed the contradictory role of
DCA and CDCA in cancer cell proliferation and death. We found
that the effects of DCA and CDCA on promoting cell proliferation
or resisting cell death generally occur at low doses (within 50 mM),
while anti-cell proliferation or pro-cell death regularly occurs at high
doses (beyond 100 mM), despite the specific molecular mechanism
need to be further covered. In general, the role of BAs in cancer cell
proliferation and death is closely related to their type
and concentration.
BILE ACIDS IN CANCER CELL INVASION
AND METASTASIS

Invasion and metastasis are major events and typical features in
the later stages of cancer progression, which seriously threaten
the lives of cancer patients (70). In fact, the properties of invasion
and metastasis are the primary hallmarks that distinguish benign
tumors f rom mal ignant tumors , some except ions
notwithstanding (71, 72). Cancer invasion is regarded as the
first critical step of metastasis, which refers to the detachment of
tumor cells from the primary location, followed by invasion and
destruction of adjacent normal tissues (73, 74). This process
occasions several principal molecular events, involving changes
in cell-cell and cell-extracellular matrix (ECM) adhesion, the
Frontiers in Oncology | www.frontiersin.org 5
release of proteolytic enzymes and the dissolution of ECM, and
the motility of tumor cells to move through the tissue (73, 75).
Cancer metastasis is a series of non-linear, parallel, and partially
overlapping processes, defined as the spread and colonization of
cancer cells from the primary neoplasm to distant tissues or
organs (76). Cancer metastasis is certainly 1) initiated by cancer
cells invading the tissue surrounding the primary neoplasm, 2)
subsequently intravasate into tumor vasculature, 3) evade
surveillance and survive during vascular transport, 4) being
arrested by distant organs and extravasate into the parenchyma
of tissue, 5) survival to form micrometastases, 6) initiate
proliferation signals to generate macrometastases that can be
monitored clinically (77, 78).

The performance of bile acids in cancer invasion and
metastasis has become increasingly prominent, although the
role seems to be ambiguous (Table 3). In this regard, bile acids
are more commonly reported for their pro-invasion and pro-
metastasis effects. Specifically, Baek et al. found that LCA
enhances the invasiveness of human colon cancer cells by up-
regulating uPAR expression (79). Halvorsen et al. also obtained
similar results, that LCA promoted the secretion of matrix
metalloproteinase 2 (MMP-2) and increased cellular invasion
in human colon cancer cells (80). For DCA, several studies have
confirmed its ability to promote invasion/migration in colon
cancer and esophageal adenocarcinoma, but only at a low
concentration (20 mM) (82, 83). Pai et al. concluded that at
doses of 5 and 50 mM, DCA can enhance the invasiveness of
colon cancer cells by activating b-catenin–cyclin D1 and –uPAR
signaling pathways (55). Unlike the direct effect on cancer cells,
Nguyen et al. found that DCA initially induced hepatic stellate
cells to secrete senescence-associated secretory phenotype
(SASP) factors, thereby indirectly promoting the invasion/
migration of liver cancer cells (11). Regarding CDCA, Wu
et al. described that it mediates the enhancement of gastric
carcinoma cell invasion by activating PKC and COX-2 signals
(86). And Debruyne et al. found that all LCA, DCA, and CDCA
other than UDCA can stimulate the invasiveness of colorectal
cancer cells by activating SRC oncogene and Rho-like small
GTPases (81). In contrast, Liu et al. reported that more
hydrophilic CBAs, rather than free bile acids, promote the
invasive growth of cholangiocarcinoma (CCA) cells (90).
When it comes to the anti-invasive/metastatic potential of bile
acids, UDCA bears the brunt due to its therapeutic properties
(although reports are limited), but the role of other bile acids
cannot be ruled out. For example, Quilty et al. concisely
described the phenomenon that high-dose (200 mM) DCA
inhibits the invasiveness of esophageal adenocarcinoma in a
study (83). Pyo et al. proposed for the first time that a
physiological concentration (100 mM) of DCA can frustrate the
invasion and migration of gastric carcinoma cells through the
inhibition of Snail and MMP9, as well as the induction of E-
cadherin and MUC2 (84). And Phelan et al. also provided
evidence of the anti-invasion/migration of DCA and CDCA in
prostate cancer (85). For UDCA, Wu et al. found that treatment
with UDCA can attenuate the invasiveness of gastric carcinoma
cells induced by CDCA by interfering with the generation of
January 2022 | Volume 11 | Article 778258
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PGE2 (86). Kim et al. also verified the anti-metastatic effect of
UDCA in pancreatic cancer, which is executed by inhibiting the
levels of intracellular ROS and Prx2 and reducing the epithelial-
mesenchymal transition (EMT) of pancreatic cancer cells (87). In
addition, tauroursodeoxycholic acid (TUDCA), a conjugated
form of UDCA, manifests anti-invasive impacts related to the
decreased expression of MMP-7 and -13 in metastatic breast
cancer, whether in normoxia or hypoxia (88). Paradoxically, Jia
et al. found that the concentration of CBAs, including TUDCA,
was higher in patients with intrahepatic cholangiocarcinoma
with vascular invasion, compared to patients with intrahepatic
cholangiocarcinoma without vascular invasion, while free bile
acids were observed the opposite result (89). According to the
above evidence, the concentration and type of BAs and cancer
classification are still the dominant factors defining the distinct
fates of cancer. For instance, LCA and DCA habitually promote
cancer invasion and metastasis within a concentration of 30 mM,
while DCA exerts an inhibitory impact at >100 mM. For CDCA,
the executive dose that promotes the invasiveness of gastric
cancer cells is 200 mM, and the maximum dose that stimulates
the invasion of colorectal cancer cells is 10 mM. Regardless, the
role of bile acids in cancer cell invasion/metastasis is antagonistic
and interesting.
BILE ACIDS IN CANCER INFLAMMATION
AND IMMUNITY

