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ARTICLE
Clinical validation of smartphone-based activity tracking in
peripheral artery disease patients

Raheel Ata', Neil Gandhi', Hannah Rasmussen', Osama El-Gabalawy', Santiago Gutierrez', Alizeh Ahmad’, Siddharth Suresh?,
Roshini Ravi', Kara Rothenberg @' and Oliver Aalami'??

Peripheral artery disease (PAD) is a vascular disease that leads to reduced blood flow to the limbs, often causing claudication
symptoms that impair patients’ ability to walk. The distance walked during a 6-min walk test (6MWT) correlates well with patient
claudication symptoms, so we developed the VascTrac iPhone app as a platform for monitoring PAD using a digital 6MWT. In this
study, we evaluate the accuracy of the built-in iPhone distance and step-counting algorithms during 6MWTs. One hundred and
fourteen (114) participants with PAD performed a supervised 6MWT using the VascTrac app while simultaneously wearing an
ActiGraph GT9X Activity Monitor. Steps and distance-walked during the 6MWT were manually measured and used to assess the bias
in the iPhone CMPedometer algorithms. The iPhone CMPedometer step algorithm underestimated steps with a bias of —7.2% *
13.8% (mean + SD) and had a mean percent difference with the Actigraph (Actigraph-iPhone) of 5.7% + 20.5%. The iPhone
CMPedometer distance algorithm overestimated distance with a bias of 43% + 42% due to overestimation in stride length. Our
correction factor improved distance estimation to 8% + 32%. The Ankle-Brachial Index (ABI) correlated poorly with steps (R = 0.365)
and distance (R = 0.413). Thus, in PAD patients, the iPhone’s built-in distance algorithm is unable to accurately measure distance,
suggesting that custom algorithms are necessary for using iPhones as a platform for monitoring distance walked in PAD patients.
Although the iPhone accurately measured steps, more research is necessary to establish step counting as a clinically meaningful

metric for PAD.
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INTRODUCTION

Peripheral arterial disease (PAD) affects over 10 million people in
the United States."” While intermittent claudication (IC) is the
classic early symptom for PAD, many patients are asymptomatic or
have exertional leg symptoms other than IC. Medical manage-
ment with smoking cessation, exercise, aspirin, and statin therapy
are the first line of therapy, however, surgical interventions are
employed to improve PAD patient’s walking ability when there is a
“disabling” loss of mobility.*

The current standard of care for diagnosis and post-operative
surveillance of PAD consists of ankle-brachial indices (ABIs) and/or
arterial duplex scans, both conducted in the clinic. Given the
association between severity of walking disability and arterial
disease burden,’ patient-reported claudication symptoms (i.e., leg
cramping) are often monitored during clinic visits as well.
However, arterial duplex scans and ABI results do not always
correlate with symptoms, and self-reported patient data can be
unreliable.

Initially developed as a fitness test for the Air Force,® the 6-min
walk test (6MWT) is an objective tool that is commonly used in
clinic to assess functional capacity in chronic obstructive
pulmonary disease and congestive heart failure (CHF).”® The
primary measure of a 6MWT is the 6-min walk distance (6MWD),
the distance walked in 6-min on a linear 100-ft course. Though the
6MWT is not traditionally used in the PAD space, it has been

shown to correlate with claudication symptoms®~'? and functional

capacity in patients with PAD3'%'27' Despite the 6MWT's
simplicity, it is typically administered by trained personnel in a
clinical setting.

