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Abstract: Diabetes mellitus is a well-known chronic metabolic disease that poses a long-term threat to
human health and is characterized by a relative or absolute lack of insulin, resulting in hyperglycemia.
Type 2 diabetes mellitus (T2DM) typically affects many metabolic pathways, resulting in
β-cell dysfunction, insulin resistance, abnormal blood glucose levels, inflammatory processes,
excessive oxidative reactions, and impaired lipid metabolism. It also leads to diabetes-related
complications in many organ systems. Antidiabetic drugs have been approved for the treatment of
hyperglycemia in T2DM; these are beneficial for glucose metabolism and promote weight loss, but have
the risk of side effects, such as nausea or an upset stomach. A wide range of active components,
derived from medicinal plants, such as alkaloids, flavonoids, polyphenol, quinones, and terpenoids
may act as alternative sources of antidiabetic agents. They are usually attributed to improvements
in pancreatic function by increasing insulin secretions or by reducing the intestinal absorption of
glucose. Ease of availability, low cost, least undesirable side effects, and powerful pharmacological
actions make plant-based preparations the key player of all available treatments. Based on the study of
therapeutic reagents in the pathogenesis of humans, we use the appropriate animal models of T2DM
to evaluate medicinal plant treatments. Many of the rat models have characteristics similar to those in
humans and have the advantages of ease of genetic manipulation, a short breeding span, and access
to physiological and invasive testing. In this review, we summarize the pathophysiological status of
T2DM rat models and focus on several bioactive compounds from herbal medicine with different
functional groups that exhibit therapeutic potential in the T2DM rat models, in turn, may guide future
approach in treating diabetes with natural drugs.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic, complex multisystem disease that causes multiple
diabetes-related comorbidities, and requires a multifaceted and personalized approach to treatment.
Although the complexity of T2DM is now more exhaustively understood, the scientific community
believed that diabetes was a simple disease of the pancreas in the early 19th century. Over the past
30 years, people have acquired a deeper understanding and gained new insights about important
contributors to T2DM, including the liver, muscle, kidney, fat cells, brain, α-cells, β-cells, and intestines,
as well as various hormones and even systemic inflammation, genetics, and the environment
(Figure 1). From an enhanced scientific knowledge of the pathophysiologic progression of T2DM [1–6],
new treatment options have become possible, thereby, increasing the potential for improving control
over this complex disease. However, we need more suitable T2DM animal models for enhanced
knowledge on both the pathophysiological progression and potential therapeutic drugs. Furthermore,
those animal models must be relevant to the T2DM study, that the characteristics of the animal
disease models should mimic the pathophysiology and the inherent history of the disease, or the
model should develop T2DM complications with an etiology similar to clinical presentation and the
pathophysiology of human disease. Insulin resistance (IR) classically refers to impaired sensitivity to
insulin-mediated glucose disposal in muscles, body fat, and liver. Traditional Chinese herbal medicine
has been found to play an important role in the T2DM treatment, by attenuating IR and regulating
glucose tolerance, and other related mechanisms. In this review, we utilized the T2DM rat models,
including genetically spontaneous and experimentally-induced diabetes models, characterized like the
clinical manifestation of T2DM by hyperglycemia and IR, which is easily accessible and inexpensive.
Furthermore, several bioactive compounds from herbal medicine with different functional groups,
such as alkaloids, flavonoids, polyphenols, quinones, and terpenoids, exhibiting therapeutic potential
in the T2DM rat models and in turn, may guide our approach in treating diabetes with natural drugs.
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2. Pathogenesis of T2DM

Diabetes is a common chronic metabolic disease characterized by hyperglycemia due to the
deficiency of insulin secretion. Chronic hyperglycemia follows with a variety of complications,
including retinopathy, nephropathy, neuropathy, and cardiovascular disorders [7]. The two most
common types of diabetes are type 1 diabetes (T1DM) and T2DM. T1DM is generally thought to be
caused by immune-related destruction of pancreatic β-cells producing insulin [8]. It is considered an
autoimmune disease, and is most common in children and young people. T2DM is associated with
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genetics, obesity, poor dietary habits, and generally poor nutrition. Unlike T1DM, T2DM is not a simple
condition of insufficient insulin secretion. Obesity is one of the main predispositions towards the
pathogenesis of T2DM. When nutrient intake is overloaded, the remaining calories from fat are stored
as adipose tissue. Nonetheless, the capacity of fat cells to store calories is limited. Too much fat tissue
leads to obesity and infiltration of inflammatory cells, resulting in chronic low-grade inflammation,
increased lipolysis, and altered secretion of fat hormones (adipokines), including decreased blood
adiponectin concentration, all contribute to IR in fat tissue [9–11]. This progression leads to disorders
related to insufficient or abnormal insulin secretion, which affects the regulation of blood glucose
metabolism [12]. Qing He’s group has identified that a hypoxia response in adipose tissue has been
reported during obesity. Hypoxia-inducible factor-1 (HIF-1) is activated during hypoxia, resulting in
increased expression of c-Jun N-terminal kinase (JNK) and nuclear factor kappa-B kinase (NF-κB)
to produce inflammation in adipose tissue [13]. A large number of inflammatory cytokines are
released to further exacerbate IR and lipolysis. The aggravation of inflammation further impairs the
regulation of peroxisome proliferator-activated receptor (PPAR) and accelerates fat cell death [14–16].
With the development of IR, hyperinsulinemia further causes free fatty acid (FFA) to be released
from lipoprotein triglycerides hydrolysis [17]. Especially when the capacity of adipose tissue is
insufficient, the remaining fat will accumulate in other body tissues, such as the liver, muscle, and even
pancreas rather than fatty tissue, through a process called ectopic fat accumulation. For example,
the accumulation of fat in striated muscle tissue reduces the glucose uptake of muscle. When fat
accumulates in tissues other than adipose tissue, it will further aggravate IR. Therefore, increased FFA
flux in IR and adipose tissue forms a vicious circle.

