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Simple Summary: Telomere shortening plays a significant role in the development of
age-related diseases and cancer. However, this process can be reversed through telomerase,
which is highly active in tumors. This narrative review examines the molecular mechanisms
underlying increased telomere attrition, which contributes to an elevated risk of leukemias,
highlighting the potential prognostic value of telomere length in leukemias. It emphasizes
the connection between oxidative stress and mitochondrial dysfunction in accelerating
telomere shortening, which contributes to a higher onset and progression of leukemia.
Additionally, telomerase emerges as a therapeutic target in leukemias. For this reason,
telomerase inhibitors and telomerase-based immunotherapy are analyzed in the fight
against leukemias.

Abstract: The nucleoprotein structures known as telomeres provide genomic integrity
by protecting the ends of chromosomes. Tumorigenesis is associated with alterations in
telomere function and stability. This narrative review provides evidence of the potential
prognostic value of telomere length and telomerase in leukemias. On the one hand, ox-
idative stress and mitochondrial dysfunction can accelerate telomere shortening, leading
to higher susceptibility and the progression of leukemia. On the other hand, cytogenetic
alterations (such as gene fusions and chromosomal abnormalities) and genomic complexity
can result from checkpoint dysregulation, the induction of the DNA damage response
(DDR), and defective repair signaling at telomeres. This review thoroughly outlines the
ways by which telomere dysfunction can play a key role in the development and progres-
sion of four primary leukemias, including chronic lymphocytic leukemia (CLL), chronic
myeloid leukemia (CML), and acute leukemias of myeloid or lymphoid origin, highlight-
ing the potential prognostic value of telomere length in this field. However, telomerase,
which is highly active in leukemias, can prevent the rate of telomere attrition. In line
with this, leukemia cells can proliferate, suggesting telomerase as a promising therapeutic
target in leukemias. For this reason, telomerase-based immunotherapy is analyzed in the
fight against leukemias, leveraging the immune system to eliminate leukemia cells with
uncontrolled proliferation.
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1. Introduction
Telomeres are repetitive nucleoprotein structures, in which an array of double-stranded

TTAGGG repeats is assembled with shelterin complex proteins [1]. Telomeres consist
of double-stranded telomeric repeats and the single-stranded G-rich 3′ terminal region
(50–400 nucleotides), shielding chromosomes from fusion, destruction, and incorrect re-
combination [2].

The primary role of telomeres is to protect the ends of linear chromosomes to prevent
the loss of coding regions and suppress large chromosomal rearrangements. Six telomere-
associated proteins (TRF1, TRF2, POT1, TIN2, RAP1, and TPP1) comprise the shelterin
protein complex, responsible for the structural arrangement of chromosome ends [3].
Shelterin protein components are believed to be essential for arranging telomeric ends into
higher-order structures (T loops) to hinder the recognition of exposed DNA sites and the
subsequent activation of DNA Damage Response (DDR) at telomeres [4]. From a structural
perspective, a 3 G-rich overhang of telomeres is hidden in the formed T loop at the ends of
chromosomes, preventing DNA damage and ensuring genomic stability [5].

During cell divisions, DNA polymerases cannot effectively replicate genomic portions
at the ends of chromosomes, causing telomeres to be shortened [6]. The absence of telom-
erase sustains the gradual telomere shortening [6]. This telomere length reduction below a
specific threshold fosters senescence and genomic instability [7].

When telomeres acquire a specific length, they cannot bind a sufficient number of
telomere-binding proteins involved in the shelterin protein complex, and they become
potentially exposed sites that induce DNA damage response and cell cycle arrest [8,9].
When telomeres become dysfunctional, the telomere structure disintegrates due to the
relocation of the shelterin protein complex and the consequent DNA damage, resulting
in senescence or apoptosis [8,9]. On the one hand, telomere-free ends can appear; they
can be identified as double-strand breaks (DSBs) or single-strand breaks (SSBs), which
trigger the overexpression of cell cycle inhibitors p16Ink4a, p21Cip1, and p53, that in turn
induce senescence, which is then followed by apoptosis [10,11]. In the case of uncapped
telomeres, they are associated with many chromosome abnormalities in the absence of cell
cycle checkpoint mechanisms, thereby leading to genomic instability and cell death [12,13].
In particular, the inactivation or deletion of ataxia telangiectasia mutated (ATM)/ataxia
telangiectasia and Rad3-related (ATR) or p53 transcription factor is associated with losing
these repair mechanisms, which can trigger apoptosis or senescence. This loss of repair
mechanisms is linked to end-to-end chromosomal fusions, fusion-bridge-breakage cycles,
and overall genomic instability [14].

Telomere shortening is a common phenomenon closely linked to genomic instability
and structural chromosome rearrangements due to increased breakage-fusion bridges [15].
Indeed, developing dicentric chromosomes can result from the dysfunction of the telomere
nucleoprotein complex, exposing free chromosome ends to the DNA double-strand break
(DSB) repair mechanism. Therefore, chromosomal instability can be induced by telomere
loss or dysfunction, leading to cancer development and adverse clinical outcomes [16,17].