Smartphones have accelerometers and gyroscopes that can
measure physical activity and have been shown to be effective
tools for collecting clinical data at high resolution and on a large
scale.””™"” Brooks et al.'® demonstrated that smartphone apps can
effectively and reliably administer a 6MWT both in clinic and at
home for patients with CHF or pulmonary hypertension, suggest-
ing that smartphones may be a promising platform for remotely
monitoring functional capacity. We hypothesize that a remotely-
administered 6MWT could more accurately reflect the day-to-day
function of PAD patients and provide a more patient-centric
metric for patients’ functional limitations. Interestingly, while
studies have assessed the use of Fitbits and the ActiGraph
pedometer to remotely monitor “free-living physical activity”,'® to
the authors’ knowledge no study to date has assessed the validity
of a smartphone-based 6MWT in the PAD population. With over
75% of the general population, and, notably, 46% of participants
aged 65+ reporting smartphone ownership,?® we believe that a
smartphone-based 6MWT could change the paradigm for PAD
surveillance by allowing physicians to track functional limitations
in patients with PAD and to measure patient responses to
intervention longitudinally.
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Fig. 1 Patient recruitment flowchart

To explore the use of a smartphone-based monitoring tool in
the PAD population, we created an iPhone app that administers a
6MWT as well as PAD-specific survey questionnaires. In this study
we aim to assess the feasibility of our 6MWT app, “VascTrac,” to
serve as a platform for performing 6MWTs in patients with PAD by
(1) evaluating the accuracy of the iPhone’s step and distance
tracking algorithms in the PAD population, and (2) assessing the
concordance of the iPhone algorithms with the ActiGraph GT9X.

RESULTS

Study sample

One hundred and fourteen individuals who met diagnostic criteria
for PAD (see Methods) were included in the final analysis (Fig. 1).
An overview of patient characteristics is provided in Table 1. A
majority of the study population was male (77%). Mean age of the
population was 69.5 years, mean height was 1.72m, and mean
BMI was 26.9 kg/m”. Eighty percent of participants were current or
former smokers. Comorbidities included hypertension (70.1%),
diabetes (33.3%), and coronary artery disease (41.2%). 22.8% of
patients used a cane or walker as a walking aid.

iPhone step and distance algorithms

We evaluated the accuracy of the iPhone CMPedometer step
counting and distance estimation algorithms by comparing each
to their respective reference standards (manual step counting and
track distance). We found that the iPhone CMPedometer step
counting algorithm underestimated steps during the 6MWT, with
a bias of —7.2% + 13.8% (mean * standard deviation) (Fig. 2a, b).
By contrast, the distance algorithm overestimated the 6MWD, with
a bias of 43% + 42% (Fig. 2c, d). BA plots revealed no systematic
differences or trends in the error.

Stride length

Previous research has shown that PAD can cause patients’ stride
length to decrease,?' so we hypothesized that the CMPedometer
distance algorithm’s overestimation of 6MWD was due to faulty
calculation of stride length in PAD patients. We therefore assessed
the accuracy of each user's estimated average stride length
against the reference standards (Fig. 2e, f). We found that the
CMPedometer algorithms overestimated the average stride length
of study participants, with a bias of 56% + 44%. Comparison of
stride length measured by the CMPedometer distance algorithm
and the reference standard using a BA plot demonstrated that
error decreased as stride length increased; specifically, when a
participant’s average stride length was less than 2 feet per step by
reference standard, the error in the estimated average stride
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Table 1. Participant characteristics

Characteristic Total (N=114)

Age, mean (SD)

Gender, n (%)

Male

Female

Height, mean (SD)

Weight, mean (SD)

BMI, mean (SD)

BMI, n (%)

Underweight, <18.5 kg/m?
Healthy weight, 18.5-24.9 kg/m?
Overweight, 25.0-29.9 kg/m?
Obese, >30.0 kg/m2
Smoking status, n (%)

69.5 (13.1) years

88 (77.2%)

26 (22.8%)

1.72 (0.1) meters
79.6 (16.3) kg
26.9 (4.7) kg/m?

