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ABSTRACT Average effects of alleles can show considerable differences between populations. The magnitude
of these differences can be measured by the additive genetic correlation between populations (rg ). This rg
can be lower than one due to the presence of non-additive genetic effects together with differences in
allele frequencies between populations. However, the relationship between the nature of non-additive
effects, differences in allele frequencies, and the value of rg remains unclear, and was therefore the focus
of this study. We simulated genotype data of two populations that have diverged under drift only, or
under drift and selection, and we simulated traits where the genetic model and magnitude of non-
additive effects were varied. Results showed that larger differences in allele frequencies and larger
non-additive effects resulted in lower values of rg . In addition, we found that with epistasis, rg decreases
with an increase of the number of interactions per locus. For both dominance and epistasis, we found
that, when non-additive effects became extremely large, rg had a lower bound that was determined by
the type of inter-allelic interaction, and the difference in allele frequencies between populations. Given
that dominance variance is usually small, our results show that it is unlikely that true rg values lower than
0.80 are due to dominance effects alone. With realistic levels of epistasis, rg dropped as low as 0.45.
These results may contribute to the understanding of differences in genetic expression of complex traits
between populations, and may help in explaining the inefficiency of genomic trait prediction across
populations.
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Populations can differ considerably in the average effects of loci (i.e., a,
the difference between average effects of the two alleles, Falconer
and Mackay (1996)). For a given genotype (i.e., individual), differ-
ences in a between two populations lead to differences in the additive
genetic values of that genotype, as expressed in both populations.
The magnitude of these differences can be measured by the additive
genetic correlation between populations (rg), defined as the corre-
lation between the additive genetic values of a genotype expressed in
population 1 and population 2. In reality, a single genotype cannot

belong to two populations at the same time. This means that a trait
expressed in two populations can be seen as a pair of traits that cannot
be measured on the same individual, analogous to e.g., age at sexual
maturity inmales and females (Falconer andMackay 1996). Although
no phenotypic correlation exists between such pairs of traits, they can
nevertheless be genetically correlated.

The rg can be lower than one due to genotype by environment
interaction (GxE) (Falconer 1952), or due to non-additive genetic ef-
fects (GxG-interaction) together with differences in allele frequencies
between populations (Fisher 1918). Knowledge of this correlation con-
tributes to the understanding of the genetic architectures of polygenic
traits (de Candia et al. 2013; Brown et al. 2016). Such understand-
ing may lead to improved knowledge of genetics and can facilitate
accurate prediction of traits, such as disease risk in humans and
yield traits in crops (Forsberg et al. 2017). Furthermore, under-
standing the genetic mechanisms that determine rg may help in
explaining the inefficiency of trait prediction across populations
(Wientjes et al. 2015).

Following Falconer (1952), we can interpret a metric trait expressed
in two populations as two different, genetically correlated traits.
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The additive genetic value of individual i for the trait expressed in the
population that i belongs to (say, population 1) is

vP1i ¼ h9a;ia
P1;

where ha;i is a column vector of additive genotypes (measured as allele
counts, minus the mean allele count in the population) of individual
i at quantitative trait loci (QTL), and aP1 is a column vector of aver-
age effects at those QTL in population 1. The additive genetic value
of individual i for another population (say, population 2) is

vP2i ¼ h9a;ia
P2;

where aP2 is a column vector of average effects in population 2.
Conceptually, this vP2i can be thought of as the additive genetic value
for an individual in population 2 that has the same genotype as in-
dividual i. Here we define the additive genetic correlation between
population 1 and population 2 (rg) as the correlation between both
additive genetic values for the individuals in population 1,

rg ¼ cor
�
vP1i ; vP2i

� ¼ cor
�
h9a;ia

P1; h9a;ia
P2
�
: (1)

In other words, the rg is defined for individuals coming from pop-
ulation 1, which may be different from the rg defined for individuals
coming from population 2 (See Discussion).

Equation (1) illustrates that the value of rg depends on the differ-
ences in average effects between populations.With non-additive effects,
average effects depend on the allele frequencies in the population, and,
therefore, larger differences in allele frequencies between populations
are expected to result in lower values of rg .

Note that rg is the correlation between the additive genetic values,
not the genotypic values (i.e., additive plus non-additive genetic values).
In the absence of GxE-interaction, the genotypic correlation be-
tween both populations is equal to one irrespective of the pres-
ence of GxG-interactions, because the genotypic value of a genotype
(i.e., individual) is the same in both populations. The additive genetic
correlation ðrgÞ may, however, be smaller than one because the parti-
tioning of genotypic values into additive genetic values, dominance
deviations and epistatic deviations depends on the allele frequencies
(Fisher 1918; Cockerham 1954; Kempthorne 1954).

A deeper understanding of the relationship between non-additive
genetic effects, allele frequencies and rg may help geneticists to predict
the value of rg based on the importance of dominance and epistasis in
the expression of the trait, and the genetic distance between popula-
tions. Wei et al. (1991) studied the impact of dominance on the
additive genetic correlation between a purebred and crossbred pop-
ulation, known as rpc. Using a two-locus model, they showed that rpc
indeed depends on both the magnitude of the dominance effect (d),
and on the difference in allele frequencies between the populations.
We are not aware of any theoretical studies that investigated the

relationship between the importance of dominance and rg between
two purebred populations.

With epistasis, rg is also expected to depend on the magnitude of
epistatic effects and on the difference in allele frequencies between
populations. Epistasis in the functional (i.e., biological) sense means
that the genotypic values of individuals depend on interactions between
alleles or genotypes at different loci (Bateson and Mendel 1909), and
there is substantial evidence for the existence of functional epistasis
across species (Carlborg et al. 2003; Le Rouzic et al. 2008; Pettersson
et al. 2011; Mackay 2015). Epistasis in the statistical sense is measured
as the deviation of multi-locus genotypic values from the sum of the
marginal effects (i.e., average and dominance effects) of the individual
loci (Fisher 1918; Cockerham 1954). Although functional epistatic
interactions do not necessarily lead to substantial statistical epistasis
(Cheverud and Routman 1995; Hill et al. 2008; Mäki-Tanila and Hill
2014), epistasis can contribute significantly to the additive genetic
variance because average effects of individual loci may capture a sub-
stantial part of the functional epistasis (Hill et al. 2008; Mäki-Tanila
and Hill 2014; Monnahan and Kelly 2015). Furthermore, epistatic
variance may be ‘converted’ into additive genetic variance due to
genetic drift or due to selection (Cheverud and Routman 1996;
Hill 2017). Thus, epistatic interactions modify average effects of in-
dividual loci when allele frequencies change, and may therefore play
an important role in the value of rg and its change over time.