The incidence of hematologic cancers is rising as a result of a rapidly aging population,
posing a challenge to health systems. Epidemiological transitions and demographic shifts
have resulted in a heightened emphasis on malignant tumors globally [18]. Leukemia is a
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prevalent malignancy characterized by elevated blood leukocyte counts and the infiltration
of bone marrow by blast cells. The precise etiology of leukemia has been inadequately
comprehended so far. It is a complex illness arising from the interplay of genetic and
environmental variables [19].

Leukemia, a potentially fatal condition caused by malignant clonal hematopoiesis of
stem and progenitor cells, ranks among the top 10 diseases negatively impacting human
health [20,21]. It leads to an uncontrolled proliferation of precursor cells of lymphoid or
myeloid origin, resulting in bone marrow infiltration that impairs normal hematopoiesis.
Unlike solid cancers, which often require genetic modifications and complex cellular
reprogramming for effective metastasis, leukemic cells possess a unique, innate ability for
migration and invasion. This ability is achieved by retaining the benign leukocytes’ capacity
for cell motility and survival in circulation while simultaneously acquiring the potential
for rapid and uncontrolled cell division [22]. Leukemia is classified into four main types
based on the lineage affected and how quickly the disease progresses: acute lymphoblastic
leukemia (ALL), more common in children, acute myeloid leukemia (AML), more common
in older adults, chronic lymphocytic leukemia (CLL) which mostly affects adults over 60,
and chronic myeloid leukemia (CML) which is less common, but the incidence increases
with age [23].

Telomere shortening is regarded as the primary mechanism driving genome instability,
which increases susceptibility to leukemogenesis and contributes to the progression of
the four main types of leukemia. This association explains why telomere length is often
considered a marker of poor prognosis in leukemia patients [24,25]. The clonal evolution
of leukemia cells has also been linked to high telomerase activity. While a subgroup of
cancer cells extend telomeres by telomerase-independent mechanisms known as alternative
lengthening of telomeres (ALT) [26], telomerase has been understood to sustain telomere
length in the overwhelming majority of cancer cells (80% to 90%) [27].

On the one hand, telomere biology disorders (TBD) are characterized by prema-
ture telomere shortening, thereby increasing the susceptibility to hematologic malig-
nancies [28]. The major short-telomere syndromes are Dyskeratosis Congenita (DC),
Hoyeraal–Hreidarsson syndrome, Revesz syndrome, and Coats Plus syndrome [29]. Apart
from syndrome-specific characteristics, common clinical manifestations of short-telomere
syndromes include idiopathic pulmonary fibrosis (IPF), aplastic anemia, hepatic fibro-
sis/cirrhosis, and myelodysplastic syndrome (MDS)/AML [28]. TBDs arise from mutations
in genes involved in telomerase components (e.g., TERT, TERC), telomerase assembly
and trafficking (e.g., NOP10, WRAP53), shelterin complex proteins (e.g., TINF2, POT1),
or DNA repair and replication at telomeres (e.g., RTEL1, PARN) [30]. In contrast, long
telomere syndromes emerge, wherein germline mutations affecting telomere-regulating
genes, such as those responsible for protecting telomeres 1 (POT1), telomerase reverse
transcriptase (TERT), telomerase RNA component (TERC), and regulator of telomere length
1 (RTEL1), can contribute to extended telomere lengths, thereby increasing the likelihood
of developing cancer [31]. Interestingly, 70% of melanomas [32] and many other solid
tumors [33] have somatic TERT promoter mutations. In this context, mutations in the
following genes of the shelterin protein complex (POT1, TPP1, TERF2IP, and TINF2) have
also been associated with familial melanoma, glioma, and chronic lymphocytic leukemia
(CLL) [28].

Despite recent advancements, many questions about telomere biology and hematologi-
cal cancers remain. Telomere attrition leads to genomic instability and disease development,
particularly in leukemias. This comprehensive literature review discusses the molecular
mechanisms that connect oxidative stress and mitochondrial dysfunction, resulting in
telomere erosion and accelerating the onset and progression of leukemia. This review inte-
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grates molecular and clinical insights into telomere biology to enhance our understanding
of the processes involved in leukemogenesis as well as the potential of telomere length as a
potential prognostic marker for the onset and progression of leukemia. From a therapeutic
perspective, telomerase is considered a promising therapeutic target for harnessing the
immune system against leukemia cells.

2. The Molecular Mechanisms Underlying Telomere Shortening
in Leukemias

Leukemia is a disease in which proliferation initially plays a significant role, resulting
in the clonal expansion of abnormal myeloid or lymphoid cells [34]. Since leukemic cells
proliferate quickly and evade typical cell cycle regulation, their telomeres are reduced with
each cell division. This phenomenon is accentuated in specific leukemic clones with high
turnover and insufficient telomerase activity. So, the short leukocyte telomere length can
represent the higher cycling of the hematopoietic stem progenitor cell (HSPC) compartment
or represent hereditary and acquired hematological dysfunctions, thus predicting the
response to treatment in bone marrow failure syndromes (BMFS) and chronic myeloid
leukemia (CML) [35].