4 (3.5%)

37 (32.5%)
47 (41.2%)
26 (22.8%)
Current smoker 19 (17.0%)
71 (63.4%)
22 (19.6%)

Former smoker

Never smoked
Comorbidities, n (%)
Hypertension

Diabetes

Coronary artery disease
PAD diagnosis method, n (%)
ABl<=0.9

TBI<=0.7

History of PAD Surgery
Walking aid, n (%)

80 (70.1%)
38 (33.3%)
47 (41.2%)

71 (62.3%)
13 (11.4%)
30 (26.3%)

Cane 12 (10.5%)
Walker 14 (12.3%)
None 88 (77.2%)

SD standard deviation, BMI body mass index, PAD peripheral artery disease,
ABI arterial brachial index, TBI toe brachial index

length increased (Fig. 2f). Linear regression analysis of the
relationship between stride length and distance measured by
the CMPedometer distance algorithm revealed a correlation of
—0.746 (P<0.001, Cl: —0.843, —0.556) (Table 2). Given the
systematic overestimation of distance we were able to able to
reduce distance bias to 8% * 32% by applying a linear correction
factor of 0.75 (based on the average overestimation of the
CMPedometer distance algorithm (33%)) to each participant’s
CMPedometer-calculated distance.

ActiGraph accuracy

In order to determine how the iPhone step counting algorithm
compared with a research-grade pedometer, we also assessed the
ActiGraph’s step counting error by comparing steps counted by
the ActiGraph to the reference standard (manual step counting).
Similar to the CMPedometer step counting algorithm, the
ActiGraph step counting algorithm underestimated steps during
the 6MWT with a bias of —3.1% + 10.3% (Fig. 3a, b). When the
ActiGraph and iPhone were assessed for their step counting
concordance, they were found to have a strong correlation R =
0.96 and a mean difference (ActiGraph-iPhone) of 5.7% * 20.5%
(Fig. 3¢, d). BA plots revealed no systematic differences or trends in
the error.
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iPhone accuracy analysis. Device accuracy was assessed using scatter plots and Bland-Altman plots. a Scatter plot of iPhone versus

manual step counting. b Bland-Altman plot of iPhone versus manual step counting. ¢ Scatter plot of iPhone distance versus measured
distance. d Bland-Altman plot of iPhone distance versus observed distance. e Scatter plot of iPhone average stride length versus average
measured stride length. f Bland-Altman plot of iPhone average stride length versus average measured stride length. In scatter plots, black dots
indicate participants, solid red lines demarcate y =x line, and black dashed lines represent regression lines. The regression equation and
coefficient of determination are depicted in the graph’s top left corner. In Bland-Altman plots, solid red lines demarcate the bias and dashed
black lines indicate the 95% limits of agreement. Black data points = no walking aid. Yellow data points = walkers. Blue data points = canes

Error analysis

A variety of covariates were analyzed as predictors of accuracy
using linear regression (Table 2). For both the iPhone CMPed-
ometer step algorithm and the ActiGraph, linear regression
analysis did not reveal any strong predictors for device percent
error in step counting. Based on the Pearson correlation
coefficient, all covariates were weak predictors and explained a
very small percentage of variability in the device percent error.
Some covariates were statistically significant predictors of step
counting error, however they had small correlation coefficients.
For error in iPhone CMPedometer distance estimation, average
stride length was found to be have the highest correlation
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(R= —0.764), indicating that the iPhone distance estimation error
increases as participant stride length decreases.

ABI sub-analysis

Because the ABI is one of the key diagnostic tests for PAD, we
were interested in assessing the potential correlation between
physical activity metrics and ABI value. This was accomplished by
comparing patients’ reference standard measurements (i.e.,
manual step count or track distance) to their ABI scores. Patients
with ABI> 1.4 (considered a non-diagnostic reading), as well as
patients who required a TBI, were excluded from this analysis (n =
15). Comparison revealed that the correlation was weak between
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Table 2. Pearson coefficients for linear regressions