High levels of FFA are released from fat cells into the circulation and accumulate in other organs,
thereby, further inducing lipid toxicity and accelerating systemic IR. For example, the accumulation
of fat in striated muscle tissue reduces the glucose uptake of muscle. The accumulation of fat in the
pancreas will also result in blocking insulin secretion and further cause a rise in blood glucose [17].
Therefore, considering the increased complexity of T2DM mechanism, its progression directly involves
different organ systems. In Figure 2, DeFronzo described a systemic approach to the treatment of
T2DM and provides eight key targets for therapeutic intervention, including fat cells, gastrointestinal
tract, pancreatic α-cells, β-cells, kidneys, and brain, together with skeletal muscle, and liver [6].
Reduced insulin sensitivity in the liver, muscle, and adipose tissue, and progressive dysfunction of
pancreatic β-cells lead to impaired insulin secretion, and finally result in hyperglycemia. In patients
with T2DM, IR leads to increased lipolysis and increased free fatty acid concentrations in fat cells,
resulting in lipotoxicity [18]. Incretin hormone glucagon-like peptide-1 (GLP-1) are gut-derived
hormones that can stimulate insulin secretion, and GLP-1 secretion in patients with T2DM is deficient
resulting in promoting the process of T2DM [19]. Moreover, sodium-glucose cotransporter 2 (SGLT-2)
expression in the kidneys increases excessively, inducing the kidney to continue reabsorbing glucose,
rather than excrete it in the urine. This condition is considered to contribute to the maintenance of
hyperglycemia in patients with T2DM [20]. Finally, IR also affects the brain and may cause damage of
the hypothalamic regions of the brain, associated with appetite regulation. Hypothalamic IR in the
brain can contribute to hyperglycemia in T2DM [21]. Overall, this polymorphism model of T2DM
provides guidance for therapeutic interventions and also shows that the multisystem dysfunction of
T2DM requires a combination of treatments for multiple diseases, rather than a single therapy to target
one deficiency.



Molecules 2020, 25, 5713 4 of 18
Molecules 2020, 25, x FOR PEER REVIEW 4 of 18 

 

 
Figure 2. The ominous octet. Multiple defects of organ result from the development of glucose 
intolerance in T2D. The classical organ systems are targets for which available, including the 
pancreatic islet, liver, muscle and adipose tissue. The non-classical new organs interventions have 
been new targeted, have been more focus recently, including the intestine, kidney and brain. 

3. The Current Drug Therapy for T2DM 

Many antidiabetic drugs have been approved for the treatment of hyperglycemia due to T2DM 
[12]. Table 1 presents the various classes of available hypoglycemic drugs, based on the DeFronzo’s 
description of T2DM pathogenesis and their target organs with pathophysiological defects. The 
classical and non-classical therapeutic target organ systems, include pancreatic islet, liver, muscle 
and adipose tissue, the intestine, kidney, and the brain. Metformin, as the first-line oral therapy 
remains the first drug of choice for all T2DM patients. The major mechanism of action, includes a 
decrease in hepatic gluconeogenesis and an increase in glucose uptake by skeletal muscle [12], 
reduction of IR via modification of glucose metabolic pathways, and promotion of weight loss. 
Glucagon-like peptide 1 (GLP-1) receptor agonists (e.g., liraglutide and exenatide) exhibit increased 
resistance to dipeptidyl peptidase 4 degradation [22,23], and has many clinical benefits, including 
inhibition of glucagon secretion by the α-cells, stimulation of insulin secretion, and delayed gastric 
emptying thus promoting weight loss [24]. Moreover, there is a reduced risk of several side effects, 
including dyslipidemia, hypertension, and endothelial dysfunction [25]. Dipeptidyl peptidase 4 
inhibitors (e.g., sitagliptin, vildagliptin, and saxagliptin), which can be taken orally could reduce 
endogenous GLP-1 degradation. They prolong the circulating half-life of endogenous incretins, 
thereby providing GLP-1 at physiological levels [22]. Thiazolidinediones (e.g., rosiglitazone and 
pioglitazone) are PPAR-γ activators that cause an increase in adipokines levels, such as adiponectin, 
insulin sensitivity by acting on adipose, muscle, and liver tissue to increase glucose uptake and 
decrease hepatic glucose production [26,27]. Pioglitazone shows a potentially beneficial impact on 
cardiovascular disease, although it also carries a risk of bladder cancer [27]. The drug may cause side 
effects, such as fluid retention and edema, weight gain, and increased risk of heart failure. The 
sodiumglucose co-transporter 2 (SGLT-2) inhibitors are a novel group of compounds that antagonize 
the glucose transporter, which is responsible for about 90% of glucose reabsorption and is found 
primarily in the kidney. When this transporter is antagonized, excessive glucose in the renal tubules 
is not reabsorbed and is excreted in the urine [28], thus, resulting in hyperglycemia reduction. 
However, the primary side effect of SGLT-2 inhibition is an increase in urinary or genital infections. 
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3. The Current Drug Therapy for T2DM