Inflammation, especially chronic inflammation, has long been
associated with cancer (91, 92). Inflammation is the body’s
gradual formation of immune defense response to resist
foreign pathogens and cope with tissue damage in the long
evolutionary process and is mainly characterized by the
vascular response, the recruitment of immune cells, and the
release of cytokines (93). In fact, tumors can be regarded as
Frontiers in Oncology | www.frontiersin.org 6
unhealable wounds in a certain sense (94). As one of the
characteristics of cancer, inflammation is conducive to
acquiring core hallmarks of cancer, including immortal
proliferation signals, angiogenesis, invasion, metastasis, etc (3).
Inflammation implements these cancer hallmark-facilitating
programs through the tumor microenvironment (TME). TME,
the internal environment for tumor cells to establish and survive,
contains a roster of components including fibroblasts, immune
and inflammatory cells (such as macrophages, T and B
lymphocytes, etc.), endothelial cells, and other cells, as well as
microvessels and biomolecules infiltrating them (3, 95). All these
cells can deliver an assorted array of cytokines to maintain the
inflammatory environment for cancer cell survival and weaken
the anti-tumor immune response (96). Generally, the immune
system is executed to eradicate damaged cells and combat foreign
pathogens. Yet, it is fascinating that the immune cells in TME
also seem to be involved in the tumor-promoting process
through a complicated regulatory network (95).

Bile acids have long been classified as tissue damage and pro-
inflammatory molecules due to their capacity to stimulate the
secretion of a variety of cytokines and chemokines (97). More and
more emerging studies have shown that bile acids dysregulation is
involved in the regulation of inflammation and immunity
(Table 4). Cancer-related inflammation is related to
carcinogenesis through so-called bridging factors, including
signaling pathways NFkB, COX-2, STAT3, and so on. For
example, CA-treated mice developed low-grade enteritis
(indicated by the overexpression of inflammatory factors such as
IL-6, IL-1b, and TNF-a) and activation of STAT3 signaling, which
promoted subsequent intestinal carcinogenesis (99). Similarly,
TCA, a conjugated form of CA, was perceived to be positively
correlated with the level of the inflammatory factor IL-4 in
intrahepatic cholangiocarcinoma (89). Also, exposure to DCA
and CDCA can up-regulate the expression of pro-inflammatory
genes, including COX2, related to tumorigenesis and development
TABLE 3 | The impact of bile acid on cancer cell Invasion and metastasis.

Bile acid Target Cancer Model(s) Effect

LCA Erk-1/2, AP-1-uPAR Colorectal cancer Cells Promote (79)
Matrix metalloproteinase Colorectal cancer Cells Promote (80)
SRC, Rho-like small GTPases Colorectal cancer Cells Promote (81)

DCA SRC、Rho-like small GTPases Colorectal cancer Cells Promote (81)
Protein kinase C Colorectal cancer Cells Promote (82)
b-catenin–cyclin D1 and –uPAR Colorectal cancer Cells Promote (55)
COX-2 Colorectal cancer Cells Promote (57)
Matrix metalloproteinase esophageal Adenocarcinoma Cells Promote (83)
Hepatic stellate cells (HSCs) Hepatocellular carcinoma Cells and humans Promote (11)
/ esophageal Adenocarcinoma Cells Suppress (83)
Snail, MMP9, E-cadherin and MUC2 Gastric carcinoma Cells and humans Suppress (84)
HIF-1a Prostate cancer Cells Suppress (85)

CDCA PKC-COX-2 Gastric carcinoma Cells Promote (86)
SRC, Rho-like small GTPases Colorectal cancer Cells Promote (81)
HIF-1a Prostate cancer Cells Suppress (85)

UDCA PGE2 Gastric carcinoma Cells Suppress (86)
ROS, Prx2 and STAT3 Pancreatic cancer Cells Suppress (87)

TUDCA MMP-7 and MMP-13 Breast cancer Cells Suppress (88)
Free bile acids / Intrahepatic cholangiocarcinoma Humans Suppress (89)
CBAs / Intrahepatic cholangiocarcinoma Humans Promote (89)