ActiGraph steps % error CMPedometer step algorithm % error ~ CMPedometer distance algorithm %

error

Predictor covariate R P-value  95% CI° R P-value  95% Cl R P-value 95% ClI
Distance 0.230 0.017 [0.0424, 0.403] 0.244 0.009 [0.062, 0.411] —0.557 <0.001 [-0.695, —0.379]
Average stride length 0.273 0.004 [0.088, 0.440] 0.238 0.011 [0.055, 0.405] —0.746 <0.001 [—0.832, —0.636]
Steps 0.154 0.114 [—0.037, 0.334] 0.184 0.051 [0.001, 0.357] —0.216 0.061 [—0.421, 0.010]
Age —0.121 0.217 [—0.305, 0.072] —0.164 0.084 [—0.339, 0.022] 0.006 0.959 [—0.221, 0.233]
Weight (kg) 0.013 0.894 [-0.177, 0202] 0.115 0.226 [-0.071, 0.293]  0.062 0.597 [-0.166, 0.283]
Height (m) 0.139 0.153 [-0.052, 0.321]  0.060 0.527 [-0.126, 0.242]  0.139 0.230 [—0.089, 0.354]
BMI —0.059 0.550 [—0.246, 0.133] 0.106 0.263 [—0.080, 0.285] —0.005 0.965 [—0.230, 0.226]
Sex —0.009 0.925 [—0.299, 0.181] 0.038 0.690 [—0.148, 0.221] —0.067 0.563 [—0.288, 0.161]
Walking Aid —0.050 0.607 [—0.238, 0.141] —0.175 0.064 [—0.349, 0.010] 0.125 0.283 [—0.104, 0.341]
BMI? —0.018 0.853 [-0.207, 0.172] 0.119 0.208 [-0.067, 0.298] 0.012 0.919 [-0.214, 0.237]

Cl confidence interval, BMI body mass index
®The second use of BMI is as a categorical variable

Linear regressions were calculated for continuous and categorical covariates to identify the relationship between covariates and device percent error. The
Pearson coefficient (R) is reported for each regression. For error in iPhone CMPedometer distance estimation, average stride length was found to have the
highest correlation (R = —0.746), indicating that the iPhone distance estimation error increases as participant stride length decreases

ABI and steps (R =0.365) as well as ABI and distance (R=0.413)
(Fig. 4a, b).

DISCUSSION

Previous studies have assessed the CMPedometer algorithms’
accuracy in small samples of healthy individuals,>*™>* but few have
assessed their accuracy in diseased populations. In this study, we
have demonstrated that the iPhone’s CMPedometer algorithm
grossly overestimates distance in PAD patients performing a
6MWT due its overestimation of user stride length. As a result, in
their current state, the built-in CMPedemoter APIs cannot be used
in apps like VascTrac for clinical measures where accurate distance
estimation is necessary. Brooks et al.'® processed raw acceler-
ometer data from the iPhone to build custom algorithms for
distance estimation in the CHF population for assessing a user’s
6MWD. Although they evaluated the iPhone 4s, which does not
have built-in pedometer features such as the CMPedometer
algorithm, their methodology may be necessary to build clinically
useful iPhone applications that leverage distance metrics. To
correct for the systematic overestimation of stride length, we
attempted to implement a simple correction factor that others
could use to improve distance accuracy. However, the correction
factor was obtained through a retrospective analysis and will
require further testing in a prospective study setup. It should be
acknowledged that the Apple Watch attempts to mitigate the
limitations in stride length estimation by using GPS to calibrate
distance estimation over time. Although we did not evaluate the
Apple Watch in our study, it may be an important tool for future
studies.

At the same time, our results demonstrate that the iPhone has
strong concordance with the ActiGraph for step counting and that
both devices accurately measure steps compared to the reference
standard in the PAD population. While the 6MWD serves as an
important marker for multiple diseases beyond PAD, such as
pulmonary artery hypertension, CHF, and chronic obstructive
pulmonary disease,'®*>? step counting has also shown strong
associations with a number of health variables across multiple
cross-sectional studies.?” Thus, using step counts may be an
alternative path forward for future activity-related studies that
leverage the iPhone APIs. However, further validation will be
necessary to use step counts for monitoring severity of PAD.
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McDermott et al.”> have shown that the ABI is significantly
associated with walking distance among men and women with
PAD. Although these studies report p-values that may be
statistically significant, our data suggest that these associations
are weak trends with weak correlations. If one of the major
indications to treat PAD is significant functional limitation, yet the
ABIs we measure poorly correlate with distance, it is worth
investigating whether the ABI is the correct tool for monitoring
severity of disease in these patients. The 6MWT has been shown to
effectively measure response to PAD therapy, and performance on
the 6MWT is not only indicative of a patient’s disease, but also
predicts mortality in patients with PAD.22° We propose
transitioning to more patient-centric activity-based outcomes for
patients with PAD, such as 6MWT performance, and using activity
monitors with accelerometers to develop even better functional
metrics that could be used both diagnostically and for post-
operative surveillance.