Many antidiabetic drugs have been approved for the treatment of hyperglycemia due to T2DM [12].
Table 1 presents the various classes of available hypoglycemic drugs, based on the DeFronzo’s
description of T2DM pathogenesis and their target organs with pathophysiological defects. The classical
and non-classical therapeutic target organ systems, include pancreatic islet, liver, muscle and adipose
tissue, the intestine, kidney, and the brain. Metformin, as the first-line oral therapy remains the
first drug of choice for all T2DM patients. The major mechanism of action, includes a decrease in
hepatic gluconeogenesis and an increase in glucose uptake by skeletal muscle [12], reduction of
IR via modification of glucose metabolic pathways, and promotion of weight loss. Glucagon-like
peptide 1 (GLP-1) receptor agonists (e.g., liraglutide and exenatide) exhibit increased resistance to
dipeptidyl peptidase 4 degradation [22,23], and has many clinical benefits, including inhibition of
glucagon secretion by the α-cells, stimulation of insulin secretion, and delayed gastric emptying
thus promoting weight loss [24]. Moreover, there is a reduced risk of several side effects, including
dyslipidemia, hypertension, and endothelial dysfunction [25]. Dipeptidyl peptidase 4 inhibitors (e.g.,
sitagliptin, vildagliptin, and saxagliptin), which can be taken orally could reduce endogenous GLP-1
degradation. They prolong the circulating half-life of endogenous incretins, thereby providing GLP-1
at physiological levels [22]. Thiazolidinediones (e.g., rosiglitazone and pioglitazone) are PPAR-γ
activators that cause an increase in adipokines levels, such as adiponectin, insulin sensitivity by
acting on adipose, muscle, and liver tissue to increase glucose uptake and decrease hepatic glucose
production [26,27]. Pioglitazone shows a potentially beneficial impact on cardiovascular disease,
although it also carries a risk of bladder cancer [27]. The drug may cause side effects, such as fluid
retention and edema, weight gain, and increased risk of heart failure. The sodiumglucose co-transporter
2 (SGLT-2) inhibitors are a novel group of compounds that antagonize the glucose transporter, which is
responsible for about 90% of glucose reabsorption and is found primarily in the kidney. When this
transporter is antagonized, excessive glucose in the renal tubules is not reabsorbed and is excreted in
the urine [28], thus, resulting in hyperglycemia reduction. However, the primary side effect of SGLT-2
inhibition is an increase in urinary or genital infections.
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Table 1. The pathophysiological defects of organs were targeted by various classes of available
hypoglycemic drugs.

Organs Class Mechanism of Action Side Effects

α-cell

GLP-1RA (incretin
mimetic drugs:
exenatide, liraglutide,
albiglutide), DPP-4
inhibitors (saxagliptin,
sitagliptin)

Stimulation of the GLP-1
receptor, inhibition of
GLP-1 degradation

Nausea, gastrointestinal
complaints

β-cell

GLP-1RA (incretin
mimetic drugs:
exenatide, liraglutide,
albiglutide),
Thiazolidinediones
(pioglitazone)

Stimulation of the GLP-1
receptor, reduction of IR
and increase
transcription of
adipokines

Nausea, weight gain

Brain

GLP-1RA (incretin
mimetic drugs:
exenatide, liraglutide,
albiglutide)

Stimulation of the GLP-1
receptor Nausea,

Fat cell Thiazolidinediones
(pioglitazone)

Reduction of IR and
increase transcription of
adipokines

Weight gain

Gut

GLP-1RA (incretin
mimetic drugs:
exenatide, liraglutide,
albiglutide)

Stimulation of the GLP-1
receptor Nausea,

Liver

GLP-1RA (incretin
mimetic drugs:
exenatide, liraglutide,
albiglutide),
Thiazolidinediones
(pioglitazone), Biguanide
(metformin)