In summary, the rg between populations is affected by non-additive
effects in combination with differences in allele frequencies between
populations. For populations in the same environment (i.e., in the
absence of GxE), rg is equal to 1 in the absence of non-additive effects
or in the absence of allele frequency differences. So far, the relationship
between the nature and magnitude of non-additive effects, differences
in allele frequencies, and the value of rg remains unclear. Our objective
was therefore to investigate the impact of non-additive effects on rg for
populations that have diverged either under drift only, or under both
drift and selection.

METHODS
We aimed to investigate the relationship between non-additive effects
and the additive genetic correlation between populations (rg) with small
effective size, as observed in livestock. For this purpose, we simulated
genotypes of quantitative trait loci (QTL) for two populations that have
diverged for a number of generations under either pure drift, or under
drift and selection. The populations were assumed to be kept in the
same environment, so there was no GxE. We simulated traits following
several scenarios that differed in the type (i.e., genetic model) and the
magnitude of non-additive effects (Table 1).

We considered six geneticmodels; a basicmodelwith additive effects
only (A), which served as a basis for comparison, and five alternative
models with non-additive effects: one with only dominance effects
(D), and four with only epistatic effects. With epistasis, we simulated
interactions between pairs of loci that followed one of the configurations

n■ Table 1 Overview of scenarios with the genetic architecture of the trait, and their parameters for distributions of sampled dominance
coefficients and epistatic coefficients

Parameters for distributions of non-additive effects

Configuration Small Intermediate Large

D Dominance md ¼ 0:2;sd ¼ 0:30 md ¼ 0:2;sd ¼ 0:70 md ¼ 0:2;sd ¼ 1:50
EAA A�A mg ¼ 0:0;sg ¼ 0:16 mg ¼ 0:0;sg ¼ 0:33 mg ¼ 0:0;sg ¼ 0:68
EDD D�D mg ¼ 0:0;sg ¼ 0:16 mg ¼ 0:0;sg ¼ 0:33 mg ¼ 0:0;sg ¼ 0:68
EC Complementary mg ¼ 0:0;sg ¼ 0:16 mg ¼ 0:0;sg ¼ 0:33 mg ¼ 0:0;sg ¼ 0:68
EM Multiplicative mg ¼ 0:0;sg ¼ 0:16 mg ¼ 0:0;sg ¼ 0:33 mg ¼ 0:0;sg ¼ 0:68
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presented in Figure 1. We chose these genetic models so that there
were scenarios with only dominance variance (D), scenarios with only
additive by additive epistatic variance (EAA and EM), and scenarios
with all types of non-additive variance (EC and EDD). For each genetic
model, we considered three magnitudes of non-additive effects,
labeled as small, intermediate, and large.

Simulation
We simulated genotypes of two livestock populations (1 and 2) that
diverged for 50 generations (Figure 2). For divergence, we considered
two situations: one where the populations diverged due to drift only,
and one where the populations diverged also due to selection in
population 1 and drift in population 2.

Populations: We simulated a historical population with QMSim
(Sargolzaei and Schenkel 2009) by randomly mating 100 males and
500 females starting in generation -3001. From generation -3000 to
generation -2501, we simulated a bottleneck by gradually decreasing
population size to 150 (25 males and 125 females) to create initial
linkage disequilibrium (LD), and population size was gradually in-
creased again to 600 during the next 100 generations. The population
size remained constant from generation -2400 until -1 to allow for the
development of mutation-drift equilibrium. To provide a sufficient
number of individuals for the development of populations 1 and 2, we
doubled the number of individuals in the last historical generation
(generation 0) to 200 males and 1,000 females. This simulation resulted
in an average effective population size (Ne) of �285 generation 0,
calculated as the harmonic mean of 4NmNf

NmþNf
in each preceding

generation, where Nm is the number of males and Nf is the num-
ber of females that become parents in a generation (Falconer and
Mackay 1996).

After simulating the historical population, we simulated two current
populations (1 and2).Werandomly sampled100males and500 females
from the last historical generation to become founders of population 1.
The remaining 100 males and 500 females were the founders of
population 2. We will refer to the generation of founders as genera-
tion 0. Within each population, simulation continued for 50 genera-
tions by randomly mating 100 selected males with 500 selected
females. Each mating resulted in 5 offspring, resulting in a total of
2,500 offspring (exactly 1,250 males and 1,250 females) in each
generation. Generations were non-overlapping, meaning that in
each generation, the parents were selected from the previous
generation only. In the drift scenario, animals in both populations
were randomly selected to become parents of the next generation.
Effective population size (Ne) in the drift scenario was�285 in the two

populations. In the selection-drift scenario, animals in population
1 were selected based on their own phenotype (mass selection), while
in population 2, selection was random. In this scenario, effective
population size (Ne) in population 1 was �250, which was calculated
as 1=ð2DFÞ, where DF is the inbreeding rate estimated from the
pedigree (Falconer and Mackay 1996). We simulated selection only
in population 1 to reduce computation time.

Genome: The simulated genome consisted of 10 chromosomes of
1 Morgan that each had 200 randomly positioned bi-allelic loci.
In the first historical generation (generation -3001), we randomly
sampled the allele frequencies of loci from a uniform distribution.
Mutation rate was 2.5�1025 during the historical generations. In
generation 0, the distribution of allele frequencies had evolved to
a U-shape, and we randomly selected 500 segregating loci to become
QTL, which resulted in low linkage disequilibrium between QTL.
There was no mutation from generation 0 to 50, because the
QMSim software does not allow for mutation after the last historical
generation.