Furthermore, we are entering an exciting time where novel
consumer devices like iPhones and Fitbits are infiltrating many
areas of clinical medicine. These devices enable data collection on
an unprecedented scale and provide APIs to extract metrics and
build platforms for monitoring disease. However, APIs also operate
as a "black box,” obscuring the user from its algorithms and
accuracy. Recently, the FDA has started to develop new programs,
such as the Digital Health Software Precertification Program, for
regulating software as a medical device (SaMD). This program
approves company software development processes rather than
the software updates themselves. While these programs would
enable faster approval of SaMD, they will also empower
companies to maintain the proprietary nature of their algorithms.
This would allow a single iteration of an algorithm to immediately
obsolesce years of previous research and require additional
validation for every clinical indication, which is not feasible for
the scientific community. We therefore welcome a regulatory
approval process that requires transparency in the algorithm
iteration processes to ensure accuracy and quality with each
update. Ideally, in the future, software will be open source with
detailed documentation for others to validate. Such transparency
would enable the research community to more easily study these
algorithms, tailor them to various disease populations, and adapt
in the event of algorithm updates.
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The authors acknowledge that there were a number of
limitations to our study that should be noted when considering
our results. For example, a disproportionate percentage of study
participants were male (77%). This was due to the primarily male
demographic at the Palo Alto Veterans Affairs Medical Center, one
of our two study enrollment sites, and this gender skewing may
limit the generalizability of our conclusions. A second limitation is
the fact that the iPhone was held in the participant’s hand during
the 6MWT, while the ActiGraph was placed on their hip. Ideally,
the location of the ActiGraph would have been matched to the
same hand that held the phone in order to minimize positioning
differences. However, co-localizing devices was challenging
because the devices were set up prior to each study visit. Since
the location of the ActiGraph must be included during its setup
process, it was difficult to anticipate which hand a participant
would hold the phone in—especially for those who used walking
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aids. Several studies have shown agreement between the
ActiGraph on the wrist and the hip, which should help increase
the validity of our results.>' Additionally, we recognize that on a
day-to-day basis, PAD patients will not carry their phone in their
hand at all times. However, for the purposes of this study, we
intended to evaluate the accuracy of the CMPedometer algo-
rithms during a 6MWT, where a participant will usually hold the
phone in their hand while walking. In a follow-up study, we will
evaluate the feasibility of measuring step counts in real world
settings to remotely monitoring PAD beyond the 6MWT. A third
limitation is that we did not compare other smartphone or
smartwatch devices such as Android phones or Fitbits at this time
because of the heterogeneity of accelerometer hardware. Conse-
quently, some of this study’s results may not be generalizable to
other activity monitoring devices.

npj Digital Medicine (2018) 66
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In this study, we demonstrated that the iPhone CMPedometer
distance estimation algorithm has poor accuracy in patients with
PAD, likely due to lack of correction for an individual's stride
length. Additionally, we showed that the iPhone CMPedometer
step counting algorithm is highly concordant with the ActiGraph
and reference standard. We therefore feel confident that steps
measured by an iPhone app can be used as a metric for remote
physical activity tracking in PAD patients. Moving forward, we plan
to assess repeatability and reliability of an unsupervised 6MWT in
the PAD population, while simultaneously collecting passive data
on daily step count and distance walked. These future studies will
work toward the ultimate goal of developing a validated
functional capacity tool for remote surveillance pre-medical and
post-medical or surgical intervention.