Stimulation of the GLP-1
receptor, reduction of IR
and increase
transcription of
adipokines, enhanction
the effect of insulin

Nausea, weight gain,
lactic acidosis

Muscle

GLP-1RA (incretin
mimetic drugs:
exenatide, liraglutide,
albiglutide),
Thiazolidinediones
(pioglitazone)

Stimulation of the GLP-1
receptor, reduction of IR
and increase
transcription of
adipokines

Nausea, weight gain

Kidney

SGLT-2 inhibitors
(canagliflozin,
dapagliflozin,
empagliflozin)

Inhibition of SGLT-2 in
the kidney Diabetic ketoacidosis

4. Rat Models of T2D

Thoroughly characterized and clinically relevant animal models also play a vital role, and are
promptly needed in understanding the pathogenesis of diabetes. These basic studies can combine the
genetic and functional characteristics of diabetes to replace direct drug tests in humans. To further
understand the T2DM disorder, many animal models have been developed to demonstrate the
pathophysiology and complications of diabetes [29] and to achieve the purpose of managing T2DM
with more effective and better therapeutics. Both genetically spontaneous and experimentally induced
diabetes models were exist [30]. The symptom patterns induced in these animal models often include
obesity, impaired glucose tolerance, IR, and the β-cell models that reflect the human condition in which
obesity is closely related to T2DM development (Table 2).
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Table 2. Summary of rat models of type 2 diabetes mellitus.

Type of Models Abnormality Ref.

Obese models (monogenic)

Zucker fatty (ZF) rats

Obese
Hyperinsulinemia, hyperlipidemia, and

hypertension
IR and glucose intolerance
Susceptibility to infection
Decrease in T cell number

Increase in macrophage number
Augmentation of immunoglobulins and
proinflammatory cytokines production

[31,32]

Obese models (polygenic)

OLETF rat

Obese
Spontaneously hyperplasia

Cellular infiltration and degradation
Diabetic nephropathy

[32,33]

Non-obese models

Goto-Kakizaki (GK) rat

A decreased β-cell mass
Liver and skeletal muscle IR

Attenuation of phagocytic activity of
macrophages

Augmentation of natural IgM production
Increased in the T cell ratios in the white

blood and decreased B cells.

[32,33]

Induced obesity

HFD/STZ rat

Dysfunction in β-cells
IR and hypoinsulinemia

Hyperglycemia
Increased INSR/PI3K/AKT pathway and

decreased levels of IL-6 and TNF-α.
Low level of circulating adiponectin

[34,35]

4.1. Zucker Fatty Rat and Zucker Diabetic Fatty Rat Models

Zucker fatty (ZF) rat strains, the monogenic models of obesity, are characterized by a deficiency
in the leptin receptor that induces hyperphagia and the rats become obese at around 4 weeks of
age [36]. These rats are hypertensive, hyperlipidemic, and hyperinsulinemic at around 4–8 weeks of
age, and develop advanced IR, glucose intolerance and become completely diabetic. Immunological
investigation of the ZF strain exhibits susceptibility to infection [37], T-lymphocytopenia [38], production
of immunoglobulins and nitric oxide, and increased expression of tumor necrosis factor-α (TNF-α) and
interleukin-1 beta (IL-1β) [39]. The Zucker diabetic fatty (ZDF) rat substrain with a diabetic phenotype
is derived by inducing mutations in ZF strains, and they are less obese than the ZF rats. However,
these rates exhibit more severe IR due to enhanced apoptosis levels in β-cells, representing a model of
obesity-associated diabetes [37].

4.2. Otsuka Long Evans Tokushima Fatty Rat

The Otsuka Long Evans Tokushima Fatty (OLETF) rat strain is selectively bred for the null
expression of the cholecystokinin-1 receptor in the hypothalamus, resulting in spontaneous hyperphagia,
involving obesity and late-onset hyperglycemia at an age of about 20–40 weeks [40,41]. Immunological
investigations indicate cellular infiltration and degeneration in pancreatic islets [36]. The late-stage is
characterized by hyperplasia, and the islets become fibrotic tissue. These rats also display diabetic
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nephropathy [42]. This is an appropriate animal model to evaluate both disease progression and
skeletal alterations observed in humans [43,44].

4.3. Goto-Kakizaki Rat Models

The Goto-Kakizaki (GK) rat, a non-obese model of T2DM, is established by repeated breeding
of glucose-intolerant Wistar rats [45]. GK rats have become hyperglycemic at an early age due to an
insufficient insulin response resulting in aberrant blood glucose homeostasis [46]. Characteristics of
this model, include hyperglycemia, peripheral IR, albuminuria, glomerulosclerosis, tubulointerstitial
fibrosis, and development of neuropathy [47]. Retinopathy and neuropathy are also reported to
develop late in the life of these animals [48,49]. The islets of GK rats exhibit several biochemical
defects, including inflammation, fibrosis [50], decreased energy production, reduced adenylate cyclase
activity [51], reduced insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation [52],
and defective regulation of protein phosphatase-1, and -2A and mitogen-activated protein kinase
activation in adipocytes [53]. Therefore, precise features of the islets in GK rats resemble those in
T2DM patients.