Secondly, significantly reduced telomeric repeat sequences are another feature of many
human malignancies that may lead to chromosomal arm telomeric fusions [36]. These
fusions produce ring and dicentric chromosomes that, when cells divide, build bridges that
can break and fuse broken ends to create new chromosome rearrangements.

Thirdly, dysfunctional telomerase can contribute to telomere attrition. In particular,
people with impaired telomere maintenance bone marrow failure syndromes (BMFS) are
characterized by telomere shortening and aberrant telomerase activity, which can lead to
genome instability and organ failure [35,37]. Indeed, the inherited and acquired BMFS
have been linked to either mutations in telomerase subunits but also to telomerase-binding
proteins and members of the shelterin complex [35,37–39]. In this manner, unprotected
telomeres are known to shrink, thus causing an activation of abnormal DNA repair path-
ways and chromosomal instability. Indeed, such genomic complexity can result from
checkpoint dysregulation and the induction of DNA damage response and defective repair
signals at deficient telomeres. In another case, elevated telomerase seemed to play a cru-
cial role in driving chronic lymphocytic leukemia (CLL). In another example, androgenic
anabolic steroids were shown to increase telomerase expression levels in the underlying
hematopoietic stem progenitor cell (HSPC) compartment, thus sustaining telomere length
values in leukocytes [40]. In line with this, a patient with aplastic anemia and a nonsyn-
onymous mutation of the human telomerase reverse transcriptase (hTERT) gene sustained
the telomere dynamics after long-term androgen treatment [40]. According to a number of
studies, chronic lymphocytic leukemia (CLL) tumors exhibit significantly shorter telomere
lengths but increased telomerase expression and activity compared to the values of normal
B cells [41,42]. As a result, telomerase activation maintains the lowest possible telomere
length necessary to evade senescence and maintain cell survival.

Fourth, a telomerase-independent mechanism, called alternative lengthening of telom-
eres (ALT), can sustain telomere length dynamics in leukemia cells [43]. Recent research
has shown that ALT is activated in some subtypes of leukemia. ALT activation is often
linked to mutations in chromatin remodeling genes including alpha thalassemia intellectual
disability X-linked (ATRX) and death domain-associated protein (DAXX) [44]. In another
study, 5% of the study participants had undetectable TERT expression and changes in
ATRX- or DAXX, showing longer telomeres and higher telomeric repeat-containing RNA
(TERRA) [45]. The activation of the ALT pathway can increase genetic instability. From this
perspective, clonal evolution is facilitated, leading to the formation of leukemic subclones
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that are more resistant to therapy due to survival benefits. In this context, drugs that might
efficiently target and disrupt the ALT pathway are currently under investigation to improve
TKI efficiency for individuals with TKI-resistant leukemia. For instance, ponatinib has
demonstrated synergistic effects in the eradication of ALT-positive cells when combined
with other drugs such as triciribine [46].

Last but not least, epigenetic mechanisms play a crucial role in maintaining telomere
length values in leukemias. The orchestration of the epigenetic landscape in telomeres can
be accomplished through DNA methylation, histone modifications, and non-coding RNA
like TERRA that together slowly impact hTERT expression or shelterin protein composi-
tion [47]. In this context, DNA methylation is one of several epigenetic changes that impact
the accessibility of the TERT promoter to the transcriptional machinery, thereby affecting
TERT expression in AML [48,49], For example, DNA Methyltransferase Inhibitors can in-
crease the effectiveness of imetelstat, a telomerase inhibitor in high-risk AML patients [50].

2.1. The Oxidative Stress and Mitochondrial Dysfunction Loop Mediate Telomere Shortening

During homeostasis, mitochondrial respiration generates low reactive oxygen species
(ROS) levels. In the mitochondria, adenosine triphosphate (ATP) is primarily produced to
meet the metabolic demands of cells. Specifically, mitochondria synthesize ATP through
oxidative phosphorylation (OXPHOS), in which the mitochondrial electron transport chain
(ETC) complexes I–IV and ATP synthase (complex V) are essential. In the OXPHOS process,
molecular oxygen is converted into water after electrons are transferred from complex I to
complex IV of the mitochondrial ETC [51].

In most cases, ROS arise due to impaired oxidative phosphorylation at the mitochon-
dria (Figure 1). On the one hand, the defects in the mitochondrial electron transport chain
can drive ROS accumulation, exacerbating the oxidative stress that emerges during aging
(Figure 1) [51]. On the other hand, the elevated ROS formation significantly disrupts the
mitochondrial membrane potential, leading to decreased ATP synthesis and impaired
energy metabolism, which further induces mitochondrial abnormalities (Figure 1) [51]. In
this way, oxidative stress and mitochondrial dysfunction are closely intertwined.