Functional genetic effects: Additive effects (a) of all 500 QTL were
sampled from � Nð0; 1Þ. We assumed that the size of the dominance
and epistatic effects were proportional to the additive effects of the
QTL involved in the interaction (Wellmann and Bennewitz 2011).
We therefore sampled dominance coefficients (d) for all QTL from
� Nðmd;s

2
dÞ, from which dominance effects (d) were computed as

djaj. Similarly, we sampled epistatic coefficients (g) for all pairwise
epistatic interactions from � Nðmg ;s

2
gÞ, from which functional ep-

istatic effects (e) were computed as gkl

ffiffiffiffiffiffiffiffiffiffiffijakalj
p

where k and l denote
the QTL involved in the interaction. Each QTL had an epistatic in-
teraction with 5 randomly sampled other QTL, resulting in a total of
1250 pairwise interactions.

For both dominance and epistasis, we considered 3 magnitudes of
effects: small, intermediate, and large. For all magnitudes, the mean
dominance coefficient (md) was 0.2, and the mean epistatic coefficient
(mg) was 0.0. The magnitude of dominance and epistatic effects were
controlled by changing the standard deviation of dominance coef-
ficients (sd) or epistatic coefficients (sg). For dominance, sd was
0.3 with small effects, 0.7 with intermediate effects, and 1.5 with
large effects (Table 1). The mean and standard deviation of small
dominance coefficients were chosen based on empirical results of
Bennewitz and Meuwissen (2010) and Sun and Mumm (2016). For
epistasis, sg was scaled such that the total functional epistatic vari-
ance was comparable to the total functional dominance variance in

Figure 1 Epistatic contrasts for four biological epistatic configurations.
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the scenario with the same magnitude. To this end, sg was computed
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2
d þ s2

dÞ=Ng

p
, where Ng is the number of epistatic interactions

per QTL, and m2
d and s2

d are the squared mean and variance of
dominance effects in the scenario with the corresponding magni-
tude. For example, with small epistatic effects, sg was computed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið0:22 þ 0:32Þ=5p � 0:16 (Table 1).

From functional dominance and epistatic effects to statistically
orthogonal effects: We simulated dominance and epistasis by intro-
ducing functional dominance and epistatic effects that are independent
of allele and genotype frequencies. Our interest, however, is in statistical
average, dominance and epistatic effects of QTL, which do depend on
genotype frequencies (Fisher 1918; Cheverud and Routman 1995). We
will describe the general procedure to obtain these statistical effects, for
a general situation where there can be dominance, epistasis, or both.
Note, however, that our scenarios had either dominance or epistasis,
but never both. After obtaining statistical effects, we describe how we
computed the additive genetic value, genotypic value and phenotype
for each individual. Although genotypic values themselves are inde-
pendent of genotype frequencies, the partitioning of these genotypic
values into additive, dominance, and epistatic components does de-
pend on genotype frequencies. Additive genetic values of individuals
in population 1 were needed to compute rg , and genotypic values and
phenotypes were needed because selection in population 1 was based
on own performance. In the following, we describe the procedure to

obtain the average effects and dominance effects in population
1 (aP1). The procedure to obtain these effects in population 2 (aP2)
follows naturally by replacing the genotype and allele frequencies of
population 1 with the frequencies in population 2.

The procedure starts by applying the natural and orthogonal
interactions (NOIA)model (Álvarez-Castro and Carlborg 2007) for
each epistatic interaction between two QTL. First, functional epi-
static values for the 9 possible two-locus genotypes at QTL k and l
were collected in a vector ckl ¼ tekl , where ekl is a scalar represent-
ing the functional epistatic effect between QTL k and l, and t is a
9 · 1 vector of epistatic contrasts for the 9 two-locus genotypes,
ordered as (WWYY, WwYY, wwYY, WWYy, ..., wwyy). The sim-
ulated epistatic contrasts in t followed one of four configurations:
additive x additive (EAA), dominance x dominance (EDD), comple-
mentary (EC), or multiplicative (EM) (Figure 1). The contrasts in t
were centered and scaled to a standard deviation of one, so that the
contrasts were comparable between configurations. We then used
genotype frequencies of QTL k and l to partition the functional ep-
istatic values in ckl into 9 statistical genetic effects (Álvarez-Castro and
Carlborg 2007; Vitezica et al. 2017)

bkl ¼
�
W9

klDklWkl

�21
W9

klDklckl;

where Dkl is a 9x9 diagonal matrix with each of the nine genotype
frequencies in the same order as in t. Matrix Wkl ¼ Wk5Wl ,

Figure 2 Overview of the simu-
lated population structure.
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where 5 denotes the Kronecker product, and Wk and Wl are
constructed as

Wx ¼ ½ 1 wa wd �

¼

2
6666666664

1 2ð2pXx 2 2pxxÞ 2pXxpxx

pXX þ pxx 2
�
pXX2pxx

�2

1 2ð12 pXx 2 2pxxÞ 4pWWpww

pXX þ pxx 2
�
pXX2pxx

�2

1 2ð22 pXx 2 2pxxÞ 2pWWpWw

pXX þ pxx 2
�
pXX2pxx

�2

3
7777777775

;

(1)

where columns relate to orthogonal contrasts for themean (1), average
effect (wa), and dominance effect (wd) of QTL X and where pXx , pXx ,
and pxx are the genotype frequencies of QTL X. The resulting vector of
statistical genetic effects is

bkl ¼
h
m;ak

kl; d
k
kl;a

l
kl; ðaaÞkl; ðdaÞkl; dlkl; ðadÞkl; ðddÞkl

i9
; (2)

where ak
kl and al

kl are the terms that contribute to average effects of
QTL k and l. The other terms in bkl contribute to dominance effects
(dkkl; d

l
kl) of individual QTL and to epistatic effects of interacting QTL

(ðaaÞkl; ðdaÞkl; ðadÞkl; ðddÞkl).
We repeated this procedure of partitioning functional epistatic

effects into statistical genetic effects for all pairwise interactions
between QTL. Each QTL was involved in 5 epistatic interactions
and therefore has 5 terms that contribute to its average effect. Fol-
lowing this reasoning, the average effect of QTL k in population 1 with
epistasis is

aP1
k ¼ ak þ

�
12 2pP1k

�
dk þ

XNg

l2ℤ
ak
kl;

where pP1k is the frequency of the counted allele of QTL k in popu-
lation 1, ℤ is the set of loci that QTL k interacts with, and Ng ¼ 5.
Note the difference between “additive effect” (a) and “average effect”
(a); the additive effect a is half the difference in genotypic value
between both opposing homozygotes, whereas the average effect
(a) is the (statistical) marginal effect of the QTL. Throughout this
manuscript, we will use the term “functional additive effect” to
refer to a, and “average effect” (i.e., statistical substitution effect)
to refer to a.