4.4. High-Fat Diet/Streptozotocin (HFD/STZ) Rat Model of Diabetes

Streptozotocin (STZ), an antibiotic reagent, causes the production of reactive oxygen species
in the β-cells of the pancreas, resulting in β-cell death, and is often used in animal models for the
induction of T1DM [54]. In general, this model depends on the toxicity of STZ, which results from
the transfer of the methyl-nitrosourea moiety from STZ to the DNA molecule, causing damage and
subsequent DNA fragmentation [55]. STZ doses of 65~70 mg/kg are often used to induce T1DM
in rats. However, Reed et al. [56] reported a new rat model of T2DM, known as the high-fat diet
(HFD)/STZ rat. This model is referred to as a T2DM model, due to similar prediabetes and/or IR
symptoms and hypoinsulinemia in patients [56]. Feeding Sprague-Dawley rats with a 40% kcal fat
diet for 2 weeks, and subsequent intravenous injection with STZ further establishes the HFD/STZ
rat model of T2DM relevant to the human condition [56–58]. The HFD/STZ rat models mimic the
state of obesity, IR, and/or glucose intolerance in prediabetes conditions [58]. HFD/STZ rats have
more pronounced dyslipidemia, glucose intolerance, hyperglycemia, and low levels of circulating
adiponectin [59], similar to the metabolic profile of T2DM in humans. Recently, a high fat and sugar
diet (HFSD) with the administration of STZ was suggested to establish a T2DM rat model, and it
has been reported to be a better, and true mechanism of T2DM pathogenesis given the numerous
alterations of protein expression in the INSR/PI3K/AKT pathway and levels of IL-6 and TNF-α [34,60].
No single animal model appears to encompass all of these characteristics, but many exhibit nearly
similar characteristics of one or more aspects of T2DM in humans.

5. Anti-T2DM Drug Discovery Using T2DM Rat Models

PubMed database published literature between April 2014 and April 2020 on T2DM rat
models that had been treated with herbal medicine compounds were reviewed. For the search,
the following combinations of terms were used as keywords: “herbal,” “drug,” “natural compound,”
and “insulin resistance” or “T2DM rat models.” Herein, we have summarized the mechanisms of several
representative bioactive components in T2DM rat models, including alkaloids, flavonoids, polyphenols,
quinones, and terpenoids (Figure 3) used in the treatment of T2DM rat models, and which may help to
provide valuable information on the application of pure herbal medicine compounds (Table 3).
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Table 3. Natural bioactive compounds for the treatment of rat models of T2DM.

Structures Treatment Model Improvement Effect Ref.

Alkaloids

Berberine Oral ZDF rats,
HFD/STZ-induced rats

Increased insulin and decreased levels
of HbA1c, TC, and TG

Attenuated axonopathy
[61,62]

Oxymatrine Oral HFD/STZ-induced rats Increased serum insulin and GLP-1,
TC, TG, and GLUT-4 content [63]

Vindoline Oral HFD/STZ-induced rats

Reduced fasting blood glucose, serum
alanine transferase, aspartate

aminotransferase, alkaline
phosphatase, and levels of TNF-α and

IL-6

[64]

Flavonoids

Naringenin Intragastric HFD/STZ-induced rats Decreased blood glucose and IR
index, and improved antioxidation [65]

(-)-epigallocatechin-3-gallate
(EGCG) Oral Goto-Kakizaki rats Improved mitochondrial function and

autophagy in the heart of GK rats [66]

Kaempferol Intragastric HFD/STZ-induced rats

Attenuated IR effect and
inflammatory signal through

inhibition of NF-kB and downstream
cytokine production

[67]

Tangeretin Oral STZ-induced rats

Reduced plasma glucose, increased in
the levels of insulin and hemoglobin

and modulates the activities of
hepatic enzymes

[68]

Polyphenols

Resveratrol Oral STZ-nicotinamide-induced
rats

Reduction in blood glucose and
HbA1c levels

Increased antioxidants activities of
SOD, CAT, GSH, GPx, and PPAR-γ

and FALDH gene

[69]

Curcumin Intraperitoneal HFD/STZ-induced rats

Decreased fasting blood glucose, the
pancreatic tissue destruction and
apoptosis index, the expression of

IL-1β, IL-6, TNF-α
Block the phosphorylation of JNK and
NF-κB protein to inhibit this signaling

pathway

[70]

Capsaicin Oral HFD/STZ- induced rats

A TRPV1 agonist
Decreased phosphorylation of tau

protein
Increased activity of PI3K/AKT and

decrease activity of GSK-3β

[71]