In cases of mitochondrial dysfunction, the remarkable increase in mutations in mi-
tochondrial DNA (mtDNA) causes the defective function of the electron transport chain
(ETC) [52]. Indeed, mitochondrial ROS levels often reinforce these mitochondrial mutations
in a positive feedback loop, exacerbating mitochondrial dysfunction [53,54]. Defective
mitochondria are also prime candidates for oxidative damage, which impairs oxidative
phosphorylation and increases reliance on glycolysis for energy generation [55]. Concur-
rently, mitochondrial calcium (Ca2+) accumulation significantly orchestrates mitochondrial
metabolism and aging. The increased presence of senescent cells arises from reduced
mitochondrial membrane potential due to elevated mitochondrial Ca2+ levels [56]. Senes-
cent cells exhibit increased mitochondrial size, attributed to the heightened formation of
malfunctioning mitochondria, leading to ROS accumulation [57].

The oxidative stress and mitochondrial dysfunction can contribute to genome instabil-
ity through telomere shortening. A positive feedback loop has been highlighted regarding
the relationship between oxidative stress, mitochondrial dysfunction, and telomeres. On
one hand, mitochondrial damage mediates telomere dysfunction under oxidative stress
conditions. Indeed, the mitochondrial ROS accumulation compromises telomere function,
leading to the increased formation of telomere dysfunction-induced foci (TIF) and pro-
moting senescence [58]. In particular, the mitochondrial damage causes p53 and DNA
damage response (DDR) activation, eventually leading to telomere shortening (Figure 1).
In line with this, TIFs occur when DNA-damage response (DDR) proteins are recruited
to severely shortened and/or uncapped telomeres [59]. In another example, FCCP causes
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mitochondrial dysfunction through mitochondrial depolarization and ROS accumulation,
leading to telomere shortening and chromosome fusions in mouse embryos [60]. In this
context, it has been reported that the mitochondrial-targeted antioxidant Mito-Q can reduce
telomere shortening and enhance the replicative lifespan of fibroblasts under mild oxidative
stress by alleviating telomere shortening [61]. Consequently, mitochondrial dysfunction
acts as a trigger for the amplification of telomere shortening. On the other hand, telomere
disruption has been underlined to trigger a feed-forward loop composed of p53 activa-
tion and peroxisome proliferator-activated receptor gamma coactivator 1α/β (PGC1α/β)
downregulation, thus impairing mitochondrial function and increasing oxidative defense
(Figure 1). At the molecular level, the tumor suppressor gene p53 is activated, suppressing
the peroxisome proliferator-activated receptor gamma coactivator 1a (PGC1α) and PGC-1β
promoters, master regulators of mitochondrial metabolism (Figure 1) [57]. To support the
above, the PGC1α induces mitochondrial biogenesis, handles mitochondrial dynamics,
affects oxidative phosphorylation, and regulates mitochondrial genome replication. It is
the key player in determining the amount of mitochondrial mass and their response to
demands for energy [62].

 
Figure 1. Oxidative stress–mitochondrial dysfunction–telomere attrition: A self-amplifying loop
driving senescence and genomic instability. Reactive oxygen species (ROS) generated by defective
oxidative phosphorylation (OXPHOS) impair the electron transport chain (ETC), further increasing
ROS levels. ROS induces telomeric DNA oxidation, forming 8-oxo-guanine lesions, which disrupt
the shelterin complex. This activates the DNA damage response (DDR) through ataxia telangiec-
tasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR) kinases, triggering checkpoint
kinase 1 (CHK1)/checkpoint kinase 2 (CHK2), stabilizing p53, and upregulating p21, which inhibits
cyclin-dependent kinase 4/6 (CDK4/6). This prevents retinoblastoma protein (Rb) phosphorylation,
blocking E2F transcription factor activation and leading to cell cycle arrest, senescence, or apoptosis.
Senescence-associated secretory phenotype (SASP) factors promote chronic inflammation, further
amplifying oxidative stress. Mitochondrial dysfunction also suppresses peroxisome proliferator-
activated receptor gamma coactivator 1-alpha/beta (PGC-1α/β), impairing mitochondrial biogenesis
and energy metabolism. The loss of ATM or p53 function removes critical cell cycle checkpoints,
leading to unchecked proliferation, chromosomal instability, and oncogenesis, reinforcing the loop
(created with BioRender.com).

BioRender.com
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2.2. The Activation of the DNA Damage Response Through Telomere Shortening and
Mitochondrial Dysfunction

At the molecular setting, the telomere attrition causes impaired mitochondrial function
through the activation of the DNA damage response [63]. In particular, telomere attrition
stimulates DDR proteins, including H2A histone family member X (H2AX), eventually acti-
vating the tumor suppressor gene p53 [64]. Uncapped telomeres have been demonstrated
to bind with DNA damage response factors, including 53BP1, MRE11, phosphorylated vari-
ants of H2AX, and ATM12, therefore initiating a signaling cascade that results in cell cycle
arrest [65]. Consequently, telomere degradation activates H2AX, which in turn initiates p53.
In reaction to DNA damage signals, p53 inhibits the production of SIRT1, PGC-1α, and
PGC-1β (Figure 1). This inhibition ultimately results in a reduction of transcription factor A,
mitochondrial (TFAM) levels, which is directly correlated with diminished mitochondrial
biogenesis and compromised mtDNA replication (Figure 1). TFAM deficiency results in
a diminished mtDNA copy number and a lower expression of mtDNA-encoded genes.
TFAM-deficient cells exhibit elevated senescence-associated β-galactosidase activity and
decreased cell growth characteristics [66].