In our simulations, we needed to compute phenotypes of selec-
tion candidates in each generation, for which we needed the statistical
dominance effect (d�) of each QTL as well. The dominance effect of
QTL k in population 1 with epistasis is

dP1k
� ¼ dk þ

XNg

l2ℤ
dkkl

Additive genetic values and phenotypes: We computed additive
genetic values (v) of selection candidates in population 1 for the trait
expressed in both population 1 and 2. Their genotypic values (g) and
phenotypes were only computed for the trait expressed in population
1. The additive genetic value of individual i for the trait expressed in
population 1 (2) were computed as vP1i ¼ h9a;ia

P1 (vP2i ¼ h9a;ia
P2),

and genotypic values for the trait expressed in population 1 were
computed as

gP1i ¼ vP1i þ h9d;id
P1� þ h9a;i5h9a;iðaaÞP1 þ h9a;i5h9d;iðadÞP1

þ h9d;i5h9a;iðdaÞP1 þ h9d;i5h9d;iðddÞP1;

where ha;i is a column vector of additive genotype indicators for
individual i, and hd;i is column a vector of dominance genotype
indicators for individual i. These indicators were coded following
the NOIA parameterization as denoted in the rows of wa and wd

(Equation 1) for genotypes XX, Xx, and xx, respectively. Pheno-
types with a broad sense heritability of 0.5 were computed as
yP1 ¼ gP1 þ eP1, where eP1 � Nð0;s2

e Þ, and s2
e was equal to the

variance of genotypic values (s2
g).

Computing parameters of interest
The parameters of interest were (1) the genetic correlation between the
trait inpopulation1and the trait in population2 (rg), and (2) the average
absolute difference in allele frequencies between populations (�Dp). For
each generation, we computed rg as the Pearson correlation between
the additive genetic values of individuals in population 1 for the trait
expressed in the two populations (equation (1)). Effectively, this rg is a
weighted correlation between aP1 and aP2, where the weights depend
on the allele frequencies in population 1. Hence, the rg computed as the
correlation of additive genetic values of individuals in population
2 may give different results because the genotypes sampled from
population 2 result in different weights than those sampled from
population 1 (see Discussion). For each generation, we computed�Dp
as

P​ ð��pAk 2 pBk
��Þ=500. We chose this parameter as a measure for

population divergence, because we expect that there is a linear re-
lationship between�Dp and rg . These parameters were computed for
generation 1 to 5, and for every 5th generation after generation 5,
to limit computation time.

Replicates
We ran the simulation with drift 50 times, resulting in 50 sets of
genotypes (i.e., replicates). For each of those replicates, we computed
�Dp and rg for each of the scenarios (i.e., genetic model andmagnitude).
We ran the simulations with both selection and drift for each scenario
separately, because the selection of parents in population 1 depended
on the genetic model. To limit computation time, we used 20 replicates
for each scenario with selection.

Data availability
The data used in this study can be reproduced with the files and seeds
in the followingGitHub repository: https://git.wageningenur.nl/duenk002/
rg-and-non-additive-effects. Supplemental material available at figshare:
https://doi.org/10.25387/g3.10252856.

RESULTS
First, for each scenario with selection, we show the change in mean
genotypic value (�g) and the change of additive genetic variance
(VA) in population 1 across generations, to illustrate how popula-
tion 1 evolved over time. Second, we report realized fractions of
additive, dominance and epistatic variance in generation 1 and 50.
Third, for scenarios with small non-additive effects, we show the
effects of the genetic model and of applying selection on the ad-
ditive genetic correlation (rg) and the difference in allele frequency
(�Dp) between populations. Fourth, for each genetic model with
selection, we investigate the impact of the magnitude of non-
additive effects and the number of generations since divergence.
Finally, we investigate the relationship between rg and �Dp across
genetic models and within genetic models. All results presented
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refer to generation 50 and to scenarios with small non-additive
effects, unless otherwise stated.

Mean genotypic value and variance components
With all scenarios, the mean genotypic value expressed in genetic
standard deviations (�g) in population 1 increased due to selection
(Figure S 1). With all genetic models, the increase in �g was smaller
when the magnitude of non-additive effects was larger. This result
was expected, because the marginal effects of alleles may change
over time in the presence of non-additive effects, reducing the ef-
fectiveness of selection. The increase in �g was largest with model A,
and it was smallest with model EDD and large non-additive effects.
There were only small differences in �g between models D, EAA, EC,
and EM.

The additive genetic variance in population 1 (VA) decreased
due to selection with all scenarios (Table 2 and Figure S 2). With
genetic model A, EAA, EC and EM, about 95–98% of VA was lost
after 50 generations of selection, whereas with D and EDD, 88–95% of
VA was lost. A change in magnitude of non-additive effects did not
substantially affect the decrease in VA, except with genetic models D
and EDD, where more additive genetic variance was preserved with
larger non-additive effects. In the drift scenario, the average loss of
VA was about 7% for all scenarios (results not shown).