METHODS
VascTrac app development

As an initial step, we set out to determine the most accurate position for a
patient to hold the smartphone in order to collect activity metrics during a
6MWT. Using nine healthy participants, we measured the error in step
counting and distance measurement for a number of phone positions:
including phone in the hand, pocket, and in a purse or bag
(Supplementary Table 1). The step and distance measurement algorithms
were provided by Apple’s built in CoreMotion (CM) PedometerData
Application Programming Interface (API) with functions ‘numberOfSteps’
and ‘distance’. After determining that holding the phone in the hand is the
most accurate location, we then built a native iOS app, called VascTrac,
utilizing Apple’s ResearchKit (http://researchkit.org) framework, with
functionality to: (1) consent and enroll patients; (2) survey patients to
obtain pertinent medical and surgical history; (3) administer a 6MWT
according to the American Thoracic Society (ATS) 6MWT Guidelines; (4)
record step counts, estimated distance walked using Apple’s CMPedome-
terData APl and (5) wirelessly transmit this data to a HIPAA-compliant
centralized database.

Medical history surveys recorded medications, comorbidities, and recent
ABI or toe-brachial index (TBI) reading. Surgical history surveys collected
previous vascular procedures and date(s) of procedure(s). iPhones SE, 6, 7,
and 7 Plus running iOS 10 (Apple Inc., Cupertino, Ca.) were used. Similarity
in data collection across different iPhone models was previously
established by our team via testing on an athletic track. Data was
transferred and stored in real time to HIPAA-compliant Microsoft Azure
servers (Microsoft Corp., Redmond, Wa.). The code and data that support
the findings of this study are available from the corresponding author
upon reasonable request. It should be noted that even though every step
of the onboarding was designed to be user-centric, such that a study
participant could enroll and complete the study independently, a
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researcher walked every patient through the app for this “supervised”
study.

Participant recruitment and characterization

Patients who presented to the Stanford Hospital vascular clinic or Palo Alto
Veterans Affairs Hospital vascular clinic for evaluation of a PAD diagnosis,
or for follow-up after a previous diagnosis of PAD, were approached for
recruitment into this study between June 2017 and September 2017.
Reasons for PAD diagnostic evaluation included patient reports of
claudication-like symptoms, absent pedal pulses noted by primary care
physician, or being at increased risk for PAD based on comorbidities. For
inclusion in the study, participants were required to be: (1) English-
speaking, (2) =18 years old, (3) willing to share medical/surgical history,
and (4) willing to perform a supervised 6MWT at the end of their
appointment. Exclusion criteria were developed using the ATS 6MWT
Guidelines and included: (1) being wheelchair bound, (2) being immobile,
(3) experiencing chest pain in the last 30 days, or (4) exhibiting lower
extremity open wounds.”'

If deemed eligible and willing to take part in the study, participants were
given a study device and directed to a consent process within the VascTrac
app. Participants who completed the consent step were considered
enrolled into the study (n=182). During analysis, participants were
classified as part of the PAD cohort if they had an ABI score <0.9, a TBI
score < 0.7, or a previous surgical intervention for PAD (n = 114). Medical,
surgical, and ABI histories were obtained verbally from participants,
recorded in the VascTrac app, and verified by chart review. Within the PAD
cohort, only participants who had height information correctly entered
into HealthKit were included in the distance and stride length analysis (n =
76). Participants who did not meet criteria for PAD categorization were
excluded from central analysis (n = 68). Figure 1 describes the flow of
participants recruited and ultimately included in final analysis.

To reduce sampling bias, study devices were given to each eligible
patient for the research study and returned at the end of the clinic visit.
Each patient’s height and weight were entered into Apple HealthKit
(https://developer.apple.com/healthkit/) from within the VascTrac app.

Ethics approval

The study was approved by the Stanford Institutional Review Board (IRB)
and all participants provided informed consent. All relevant ethical
regulations were complied with and the study was registered at
ClinicalTrials.gov (NCT03048890).