2.3. The Association of Telomere Shortening with Metabolism

In addition, telomere dysfunction can affect energy metabolism since it represses
PGC1α and SIRT1 deacetylase and activates p53 transcription factor. For example, telomere-
dysfunctional mice have been shown to maintain normal levels of plasma glucose under
fasting conditions due to deficiencies in gluconeogenesis controlled by the p53-mediated
repression of PGC1a/b and its subsequent mediators, glucose-6-phosphate (GLC-6-P)
and phosphoenolpyruvate carboxykinase (PEPCK) (Figure 1) [63]. The overexpression of
mTERT or PGC1a, or genetic ablation of p53, led to an increased expression of PGC1α/b,
GLC-6-P, and PEPCK, as well as the reactivation of gluconeogenesis [63]. Therefore, telom-
ere dysfunction-induced mitochondrial impairment increases tissue reliance on glucose
metabolism (Figure 1) [67].

To sum up, telomeres undergo a significant formation of 8-oxo guanine (8oxoG) defects
under conditions of oxidative stress, since they are abundant in guanine [63]. In addition
to this, mitochondrial dysfunction exacerbates oxidative defense, aggravating telomere
shortening rate. As a result, accelerated aging arises from the positive feedforward loop
between mitochondria, oxidative stress, and telomere dysfunction.

3. The Interplay Between Oxidative Stress, Telomere Length, and
Leukemia Pathogenesis
3.1. The Key Role O of Oxidative Stress in Leukemias

Oxidative stress can promote carcinogenesis by altering the expression of genes linked
to cancer. Chronic oxidative stress has been identified in certain leukemia patients [68]. The
progression of leukemia can be affected by oncogenes that control the generation of ROS
and the expression of antioxidants [69]. There is growing evidence that oxidative stress is a
critical contributor to the development and prognosis of leukemia, and intriguing findings
have been documented [70–72].

In AML, it has been proved that the prognosis of AML patients relies on the association
of oxidative stress with signaling cascades and immune infiltration [20]. A key factor in
the onset and progression of AML is the rise in oxidative stress levels [73]. Moreover, it
has been reported that oxidative stress in AML patients can determine disease relapse [74].
For example, the pathobiological and recurrence processes of acute myeloid leukemia-M5
(AML-M5) are significantly influenced by ROS-mediated interactions between thioredoxin
(TRX) and c-Jun activation domain-binding protein-1 (JAB1). Therefore, one possible ther-
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apy approach for AML-M5 could involve focusing on the ROS/JAB1/TRX pathway [75,76].
In this context, it has been supported that the oxidative nature of AML cells can guide the
selection of therapeutic strategies to prevent relapse and drug resistance [77].

Regarding the relationship between oxidative stress and CML, it has been reported
that CML is tightly linked to increased ROS recruitment. The CML disease is a common
hematological malignancy that is caused by the uncontrollable enzymatic activity of a
fusion protein known as Breakpoint Cluster Region-Abelson (BCR-ABL) [78]. This protein
leads to granulocyte proliferation and immature differentiation in peripheral blood. CML
cells can accumulate reactive oxygen species (ROS) due to the activation of NADPH oxidase
and mitochondrial respiratory chain complex III (rac2/MRC-CIII) [79].

Regarding the association of oxidative stress and CLL, recent research suggests that
oxidative burst can encourage the onset and progression of CLL [80]. While the antioxidant
capacity level was significantly lower than that of the control group, the blood oxidation
level was substantially higher in CLL patients [81], suggesting that the metabolic activity
level of oxidative stress may be a good indicator of the stage at which the disease is
progressing [82].

3.2. The Oxidative Stress Drives Telomere Shortening, Increasing the Susceptibility to Leukemias

Beyond the significant role of oxidative stress in leukemia progression, it is a key driver
of telomere attrition, contributing to both aging and cancer development [83]. A negative as-
sociation between telomere length and oxidative stress markers has been substantiated [84].
Convincing evidence suggests that stress causes respective cellular responses leading to
telomere shortening. A meta-analysis supported a significant correlation between higher
levels of perceived stress and lower telomere length [85]. A systematic review highlighted a
negative association between different stimuli, including diseases, and telomere length [86].
In particular, oxidative stress may accelerate telomere shortening [87], driving senescence.
A disequilibrium between the generation of reactive oxygen species (ROS) and cellular
antioxidant defenses appears to be the main process responsible for the telomere dysfunc-
tion [88]. There is substantial evidence that oxidative stress accounts for the accumulation
of DNA damage, thus potentiating telomere shortening and accelerating the incidence of
age-related disorders [89].