In generation 1, scenarios that had only additive genetic (VA) and
epistatic variance (VI), VA accounted for the largest, and VI for the

smallest fraction of the total genetic variation (Table 2). The largest
fraction of VI was realized with genetic model EAA (max. 0.048),
followed by EDD (max. 0.033), EC (max. 0.024) and EM (max. 0.017).
The largest fraction of dominance variance (VD) was realized
with model EDD (max. 0.364), followed by D (max. 0.298) and
EC (max. 0.105). With genetic models D, EDD and EC, the fraction
VD increased and VA decreased across generations, especially
with intermediate or large effects (Table 2, generation 50). The
fraction VI remained relatively constant across generations with
all scenarios.

Effect of genetic model and of selection on rg
For all genetic models and small non-additive effects, rg was lower
with selection than with drift only (Figure 3). With drift only, rg was
between 0.99 and 1 for all genetic models. After 50 generations
of selection, average rg was lowest with genetic model EDD (0.65),
followed by EAA (0.75), D (0.83), EC (0.83) and finally EM (0.94).
There was a tendency that scenarios with the largest non-additive
variance in generation 1 had the smallest rg in generation 50 (Figure S 3).
Note that the rg was always equal to 1 with the additive model (A)
(results not shown).

As expected,�Dp was larger with selection than with drift, and
was the same across all genetic models with drift (0.05; Figure 4).
With selection,�Dp with non-additive models was very similar
(around 0.20) to the value with an additive model.

n■ Table 2 Fractions of additive (VA), dominance (VD), and epistatic (VI) variances with respect to the total genetic variance in generation
1 and generation 50 with selection. Reported values are averages of 20 replicates

Generation 1 Generation 50

Scenario Effect size VA VD VI VA VD VI

D Small 0.961 0.039 0.000 0.924 0.076 0.000
Intermediate 0.871 0.129 0.000 0.511 0.489 0.000
Large 0.702 0.298 0.000 0.198 0.802 0.000

EAA Small 0.992 0.000 0.008 0.997 0.000 0.003
Intermediate 0.976 0.000 0.024 0.988 0.000 0.012
Large 0.952 0.000 0.048 0.969 0.000 0.031

EDD Small 0.910 0.064 0.026 0.703 0.289 0.008
Intermediate 0.751 0.173 0.076 0.358 0.602 0.040
Large 0.528 0.333 0.139 0.146 0.752 0.101

EC Small 0.985 0.012 0.003 0.947 0.051 0.001
Intermediate 0.947 0.044 0.009 0.737 0.250 0.013
Large 0.871 0.105 0.024 0.471 0.511 0.017

EM Small 0.998 0.000 0.002 0.999 0.000 0.001
Intermediate 0.993 0.000 0.007 0.995 0.000 0.005
Large 0.983 0.000 0.017 0.989 0.000 0.011

Figure 3 Effect of genetic model on rg with small non-additive effects, under drift only, or under drift and selection.
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Effect of the magnitude of non-additive effects
For all genetic models and with selection, rg decreased with increasing
magnitude of non-additive effects (Figure 5). With genetic model D,
rg dropped about 31% from small to intermediate, and about 27%
from intermediate to large dominance effects. With all epistatic mod-
els, the drop in rg with increasing magnitude was smaller (16–23%)
than with D.

For all genetic models with selection, the average absolute dif-
ference in allele frequency between lines (�Dp) decreased with in-
creasing magnitude of non-additive effects, especially with D and
EDD (Figure 6). With model D,�Dp was 0.18 with intermediate dom-
inance effects, and 0.141 with large effects. With EDD,�Dp was 0.162
with intermediate epistatic effects, and 0.130 with large effects. With
the other epistatic models (EAA, EC and EM), the effect of an increase
in magnitude on�Dp was much smaller (�0.19 with intermediate
and �0.18 with large effects).

Effect of number of generations since divergence
With all scenarios, rg decreased with the number of generations since
divergence, and the rate of decrease was relatively small during the first
five generations (rg . 0:94), especially when the non-additive effects
were small (rg . 0:98) (Figure 7). After the first five generations, the

rate of decrease in rg differed across genetic models. There was a con-
siderable difference between genetic models, the EM model showed the
smallest decline of rg over time, and the EDD model showed the largest
decline. With large non-additive effects, models EM and EAA tended to
show an accelerated decrease in rg across generations, whereas models
D, EC and EDD tended to show a decelerated decrease in rg (Figure 7).

With all scenarios, the average absolute difference in allele frequency
between lines (�Dp) increased with the number of generations since
divergence (Figure 8). In contrast to the result of the genetic correlation
with small non-additive effects (Figure 7),�Dp was remarkably similar
between the genetic models (Figure 8). With large effects, models D
and EDD showed a smaller�Dp than models EM, EAA, and EC.

In summary, for each genetic model, rg was smallest with selection,
large non-additive effects and many generations since divergence.
Overall, the smallest realized value of rg after 50 generations of
divergence was achieved with genetic model D or EDD (rg � 0:41
for both).

Relationship Between rg and�Dp
For all genetic models, there was a clear negative relationship between
�Dp and rg (Figure 9), and the relationship was strongest for genetic
models showing the strongest decline of rg with time (Figure 7).

Figure 4 Effect of genetic model on the difference in allele frequencies between populations, under drift only, or under drift and selection.

Figure 5 Effect of magnitude of non-additive effects on rg for all genetic models, where population 1 was selected and population 2 was
not selected.

Volume 10 February 2020 | Impact of Non-additive Effects on rg | 789



This result suggests that differences between genetic models in the
decline of rg over time originate from different impacts of�Dp on rg ,
and not from differences in�Dp per se. For example, with small non-
additive effects and after 50 generations of divergence, the value of
rg was different between genetic models, whereas the realized�Dp
was very similar (Figure 9). In other words, rg is a function of�Dp
and of genetic architecture.

DISCUSSION
Our objective was to investigate the relationship between non-additive
effects, differences in allele frequencies between populations (�Dp),
and the genetic correlation between populations (rgÞ. We simulated
genotype data of two populations that have diverged for a number of
generations under drift only, or drift and selection, and we simulated
traits where the genetic model and magnitude of non-additive effects
were varied.