S1PR2-ERK1/2 Cholangiocarcinoma Cells and organoids Promote (90)
January 2022 | Volume 11 |
 Article 778258
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(108). In contrast, CDCA was shown to down-regulate the
expression of IL-6 and COX2 in cholangiocarcinoma, while
GDCA (a conjugated form of DCA) is the opposite (69). In
addition to acting directly on cancer cells, primary bile acids
instead of secondary bile acids can also control the recruitment of
natural killer T (NKT) cells in the liver by promoting the
expression of chemokine CXCL16 and thus exerting anti-tumor
immune functions to inhibit the growth of liver cancer (100).
Similarly, in breast cancer, LCA feeding enhances the anti-tumor
immune response by increasing the number of tumor-infiltrating
lymphocytes (TILs) in mice (45). Several studies have also found
that DCA initially induces hepatic stellate cells (HSCs) to fabricate
senescence-associated secreted phenotype (SASP) factors, which
in turn stimulates the secretion of pro-inflammatory and tumor-
promoting factors, and is ultimately responsible for the
development of non-alcoholic steatohepatitis (NASH) and
subsequent liver cancer (11, 98). Furthermore, the performance
of bile acid-activated receptors (BARs) and transporters in
inflammation and immune regulation has also been extensively
reported. The most characteristic members of BARs are specific
nuclear receptors (the most representative of FXR) and G protein-
coupled receptors (GPBAR1 is the most familiar, also known as
TGR5) (109). Studies have found that the attenuation of FXR
signals can induce liver bile acids retention and persistent
inflammation by down-regulating the function of bile acid
transporters, thereby promoting the development of liver cancer
(27, 102–105). Conversely, treatment of non-alcoholic
steatohepatitis-hepatocellular carcinoma (NASH-HCC) mice
with cholestyramine, a bile acid sequestrant, can significantly
inhibit the development of liver cancer by promoting the
excretion of hydrophobic bile acids (101). And bile acid-TGR5
signal axis can balance the generation of pro-inflammatory
and anti-inflammatory cytokines by regulating the polarization
state of macrophages, consequently controlling subsequent
gastrointestinal carcinogenesis (27, 106, 107). Succinctly, BAs
stimulate/decrease the secretion of inflammatory factors such as
IL-6 and TNF-a on the one hand, thereby activating/inactivating
signal pathways related to cancer promotion to improve/inhibit
cancer growth or invasiveness. On the other hand, BAs foster a
tumor-rejecting environment by regulating the recruitment of
immune cells such as NKT and TILs or the polarization state
of macrophages, thereby controlling the proliferation and invasion
of cancer. Although the role of bile acids in inflammatory immune
Frontiers in Oncology | www.frontiersin.org 7
regulation is not uncommon, the specific regulatory mechanism
needs to be further explored.

CONCLUSIONS

Arebile acids foes or friends?This has been a controversial subject for
a long time. Our knowledge of bile acids has been extended from
promoting the absorption of lipids to key signaling molecules that
maintain thebody’shomeostasis, albeit in its infancy.Especially in the
field of cancer, bile acids are bestowing more and more surprises in
angiogenesis, cancer cell proliferation and death, tumor invasion and
metastasis, inflammation and immune regulation, etc. Based on the
special amphipathic nature and the wide variety of categories, bile
acids play opposite roles in separate cancers, even the same cancer.
This contradictory role endows bile acids with a mysterious content.
The cytotoxic properties of bile acids enable us to further explore to
develop potential drugs for cancer treatment. At present, UDCA has
the greatest prospects as a drug, not only can directly exert its anti-
tumor effect but also can inhibit the development of inflammation-
tumorsequencebyreducing theproportionof toxicbile acids (suchas
DCA) (110, 111). The amphiphilic nature of bile acid allows us to
apply it as amedium for couplingwith other chemopreventive agents
to improve drug absorption. Of course, bile acids and BARs can also
behandled as therapeutic targets, although it is not straightforward to
formulate a strategy to act on one receptor in a specific cell type.
Simply put, the paradoxical role of bile acids in cancer gives us
unlimited possibilities for exploration. Consequently, this review
aims to encourage the emergence of more intensive studies on the
regulation of bile acids in tumor progression.
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TABLE 4 | The impact of bile acid on cancer inflammation and immunity.

Bile acid Target Cancer Model(s) Effect

LCA Tumor-infiltrating lymphocytes (TILs) Breast cancer Mice Suppress (45)
DCA Hepatic stellate cells (HSCs) Hepatocellular carcinoma Cells and humans Promote (11, 98)
CA IL-6, IL-1b, TNF-a and STAT3 Colorectal cancer Cells and mice Promote (99)
TCA IL-4 Intrahepatic cholangiocarcinoma Humans Promote (89)
CDCA IL-6 and COX2 Cholangiocarcinoma Cells and mice Suppress (69)
GDCA IL-6 and COX2 Cholangiocarcinoma Cells and mice Promote (69)
Primary BAs Natural killer T (NKT) cells Hepatocellular carcinoma Mice and humans Suppress (100)
Hydrophobic BAs FXR, BSEP and CYP7A1 Hepatocellular carcinoma Cells and mice Promote (101)
TBAs FXR, bile acid transporters Hepatocellular carcinoma Mice and humans Promote (27, 102–105)

TGR5, macrophages Colorectal cancer Cells, mice, and humans Promote/suppress (27, 106, 107)
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