Focused on the molecular mechanism underlying telomere shortening, mounting
research has been conducted to shed light on this field. Initially, telomeric repeats are
susceptible to oxidative damage since they are rich in guanine triplets, making them more
vulnerable to oxidative DNA lesions than the rest of the genome [90]. It has been substanti-
ated that oxidative stress accelerates telomere shortening, inducing DNA damage lesions.
Up to 100 types of oxidized bases can arise from the effect of radicals on telomeres [91].
In telomeres, such lesions are single-strand breaks (SSBs), abasic sites, and fragmented
pyrimidines and purines. Of all the bases, guanine is the most susceptible to oxidation. In
particular, ROS accounts for the increased incidence of 8-oxo guanine (8oxoG) lesions in
telomeres (Figure 1) [92]. Meanwhile, it has been noted that the 8oxoG lesions found in
senescent cells are 35% greater than in normal cells [93] (Figure 1). Compared to genomic
DNA, the adduct is present in this location in a more significant proportion—even seven
times more [90].

Secondly, ROS have been shown to directly cause DNA damage by causing the
increased formation of 8-oxo guanine (8oxoG) lesions in telomeres, oxidizing nucleoside
bases [94], which, if left unresolved, can result in G-T or G-A transversions. The increased
incorporation of 8oxodGTP opposite A at telomeres can generate TGAGGG repeats instead
of GTAGGG and TGAGGG repeats during replication [94]. In line with this, 8oxodGTP
has been demonstrated to operate as a blocking factor, interfering with telomerase activity
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and preventing telomere length extension mediated by telomerase. Telomerase enzyme
does not fulfill its role when 8oxoG appears in the nucleotide pool as 8-oxodGTP [95,96].
As a result, these conversions can create DNA damage and lead to senescence due to the
increased pace of telomere shortening [97].

Thirdly, oxidative stress can also accelerate telomere shortening, dissociating the
binding of shelterin protein complex proteins at telomeres [98]. The six key proteins that
constitute the shelterin complex—telomere repeat-binding factor 1 (TRF1), TRF2, protection
of telomeres 1 (POT1), TPP1, TRF1-interacting nuclear factor 2 (TINF2), and RAP1—are
essential in preventing telomeres from being identified as DNA damage-exposed sites.
There is growing evidence linking the pathophysiology and development of leukemias to
mutations in the expression of numerous shelterin components, especially POT1, TPP1,
and TIN2 [42]. In CML, CLL, and AML, telomeres may become “uncapped”, or no longer
shielded by the shelterin protein complex, when its function is compromised [25,99,100].
Furthermore, POT1 mutations are more prevalent in CLL types with poor prognosis, in
which the patients exhibit severe clinical signs, increased telomere shortening rate, and
complex cytogenetics [101]. On the molecular setting, telomeres become “uncapped”,
triggering the ATR-associated DNA damage response [101]. In addition, TPP1 mutations
are less commonly observed in leukemias; however, they have been detected in AML and
myelodysplastic syndromes (MDS), which may impact telomere stability [37,100]. On the
molecular setting, oxidative damage at telomeres may cause the displacement of shelterin
proteins TRF1 and TRF2, potentially contributing to telomere dysfunction [98]. For ex-
ample, ataxia telangiectasia and Rad3-related (ATR) kinases are activated when TRF2 has
been eliminated from telomeres in oxidative stress conditions (Figure 1). In the case of
TRF2 loss, the telomere dysfunction-induced foci (TIFs) are formed by the DDR activa-
tion, mediating phosphorylation signals to the downstream effectors checkpoint kinase
1 (CHK1)/checkpoint kinase 2 (CHK2) and stabilizing p53 transcription factor, thereby
causing the accumulation of telomere dysfunction-induced foci (TIFs) (Figure 1) [102]. In
this context, the DNA damage is manifested due to the histone variation H2AX and 53BP1
(p53-binding protein 1) (Figure 1) [103].

In dealing with oxidative DNA damage, 8-oxoguanosine DNA glycosylase-1 (OGG1)
is an enzyme that can effectively remove the 8-oxoG insult from either nuclear or mitochon-
drial DNA [104]. When 8oxoG develops in opposition to C, OGG1 glycosylase identifies
it, excising the lesion and forming an abasic site. Indeed, the ineffective OGG1 excision
activity accounts for the inactivation of the base excision repair (BER) pathway, which
can efficiently clear 8oxoG lesions from the D-loops and G-quadruplexes at telomeres
(Figure 1) [104]. Meanwhile, the DNA polymerase fulfills its role, misincorporating A
opposite 8oxoG. Then, MUTYH glycosylase removes A opposite 8-oxoG, generating a gap
usually filled in by Pol λ or Pol β in the BER pathway [105]. As a result, the defective DNA
repair systems stimulate telomere dysfunction by their inability to excise oxidized bases at
telomeres (Figure 1) [104].

Oxidative stress also accelerates telomere shortening, since poly(ADP-ribose)-polymerase-
1 (PARP1), the DNA damage sensor-dependent repair component of the base excision repair
(BER) process, is ineffective [106]. Telomeric single-strand DNA breaks (SSBs) accumulate
and eventually develop into potentially double-strand breaks (DSBs), which cannot be
manipulated by the homologous recombination (HR) repair pathway or error-prone non-
homologous end joining (NHEJ) [107,108].