We computed rg as the correlation between additive genetic
values of individuals in population 1, for the trait expressed in
population 1 and 2. Effectively, this rg is a weighted correlation

between average effects in population 1 (a1) and 2 (a2), where the
weights depend on the sample of genotypes that were used to com-
pute the additive genetic values. This suggests that different values of
rg could have been obtained when using the additive genetic values
of individuals in population 2, because of differences in genotype
frequencies between populations. We chose, however, to focus on
population 1 because we were also interested in the change of allele
frequencies over time due to selection. This approach leads to values
of rg that indicate whether information from an unselected popula-
tion (population 2) can be used to predict additive genetic values in a
selected population (population 1).

Realized variance components
Because little is known about the quantity andmagnitude of dominance
and epistatic effects in reality, we considered a range of functional non-
additive effect sizes and epistatic configurations. Realized proportions in
our simulations (Table 2) did not always match with those observed
in real data. For example, with large dominance effects, the fraction of
dominance variance was 30%, which is uncommon in real data (Ertl
et al. 2014; Lopes et al. 2016; Moghaddar and van der Werf 2017;

Figure 6 Effect of magnitude of non-additive effects on the difference in allele frequencies between populations under selection. In each
subplot, the additive scenario (A) was included for reference (i.e., magnitude “none”).

Figure 7 Effect of number of
generations since divergence on
rg for all genetic models with
small (left) or large (right) non-
additive effects.
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Joshi et al. 2018). Similarly, scenario EDD also resulted in more dom-
inance variance than expected in real populations, especially with large
epistatic effects (33%). Empirical studies on livestock (Bennewitz and
Meuwissen 2010) and crops (Sun and Mumm 2016) found that ap-
proximately 0.3% of loci show overdominance, which is comparable
to our scenario with small dominance effects (0.5% overdominance).
Furthermore, the scenario with small dominance effects resulted in a
small proportion of dominance variance, and might therefore be most
realistic for actual populations.

In contrast to our realized proportions of dominance variance,
proportions of epistatic variance were lower (max. 5%) than estimates
from an empirical study on litter size in pigs (about 26%) (Vitezica et al.
2018), though the standard error of that estimate was large (about
22%). Further evidence of statistical epistatic effects is scarce, probably
because methods used for the detection of statistical epistasis are fre-
quently underpowered (Wei et al. 2014). Furthermore, it has been
suggested that incomplete LD between genomic markers and QTL
may create the illusion of epistasis, making inference about the impor-
tance of epistasis from genome-wide regression studies difficult (Wei
et al. 2014; Zan et al. 2018; de los Campos et al. 2019). In contrast to the

lack of evidence of statistical epistasis, there is substantial evidence
that physiological epistasis is abundant in several classes of organisms
(Carlborg et al. 2003; Le Rouzic et al. 2008; Pettersson et al. 2011;
Mackay 2015). Nevertheless, large epistatic effects between pairs of
loci are believed to be unlikely (Wei et al. 2014), and the contribution
of epistatic variance to the total genetic variance is expected to be
small (Hill et al. 2008).

In summary, among the scenario’s we studied here, scenarios D
and EDD with small effects, and scenarios EAA, EC and EM are prob-
ably most realistic, because these scenarios always resulted in little
dominance (max. 7%) and epistatic (max. 5%) variance.

Effect of genetic model on rg
For the dominance model (D), we observed that rg decreased with
increasing size of dominance effects and with increasing difference of
allele frequencies between populations. In some cases, the rg can be
negative due to dominance alone, as shown for a two-locus model (Wei
et al. 1991). Such low values of rg were, however, only obtained with
scenarios where both loci showed substantial overdominance, and
where the difference in allele frequencies between the two populations

Figure 8 Effect of number of
generations since divergence on
the difference in allele frequen-
cies between populations, for all
genetic models and small (left) or
large (right) non-additive effects.
Dotted line represents additive
trait.

Figure 9 Relationship between rg and the difference in allele frequencies between populations for all scenarios.
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was at least 0.3 for one of the loci. In our study, we consideredmany loci
and the distributions of dominance effects was based on empirical
results (Bennewitz andMeuwissen 2010; Sun andMumm 2016). These
distributions resulted in only a fraction of loci showing overdominance
(i.e., 0.5% for small effects, 16% for intermediate effects, and 51%
for large effects). Furthermore, our simulations resulted in U-shaped
distributions of allele frequencies in the last generation of the historical
population, which agrees with expectations based on neutral theory
(Kimura and Crow 1964; Goddard 2001). After the two populations
separated, allele frequency differences between populations were a re-
sult of drift and/or selection. We therefore believe that our simulations
represent a more realistic model of quantitative traits and population
divergence than those in Wei et al. (1991). In conclusion, given that
dominance variance is usually small and overdominance does not oc-
cur frequently, our results show that it is unlikely that true rg values
lower than 0.80 are due to dominance effects alone.

In another simulation study, where the fraction of loci showing
overdominance was 12%, realized rg was 0.78 (Esfandyari et al. 2015).
Although the fraction of loci showing overdominance in that study
was comparable to our scenario with intermediate dominance effects,
our realized rg in that scenario was much lower (0.57). This difference
is likely due to the smaller number of generations that populations
diverged in the study of Esfandyari et al. (2015).

With epistasis, rg decreased with increasing size of epistatic effects
and with increasing difference of allele frequencies between popula-
tions, and the value of rg depended on the nature of the epistatic
interaction (i.e., configuration). In addition, there was a tendency
for configurations that resulted in large initial non-additive variance
to result in smaller values of rg (Figure S 3). Even though large epi-
static effects are unlikely and epistatic variance is expected to be small,
rg could be as low as 0.45 for supposedly realistic epistatic scenarios.

To our knowledge, the relationship between the nature of epistasis
and rg has not been studied before. The mechanism behind differences
in rg between epistatic models can be illustrated with an example of two
interacting loci. Suppose that both loci have an additive effect (a) of 1,
an epistatic coefficient (g) of 0.5, and the allele frequency at locus 1 (p1)
is the same in both populations (here we use 0.10). Then, we study
the effect of allele frequency difference between populations at locus
2 (Dp2) on the difference in average effects between populations (Da)
for locus 1 and 2. Results show that EAA and EM interactions only
affect the a of the locus with fixed p (locus 1), whereas EDD and EC
interactions affect the a at both loci (Figure S 4). Note that this result
was the same with different values for a, g, or p1. This shows that, in
general, EAA and EM interactions create a dependency of a at a locus
on the allele frequency of all loci it interacts with, whereas EDD and EC
interactions also create a dependency of a on the allele frequency of
the locus itself. These mechanisms may contribute to the differences
in rg between genetic models, because the interplay between differ-
ences in allele frequencies and rg depends on the genetic model.