Supervised 6MWT

Consenting patients performed a 6MWT along a pre-measured 100-foot
course with an iPhone (Apple Inc., Cupertino, Ca) in one hand and an
ActiGraph GT9X (ActiGraph Corp., Pensacola, FL) attached at the waistband
on the right hip. Because the ActiGraph location must be included as an
initialization parameter during the device’s setup, the right hip was chosen
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Fig.5 6MWT study design and metric comparison paradigm. a Schematic illustrating the 6MWT study design. Patients walked back and forth
along a 100-foot course for 6 min or until they could walk no further, while an ActiGraph, iPhone, and human observed and measured walking
metrics (e.g., steps, distance). b Schematic illustrating the paradigm used for device analysis

as a standardized location to minimize error in the device initialization
process. Use of walking aids, such as canes or walkers, was noted. Because
patients with walkers required two-hands on a walker, the iPhone was
placed in a front shirt or pant pocket for these individuals. One coordinator
manually counted steps, which were compared to the VascTrac app and
the ActiGraph GT9X. Manual step counting methods were validated
separately (Supplementary Table 2). A second coordinator calculated
distance using total laps completed on the 6MWT course, which was used
as a reference standard for comparison to distance measured by the
VascTrac app. This coordinator also documented changes in gait,
symptoms, and whether patients stopped the 6MWT early. The manual
step count and distance walked served as the reference standards to which
we compared results from the smartphone and ActiGraph. A depiction of
our study design can be found in Fig. 5.

Manual step counting validation

To establish our reference standard for steps, one of the trained clinical
coordinators manually counted steps for each participant. To establish
each coordinator’s step counting error, we performed five videotaped trials
in the same hallway under the same walk test conditions. During each trial,
the coordinators manually counted number of steps taken by the test
subject. The videos were then analyzed in slow motion by two different
raters in order to determine the true number of steps taken in each trial.
Using the videotaped trial steps as the ground truth, we were able to
quantify each coordinator’s accuracy. In order to participate in manual step
counting during the study, coordinators were required to have a mean
percent error of one percent or less.

ActiGraph parameters processing

The ActiGraph GT9X (ActiGraph Corp., Pensacola, Fl.) was used to capture
data using its 3-axis accelerometers. ActiGraph LLC's proprietary
ActiLife6 software was used to set up the device and download the data
(Supplementary Table 3).

Statistical analysis

Distribution of all measurements were assessed using box-and-whisker
plot. Next, three main analyses were conducted: (1) iPhone CMPedometer
distance estimation error, (2) iPhone CMPedometer step counting error,
and (3) iPhone CMPedometer step counting concordance with ActiGraph
GT9X step counting. For each analysis, scatter plots were created to
visualize the correlation between algorithms and reference standard
measurements, and Bland-Altman (BA) plots were established to evaluate
the differences between the two measurement methods. The BA plot is a
simple way to compare two quantitative methods and assess any bias
between the two methods.3> The BA plot also estimates an agreement
interval within which 95% of the differences between two measurement
techniques fall. Typically, BA plots use the magnitude of the error on the y-
axis, but in instances where the magnitude of the error varies across
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measurements, it has been established that the percent error can be
used.>

To quantify the error in iPhone measured steps and distance compared
to the reference standard, the percent error for each participant was
calculated using the following formula:

Error = (Measurement — reference) /reference * 100%

The average stride length for each participant was calculated by dividing
6MWD by total step count. A distance correction was calculated using a
linear factor calculated by comparing the average stride length measured
by the references to the average stride length recorded by the
CMPedometer. Finally, linear regressions were performed to evaluate any
associations with device error and the following covariates: distance, stride
length, steps, age, weight, height, BMI, sex, walking aids, and categorical
BMI classification. Categorical covariates were encoded into binary
variables for regressions. Statistical analysis was performed using Python
2.7 (Anaconda, Inc., Austin, TX) and Microsoft Excel 2016 (Microsoft Corp.,
Redmond, Wa.).

Code availability statement

All code that was written to process and analyze the data can be available
upon reasonable request from the corresponding author (O.A.).
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