Terpenoids

Taraxerol Oral HFD/STZ-induced rats

Inhibition of hypoglycemic,
Insulin-sensitizing and inflammatory

effects
Activation of

IRS1/PI3K/AKT/AMPK/GLUT4/GSK3b
and inhibition of PKC/NF-κB

[72]

Ginsenoside Intragastric Goto-Kakizaki rats

Improvement of the blood glucose,
body weight

Inhibition of brain
oxidative/nitrosative damage and
IL-1β, IL-6, and TNF-α production

[73]

Glycyrrhizin Intraperitoneal ZDF rats

A HMGB1inhibitor.
Reduced kidney inflammation

Blocked TLR4 signaling pathways
Blocked the pro-inflammatory

cytokines
Ameliorate dmacrophage and cell

adhesion molecules,
Against glomerular damage

[74]
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5.1. Alkaloids

Alkaloids are a class of naturally-occurring compounds, derived from natural sources, such as
plants, animals, bacteria, and fungi. They have a wide range of functions, including anti-spasmodic,
anti-arrhythmic, anti-malarial, anticancer, antibacterial, and anti-hyperglycemic activity [75].
Various alkaloids, including berberine, oxymatrine, and vindoline are potentially effective against
different diabetic models [76]. Berberine is the primary active component of Rhizoma coptidis and
exhibits antidiabetic properties and hypoglycemic effects. Berberine has been shown to increase
insulin and decrease HbA1c, cholesterol (TC), and total glucose (TG) blood levels in the ZDF rat
model [61]. Berberine significantly attenuates axonopathy, and also restores PI3K/Akt/GSK3β signaling
pathway in HFD/STZ rats. Oxymatrine has been demonstrated to increase serum insulin, liver and
muscle glycogen and decrease fasting blood glucose, GLP-1, TC, TG, and muscle glucose transporter-4
levels in HFD/STZ rats [63]. Recently, vindoline, an indole alkaloid from the Catharanthus roseus
plant, was reported to protect diabetic hepatic tissue from injury via antioxidant, anti-inflammatory,
and anti-hypertriglyceridemia activities in a T2DM rat model [64]. Administration of vindoline
in an HFD/STZ rat model significantly reduced fasting blood glucose, serum alanine transferase,
aspartate aminotransferase, and alkaline phosphatase levels when compared to the diabetic controls [77].
Vindoline also stimulates the activity of superoxide dismutase and catalase and decreases the levels of
TNF-α and IL-6. Histopathological findings show that vindoline improves the functions of both hepatic
and pancreatic tissues in vivo.

5.2. Flavonoids

Flavonoids are bioactive compounds, found in flowers, nuts, fruits, and some vegetables;
several investigators have focused on the use of flavonoids and related compounds for antidiabetic
properties [77]. Some recent studies have suggested that flavonoid compounds including naringenin,
(-)-epigallocatechin-3-gallate (EGCG), rutin, and kaempferol, among other flavonoids, may improve and
stabilize the secretion of insulin from pancreatic β-cells. In diabetic animal models, flavonoids typically
lead to reduced aldose reductase, regeneration of pancreatic β-cells, and increased insulin release.
According to their biological properties, polyphenols may be useful nutraceuticals and supplementary
treatments, and are involved in the regulation of carbohydrate and lipid metabolism, amelioration
of hyperglycemia, dyslipidemia, and IR, and alleviate oxidative stress and inflammatory signaling
pathways [78,79]. Naringin, a major flavanone glycoside obtained from grapefruit, was found to reduce
blood glucose and IR index, glycosylated hemoglobin, inflammatory cytokines, and increase the levels
of serum insulin, and glutathione in the antioxidant defense system in diabetic rat models [65,80].
Successful uptake of EGCG, a flavonoid-derived from green tea, was reported to improve mitochondrial
function and autophagy in the hearts of GK rats with myocardial mitochondrial deficiency and oxidative
stress [66]. Rutin is a flavonoid glycoside from flowers and fruits as a major source. In HFD/STZ rats,
rutin treated by orally ameliorates the levels of TG and blood glucose, oxidative stress, TNF-α and IL-6
production, and cellular apoptosis pathways [81,82]. Another study found that kaempferol treatment may
enhance insulin sensitivity and deterioration of IR in diabetic rats; the possible mechanisms may be the
down-regulation of the IKKβ/NF-κB signal and subsequent inhibition of TNF-α and IL-6 production [67].