In addition, the increased susceptibility of telomeric DNA base sequences to oxidative
damage is also attributed to the more cumulative binding of iron (Fe2+) on telomeres than
other sequences of the genome, thereby perpetuating the secretion of hydroxyl radicals
through Fenton reactions [109]. Since the formation of oxidized bases is performed on
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average 100–500 times per day in the DNA of each cell in humans [110], 1200 oxidized
bases in each cell cycle are expected [111].

Consistent with this, telomerase is considered critical for sustaining mitochondrial
homeostasis because the TERT can protect mitochondrial function by reducing the levels
of free radicals. The telomerase protects mitochondria due to its ability to increase the
potential across the mitochondrial membrane [106]. According to studies, TERT can
improve mitochondrial DNA repair and lower the formation of ROS in the mitochondria,
both of which are essential for preserving cellular energy production and minimizing
oxidative damage [112]. Maintaining cellular metabolism depends on TERT’s role in
coordinating the expression of the mitochondrial genome. It binds to mitochondrial DNA
(mtDNA), shielding it from oxidative damage. It also increases the production of electron
transport chain components and antioxidant enzymes like superoxide dismutase, which
improves mitochondrial function [113].

On the contrary, the oxidative stress accelerates telomere shortening by hindering
telomerase action [95]. Telomerase activity has also been linked to oxidative stress. Ac-
cording to a molecular perspective, telomerase reverse transcriptase (TERT) is removed
from the nucleus and translocated into the mitochondria due to an import leader sequence
at the N-terminus of TERT when oxidative stress occurs [106,114,115]. As a result, the
elimination of nuclear TERT inhibits telomerase action, preventing telomere shortening
(Figure 1). However, mitochondrial telomerase fulfills its role of educating cells in oxidative
stress conditions, leading to apoptotic cell death [106,115].

In this context, it has been reported that telomere dysfunction is related to genotoxic
stress through the activation of the p53 transcription factor and to disturbed mitochondrial
function through the downregulation of PGC1α and PGC1β gene expression [63]. Sahin
et al. have highlighted the connection between telomeres and mitochondrial biogenesis in
this context. Specifically, p53-mediated telomere damage disrupts mitochondrial respiration
as the activated p53 tumor suppressor is recruited at the promoters of PGC1α and PGC1β,
repressing the expression of genes involved in mitochondrial biogenesis [63]. As a result,
oxidative stress, mitochondrial dysfunction, and telomere erosion are interconnected,
resulting in genome instability and leukemia progression.

4. The Telomere Length Signature in Chronic Lymphocytic
Leukemia (CLL)

Over the last fifteen years, there has been an increased focus on prognostic markers in
chronic lymphocytic leukemia (CLL). Initially, genetic markers with high predictive value
for CLL were recognized [116]. For example, the loss of the short arm of chromosome
17 (17p) or the loss of the long arm of chromosome 11 (11q), which includes the tumor
suppressor gene p53 or ATM, constitutes the main prognostic genetic markers for CLL
outcome. The mutation of the immunoglobulin heavy-chain variable (IGHV) region gene
provides prognostic information regarding the aggressiveness of CLL disease [116]. Within
this panel of predictive markers, the deficiencies in the following genes (BIRC3, NOTCH1,
SF3B1) can yield valuable prognostic information (Figure 2) [116]. In addition to genetic
changes, serum b2-microglobulin, clinical stage, and age, or Eastern Cooperative Oncology
Group (ECOG) status, are also important prognostic factors (Figure 2) [116].
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Figure 2. Genetic and molecular prognostic markers in Chronic Lymphocytic Leukemia (CLL). The
immunoglobulin variable heavy-chain (IGHV) mutation status is a significant predictive factor, with
mutated IGHV linked to indolent disease and unmutated IGHV associated with shorter telomeres
and worse prognosis. Moreover, p53 mutations (17p deletion) and ataxia telangiectasia mutated
(ATM) mutations (11q deletion) impair DNA damage response (DDR), leading to genomic instability,
chemoresistance, and disease progression. Short telomeres could be biomarker of poor prognosis,
driving chromosomal instability and clonal evolution. ZAP-70 and CD38 expression correlate with
unmutated IGHV and aggressive disease, while NOTCH1, SF3B1, and BIRC3 mutations promote
chromosomal instability and therapy resistance. Complex karyotypes and telomere fusion events are
common in patients with ATM/p53 mutations, further worsening prognosis. Finally, high telomerase
(hTERT) expression is linked to shorter telomeres, unmutated IGHV, and potential therapeutic
targeting (created with BioRender.com).