Effect of magnitude of non-additive effects on rg
As expected, an increase inmagnitude of dominance effects resulted in a
lower rg , which is in line with results fromWei et al. (1991). Similarly,
an increase in magnitude of epistatic effects also resulted in a lower rg .
An important question is whether this decrease of rg due to an increase
in magnitude continues until the theoretical limit of rg ¼ 2 1 is
reached. Additional analyses revealed that rg appears to asymptote with
increasing magnitude of non-additive effects. In these analyses, we re-
peated our original simulations of genetic models D and EAA, using
non-additive effects that were multiplied by 100 for all magnitudes.
Results from those simulations showed that the difference in rg

between “small”, “intermediate”, or “large” effects had indeed disap-
peared (Figure S 5), and that the lower bound of realized values for rg
was �0.25 with scenario D and �0.36 with scenario EAA.

To show themechanismbehind this result, we again consider a two-
locus model where, like before, both loci have an additive effect (a) of 1,
the allele frequency of locus 1 (p1) is 0.10 in both populations and
Dp2 ¼ 0:20. We studied the effect of the magnitude of the epistatic
effect (g) on the absolute difference in average effects between popu-
lations, relative to the absolute value of a in population 1 (Da=aA). We
observed that for all epistatic models, especially for larger values of g,
both Da and aA increase roughly linearly with g, and that therefore
Da=aA stops increasing with large values of g (Figure S 6). Note that
the same mechanism was observed with dominance when p2 was the
same in both populations and Dp1 ¼ 0:20. Hence, a change in mag-
nitude equally affects the variance of a’s in the two populations, and
the covariance between them. As a result, rg is unaffected by a change
in size of non-additive effects when non-additive effects are already
large. In conclusion, when non-additive effects are very large, rg no
longer depends on the magnitude of non-additive effects relative to
the magnitude of functional additive effects. At that point, there is a
lower bound of rg that is determined by the nature of the non-additive
effects (i.e., type of inter-allelic interaction) and by the difference in
allele frequencies between populations.

Number of epistatic interactions
In the epistatic scenarios, we assumed that each locus interacted with
5 other loci. Because little is known about the number of interactions
per locus (Ng) in reality, we tested whether our results were sensitive
to a change in Ng . For that purpose, we repeated all simulations of
epistatic scenarios with Ng ¼ 100. Note that the total functional
epistatic variance with Ng ¼ 100 was the same as with Ng ¼ 5,
because the epistatic coefficients were scaled with Ng , so that the
product Ngs

2
g is constant. This analyses resulted in values of rg that

were very similar to those of our original simulations (results not
shown), suggesting that, in our simulations, the value of rg depends
on the level of total functional epistatic variance, which scales
similarly with Ng or s2

g .

Effect of selection on rg
Non-additive effects and selection create a complex interplay between
average effects, the difference in allele frequencies between populations
(�Dp) over time, and their effects on rg . For a trait with small dominance
effects under selection, we observed that�Dp was almost the same as
for an additive trait (Figure 8). We expected, however, that direc-
tional dominance would reduce�Dp, because the average effect at a
locus can become smaller or even switch sign when the frequency
of the favorable dominant allele increases (Falconer and Mackay
1996). This change in average effects would affect the change in
allele frequencies over time due to selection in population 1, because
the selection pressure at loci may change. A reduction in�Dp with
small dominance effects was not observed, probably because only a
small fraction of loci showed full- or over-dominance. Indeed, with
large dominance coefficients (so that the fraction of loci showing
over-dominance was much larger compared to with small dominance
coefficients)�Dp was smaller (Figure 6). In real data, however, we do
not expect a large fraction of loci that show full- or over-dominance
(Wellmann and Bennewitz 2011). It is therefore unlikely that domi-
nance significantly affects the change in allele frequencies over time
due to selection, compared to a purely additive trait.

For a trait with epistatic effects under selection, we observed that
�Dp was a bit smaller than that for a trait with only additive effects
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(Figure 8). Similar to the models with only dominance effects, this
reduction in�Dp was expected because the average effect at a locus can
become smaller or switch sign over time in the presence of epistasis.
How epistasis affects the change in allele frequencies due to selection
depends on the directionality of the epistatic interaction effect. The-
ory suggests that, compared to pure additivity, positive interactions
(i.e., in the same direction as the additive effects) will promote the
selection of favorable alleles, whereas negative interactions (i.e., in the
opposite direction from the additive effects) will suppress the selec-
tion of favorable alleles (Carter et al. 2005; Hansen 2013; Paixão and
Barton 2016). We chose to simulate both positive and negative inter-
actions with equal probabilities, because empirical studies suggest
that epistatic interactions are not biased in being either positive or
negative (i.e., they are non-directional) (Mackay 2014). Our results
showed that, for a trait with intermediate epistatic effects, the net
effect of having both positive and negative interactions was a decrease
in fixation rate of favorable alleles (i.e., with a positive a), and an
increase in fixation rate of unfavorable alleles (i.e., with a negative
a) compared to an additive trait (Figure S 7). Similar results were
found by Esfandyari et al. (2017). In conclusion, epistatic effects
may affect rg through two related mechanisms. First, with an epistatic
model and when selection takes place in one of the populations, the
difference in allele frequencies between populations may be smaller
compared to an additive model. This reduction occurs because neg-
ative interactions decrease the fixation rates of favorable alleles,
and increase those of unfavorable alleles. Second, for given allele
frequency differences, the value of rg depends on the nature of the
epistatic interaction.