5.3. Polyphenols

Natural polyphenols in the plant kingdom are classified according to the number of phenol
rings and structural elements that bind these rings, and include the common polyphenols such as
resveratrol, curcumin, and capsaicin. Polyphenols have unique physical, chemical, and biological
(metabolic and therapeutic) characteristics, based on the number of aromatic rings and functional
groups in the phenol structure [83]. Polyphenols are also the most abundant antioxidants in the human
diet. Increasing evidence indicates that various dietary polyphenols might prevent diabetes [78].
Resveratrol is a natural polyphenol widely found in grapes and blueberries [84]. The oral administration
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of resveratrol in STZ/nicotinamide-induced rats decreased the fasting blood glucose and HbA1c levels
and increased the antioxidant activity of superoxide dismutase, catalase, GSH, and glutathione
peroxidase. Resveratrol has an important role in controlling hyperglycemia and plasma insulin levels
and demonstrates increased expression of PPAR-γ and FALDH in rat adipose tissue [69]. Curcumin is
an acidic polyphenolic substance, with multiple physiological and pharmacological activities and
remarkably low toxicity [85]. In accordance to some pharmacologic studies, curcumin exhibits
neuroprotective effects, anti-hyperlipidemia, and hypolipidemic effects, and improves oxidative stress
and inflammation [85–88]. Pharmacological evidence also indicates that curcumin significantly affects
improvement in IR [89] and decrease in blood lipids, inflammatory cytokines [90], and plasma resistin
levels [90] in diabetes animal models. In the T2DM rat models, curcumin plays an important role
in decreasing fasting blood glucose, inhibiting inflammation, and reducing the apoptosis index in
pancreatic islet β-cells in HFD/STZ rats. As part of the underlying mechanism, curcumin reduces
TNF-α, IL-1β, IL-6, caspase-3, and Bax levels by blocking the phosphorylation of JNK and NF-κB
protein signaling pathway [70]. Clinical characteristics of T2DM reveal a high-risk associated with
Alzheimer’s disease due to impaired insulin signaling pathways in brain tissue. Capsaicin is the
major pungent compound obtained from hot chili peppers and is a highly selective agonist for the
transient receptor potential vanilloid 1 (TRPV1), which was found to ameliorate IR [91]. TRPV1,
a Ca2+-permeable nonselective cation channel, is expressed mainly in dorsal root ganglion cells and
primary sensory afferents in the brains of humans and rats [92]. TRPV1 has a potential therapeutic
value for obesity and diabetes [93]. Xu, et al. [71] demonstrated that dietary capsaicin reduced the risk
of Alzheimer’s disease in an HFD/STZ rat model. They found that rats receiving dietary capsaicin
had a significant decrease in the levels of phosphorylation of AD-associated tau protein at special
sites (serine 199, 202, and 396 in the hippocampus) compared with that in T2DM rats. The dietary
capsaicin group increased PI3K/AKT and decreased GSK-3β activity, which was also observed in the
hippocampus compared with that in T2DM control rats that did not receive capsaicin, indicating that
capsaicin inhibited the phosphorylation of tau protein by increasing the PI3K/AKT and inhibiting
GSK-3β activity. Dietary capsaicin may have potential use in the prevention of Alzheimer’s disease
in T2DM.

5.4. Quinones

Quiniones, a class of aromatic dicarbonyl compounds, are found predominantly in flowering plants,
and fungi. In nature, quinone is biochemically involved in respiration and photosynthesis, and plays
a vital role in electron transport, serving as electron carriers in redox reactions for energy transduction,
and storage [94]. Anthraquinones are the largest class of naturally occurring quinones such as rhein,
purpurin, and chrysophanol. Rhein is a lipophilic anthraquinone extensively found in medicinal
herbs Rheum palmatum L. and has many pharmacological effects in protecting against liver and kidney
damage, inflammation, excess oxidative reactions, and microbial infections. These pharmacological
effects are used to treat hepatic disease [95], diabetes [96], atherosclerosis [97], and cancer [98].
However, many research reports demonstrate that sirtuin 1 (SIRT1) may play a vital role in the
control of glucose homeostasis by regulating insulin secretion [99], down-regulating inflammation,
improvement of IR [100], controlling fatty acid oxidation and mitochondrial biogenesis, and regulating
hepatic glucose production [101]. Gerhart-Hines, et al. [101] indicated that the expression of SIRT1
was reduced in diabetic rats. However, the effect of rhein was to increase SIRT1 expression in
HFD/STZ-induced diabetic rats, which improved IR and dyslipidemia. Furthermore, rhein dramatically
decreased the levels of fasting plasma glucose, fasting insulin, homeostasis model assessment-insulin
resistance index (HOMA-IR), TG, and TC, while renal tissues were significantly improved compared
with those in diabetic rats that did not receive rhein. Chrysophanol is an anthraquinone isolated
from Rheum rhabarbarum belonging to the Polygonaceae family. To date, it is known to exhibit
several pharmacological effects, including anti-diabetes [102], anti-inflammatory [103], and anti-cancer
activity [104]. Chrysophanol targets significantly decrease blood lipids, serum insulin levels in
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diabetes, and reduces inflammatory cytokines, myocardial enzymes creatine kinase (CK) and lactate
dehydrogenase (LDH), and increases SIRT1 protein expression. Chrysophanol also significantly
ameliorates the cardiac pathological changes in diabetic animal models. Molecular dynamics studies
suggest that chrysophanol inhibits activation of the High Mobility Group Box 1 (HMGB1)/NF-κB
pathway [105], increases GLUT 4 in muscle, induces phosphorylation of insulin receptor substrate-1,
and docks well in the active site of DPP-IV, supporting its use as a significant DPP-IV inhibitor [104].
Chrysophanol is a generally used herb in traditional Chinese medicine for improving obesity. A study
revealed the anti-obesity effects of chrysophanol by using HFD-induced rat models [106]. Chrysophanol
dramatically decreased lipid accumulation in hepatocytes and decreased bodyweight, blood glucose,
and blood levels of TG compared to those in HFD rats not receiving chrysophanol. In addition,
the herbal compound reduced IL-6 and IL-1β levels and increased IL-10 expression to improve
HFD-induced inflammation. The expression of lipolytic genes increased and those of lipogenic
genes decreased in HFD rats treated with chrysophanol. Chrysophanol probably benefits from the
activation of AMP-activated protein kinase (AMPK)/SIRT1, which leads to the down-regulation of
sterol regulatory element-binding protein-1 [106].

5.5. Terpenoids

Persistent hyperglycemia causes the activation of protein kinase C (PKC) and the NF-κB signaling
pathway associated with the production of IL-1β, IL-6, and TNF-α, revealing that inflammation
plays a pivotal role in the development and progression of diabetic nephropathy (DN) [107,108].
Damage originating from the pathogenesis of DN, includes renal inflammation, accumulation of serum
creatinine, urea, and uric acid, and release of urinary albumin [109]. Khanra et al. [72] showed that
taraxerol, a pentacyclic triterpene from the leaf extract of the plant Abroma augusta L., exhibits protective
effects against DN via the reduction in the secretion of proinflammatory cytokines, regulation of the
serum lipid profile and blood glycemic status, and restoration of the renal physiologic function in
T2DM rats. Taraxerol also stimulates the IRS1/PI3K/AKT/AMPK/GLUT4/GSK3β signaling pathways
to mediate hyperglycemia and inhibits the PKC/NF-κB signaling pathway to improve inflammatory
effects in T2DM rats [72]. Ginsenoside is the major bioactive compound in ginseng, which shows
the therapeutic effects of ginsenoside in a diabetic GK rat model, wherein, ginsenoside ameliorated
diabetic progression, including the levels of blood glucose, body weight, and Morris correlation index.
The possible mechanism involved is inhibition of SOD, malondialdehyde (MDA), and inflammatory
cytokines (IL-1β, and IL-6, and TNF-α) [73]. Glycyrrhizin, a glycol-conjugated triterpene from
Glycyrrhiza glabra, demonstrated anti-inflammatory properties and was shown to inhibit the cytokine
activity of HMGB1. A recent study showed that the inhibition of HMGB1 by glycyrrhizin is an effective
strategy for reducing kidney inflammation in a ZDF animal model [74]. The kidney cortex of ZDF
rats showed an increase in toll-like receptor 4, phospho-p38 MAPK, and IL-1β expression, as well as
an increase in macrophages compared to those in controls, and plays a major part in renal dysfunction.
Furthermore, glycyrrhizin treatment blocked HMGB1-activated toll-like receptor 4 downstream
signaling pathways, which may in turn block the transcriptional expression of the pro-inflammatory
cytokines. Glycyrrhizin treatment also ameliorates the expression of macrophages and cell adhesion
molecules, and provides protection against hyperglycemia-induced glomerular damage.

6. Conclusions

T2DM is a well-known common metabolic disease that is a risk to human health over the long term.
Progression of T2DM from prediabetic state to overt diabetes and the development of complications
occurs over many years. The assessment of interventions also takes years and requires large resources.
The use of the appropriate animal model, based on diabetic syndromes, can provide substantial data
on the pathophysiological mechanisms of T2DM in humans. While, no single animal model has been
able to address all these characteristics, many animal models can provide very similar characteristics
of one or more aspects of human T2DM. In this review article, we focused on the pathophysiological
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status of T2DM rat models and several bioactive compounds from herbal medicine with different
functional groups, which exhibit therapeutic potential for the T2DM rat models, at the same time,
guiding our approach to the treatment of diabetes with natural drugs. Many risk factors and pathogenic
processes in T2DM have been verified, including hyperglycemia, IR, lipid accumulation, excessive
inflammation, oxidative stress, and adipokines, all of which are critically important in treating the
disease. The diabetic rat models are considered to play an important role in presenting the pathogenesis
of human T2DM and its complications, despite all the other limitations they offer. The diabetic rat
models are essential for investigating and developing novel drugs for diabetes and its complications.
The occurrence and prevalence of T2DM can be prevented by utilizing appropriate natural compounds
derived from plant-based medicines. In this review, we suggested that these natural compounds can
be used as drugs or dietary supplements to help prevent and treat T2DM. However, many questions
still remain. Many natural compounds mentioned in our report have effects on hypoglycemia against
T2DM, however, a notable side effect is that too much decrease in glycemia will cause patients to enter
the hypoglycemic state.
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