Loss of additive genetic variance
Selection experiments in Drosophila, maize, and Escherichia coli have
shown that additive genetic variation (VA) can be maintained for at
least 100 generations (Hill 2016). Some researchers suggested that this
preservation of VA may be due to the conversion of non-additive ge-
netic variance to additive genetic variance (Cheverud and Routman
1996; Hallander and Waldmann 2007; Hill 2017). Simulation studies,
however, have failed to show a preservation of VA due to this con-
version (Carter et al. 2005; Esfandyari et al. 2017). Similarly, our
simulations showed little conversion of non-additive genetic vari-
ance to VA with genetic models EAA and EM, and no conversion with
other genetic models (Table 2). As a result, almost all additive genetic
variance was lost after 50 generations (Figure S 2).

The large loss of additive genetic variance in our simulations may
be due to two reasons. First, there was little epistatic variance in
generation one that could be ‘converted’ to VA in subsequent
generations (Hill et al. 2008; Mäki-Tanila and Hill 2014). This
was largely because the allele frequency distribution was strongly
U-shaped in generation one. Second, mutational variance was zero
because there were no mutations simulated after the historical gener-
ation. Even though these mechanisms may explain some of the loss of
VA in our simulations, the issue still remains that, to date, simulations
have failed to convincingly reproduce the conservation of VA ob-
served in reality (Johnson and Barton 2005; Walsh and Lynch 2018).

Practical relevance
In our simulations, therewas selection in only one of the populations,
while the other population was unselected. In reality, populations
may have been divergently selected (e.g., Friesian Holstein vs.Angus
cattle), resulting in larger differences in allele frequencies than sim-
ulated here. Hence, rg between divergently selected populations may
be smaller than observed in our simulations.

In this study,we assumed that therewerenogenotype x environment
interactions (GxE), so that rg values smaller than one were only due to
non-additive effects. In reality, both non-additive effects and GxE may
contribute to rg values being smaller than one. The relative importance
of non-additive effects and GxE can be inferred from the difference
between estimated rg , from a design where the populations were tested
in different environments, and from a design where one of the pop-
ulations was tested in the environment of the other population. This
approach is similar to what was proposed byWientjes and Calus (2017)
to dissect the components of the genetic correlation between purebred
and crossbred performance. However, to our knowledge, there are no
studies that have used this approach to disentangle the effects of non-
additive effects and GxE on rg . This study shows that, even without
GxE, the rg can be substantially smaller than one, and sometimes even
close to zero.

Estimated genetic correlations between two populations (̂rg) may
differ across traits (e.g., Lund et al. 2011; Karoui et al. 2012; Porto-Neto
et al. 2015). For example, in dairy cattle, r̂g of fertility traits tended to be
lower than those of fat yield and milk production (Karoui et al. 2012).
The results from the present study suggest that such differences in r̂g
may indicate differences in the underlying genetic model between
traits (i.e., in the importance of non-additive effects). Although this
may be the case, differences in r̂g between traits can arise through
other mechanisms as well. First, r̂g often include a component due to
GxE interactions. Such GxE interactions may be more important for
some traits than for others, resulting in differences in r̂g between
traits. Second, different traits are influenced by (at least partly) dif-
ferent QTL, and some traits may have been under stronger selection
than others. As a result, the differences in allele frequencies at QTL
between populations may vary across traits. These mechanisms may
result in differences in r̂g between traits, even when the underlying
genetic models of those traits are similar. It is therefore questionable
whether inferences can be made about differences in genetic model
among traits, based on differences in r̂g .

The results in this study may be relevant for the prediction of
additive genetic values across populations using genomic informa-
tion. In this strategy, termed across-population genomic prediction,
average effects atmarkers are estimated in one population, and used to
compute additive genetic values in another population (de Roos et al.
2009; Hayes et al. 2009). It has been suggested that the inefficiency of
across-population genomic prediction is partly due to differences in
linkage disequilibrium between markers and QTL. This insight has
inspired the use of whole-genome sequence (WGS) data, because in
WGS data, genotypes of the QTL themselves are included (Iheshiulor
et al. 2016; Raymond et al. 2018a; Raymond et al. 2018b). The results
of the current study suggest, however, that even when QTL genotypes
are known and their average effects are accurately estimated in one
population, across-population genomic prediction may be inefficient,
because rg can differ considerably from one, even when genetic var-
iance is mostly additive. This view is supported by the results of
Raymond et al. (2018b), who reported that although the rg estimated
from putative QTL was higher than the estimate from regular marker
data, it was still lower than one.

Similar to across populations, genomic prediction from current
to future generations may be inefficient because of changes in allele
frequencies, and the subsequent changes in average effects at QTL.
In other words, two different generations can be considered as two
populations that have a genetic correlation between them that may be
lower than unity. The results of this study may therefore partly explain
theneed for frequent retrainingof genomicpredictionmodels toachieve
constant accuracy across generations (Sonesson and Meuwissen 2009;
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Wolc et al. 2011). We expect, however, that the change in allele
frequency at a single QTL is relatively small across a few (4-5)
generations, especially for traits that are highly polygenic. As a result,
rg may be relatively high across a few generations. Nevertheless, the
relative contribution of non-additive effects to the decline of genomic
prediction accuracy across generations is currently unknown, and
would be an interesting topic for future research.

Conclusion
Our findings show that the genetic correlation between populations
(rgÞ is partly determined by the difference in allele frequencies be-
tween populations and the magnitude of non-additive effects. Large
differences in allele frequencies and large non-additive effects resulted
in low values of rg . For both dominance and epistasis, when non-
additive effects become extremely large, rg has a lower bound that is
determined by the nature of non-additive effects, and the difference in
allele frequencies between populations. In addition, we found that
with epistasis, rg depends on the level of total functional epistatic
variance, which is a function of epistatic effect size and the number
of interactions per locus. Given that dominance variance is usually
small and there is not much overdominance, we expect that it is
unlikely that values of rg below 0.8 are due to dominance alone.
With supposedly realistic epistasis, rg could be as low as 0.45. These
results may contribute to the understanding of differences in ge-
netic expression of complex traits between populations, and may
help in explaining the inefficiency of genomic prediction across
populations.
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