The unpredictable clinical trajectory of leukemias makes it essential to identify re-
liable prognostic markers that guide therapies and provide insights into outcomes. In
this context, chromosome mutations, telomerase reactivation, and telomere shortening
are recognized as risk factors for the emergence of leukemias [117,118]. In terms of CLL
development, telomere length has two facets. On one side, elongated telomere length
values may assist in tumor cell proliferation. On the other side, telomere shortening can
also accelerate CLL progression, leading to genomic instability [117,118]. Several studies
have provided convincing evidence that telomere length and telomerase expression have
prognostic significance in CLL survival and response to therapy [41,119–123]. In most cases
of CLL, telomere length is considered constant, but specific individuals who relapse have
shown fluctuations in their telomere length values [42,124]. However, CLL patients with
short telomeres have an unfavorable prognostic impact, often seen in those who relapse,
displaying low overall survival (OS) [125] and a short time to first treatment (TTFT) [119].
Over the past decades, it has been established that short telomere length values are as-
sociated with advanced disease stages and lower OS, according to early research on the
relationships between telomere length and survival in CLL patients [120,126]. Initially,
Bechter et al. utilized telomere restriction fragment (TRF) analysis to demonstrate that short
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telomere length can be an adverse prognostic factor for CLL survival [120]. In particular,
bone marrow samples with telomere length values less than six kilobase pairs have been
shown to be linked to worse survival outcomes for CLL patients [120]. Similarly, Ricca
et al. have shown that telomere length is a powerful predictor of time before starting
treatment (TTFT), progression-free survival (PFS), and overall survival (OS), considering a
threshold of telomeres to be 4250 base pairs, using TRF analysis [121]. Later, researchers
reported that telomere length is an important predictor of time before starting treatment
(TTFT) and survival for CLL patients [127]. In that study, low-risk patients seemed to
avoid unnecessary therapy based on telomere length analysis [127]. Additionally, other
researchers have demonstrated that telomere length could accurately identify patients with
reduced survival and accelerated disease progression [123]. According to a recent meta-
analysis, prolonged telomeres are linked to an increased overall survival of CLL patients,
showing the prognostic significance of telomere length in CLL [128]. Later studies also
revealed a positive relationship between short telomere length values and other detrimental
characteristics of CLL pathology, such as lymphocyte doubling time [41] and the expression
of CD38 and ZAP70 [125].

4.1. The Association Between Telomere Length and Immunoglobulin Variable Heavy-Chain (IGHV)
Status in Chronic Lymphocytic Leukemia (CLL)

Extensive research has focused on the association between telomere length and
immunoglobulin variable heavy-chain (IGHV) status, affecting the survival of CLL pa-
tients. When researchers conducted flow-FISH experiments, CLL patients with unmutated
IGHV gene signatures presented shorter telomere length values than those with mutated
IGHV [41]. The flow-FISH technique was conducted at polymorphonuclear leukocytes
(PMNLs) or B cells isolated from the blood of B-CLL patients [41]. Similar results regard-
ing the association of telomere length values with IGHV mutation status were observed
when telomere length values were evaluated, using quantitative polymerase chain reaction
(qPCR) [129]. Consistent with this, another study showed that the combination of telomere
length with IGHV mutation status can provide information about the CLL outcome and
survival [126]. Based on the above, the prognostic value of telomere shortening along with
mutant IGHV status was highlighted [121]. Specifically, the researchers used TRF analysis
to examine telomere length values, showing that telomeres can provide predictive informa-
tion about progression-free survival (PFS), overall survival (OS), and time to first treatment
(TTFT) of CLL patients [121]. Correspondingly, telomere length can provide predictive
information about CLL progression and time to first treatment (TTFT) [119]. It was proved
that CLL patients with IGHV unmutant status presented shorter telomeres, while an in-
crease in the IGHV mutational burden was linked to longer telomeres of CLL patients [119].
Indeed, the prognosis for CLL patients with long telomeres and mutant IGVH is much
better than that of patients with short telomeres and unmutated IGVH, suggesting that
telomere length can be a potential marker for the IGHV mutant status [119]. In addition,
another study has shown that telomere length can offer more prognostic information within
the CLL groups with mutant IGHV status, being a better prognostic factor than IGHV
status [129]. Lastly, it has been noted that CLL patients with unmutated IGHV present
increased telomere shortening rates along with respective genomic aberrations [130].

In addition, researchers have employed TRF analysis to assess telomere length values
in germinal center (GC) lymphocytes across a wide range of mature B-cell lymphoprolifera-
tive disorders (MBCLDs) [131]. It has been highlighted that telomere length is reduced in
CLL disease and mantle cell lymphoma compared to diffuse large B-cell lymphoma, Burkitt
lymphoma, and follicular lymphoma, suggesting that GC-derived tumors are associated
with telomere elongation [131]. These findings indicate that GC-derived tumors have long
telomeres and mutant IGHV status, since naïve B cells are characterized by unmutated
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IGHV status, and GC-mediated mature B cells exhibit mutated IGHV status [131]. Also,
low proliferative neoplasias with short telomeres are shown to be treated more effectively
using telomerase inhibitors [131]. However, other teams have demonstrated that patients
with poor-prognosis, IGHV-unmutated, GC-inexperienced CLL cells have lower telomere
length values than those from patients with IGHV-mutated CLL, clarifying the association
between short telomeres and less favorable outcomes in CLL [41,126,129].

In addition, researchers have used the primary human tissues of CLL patients and
proved the increased turnover of the neoplastic clone and subsequent short telomeres at
cells can induce genomic instability, providing compelling evidence that CLL cells experi-
ence a telomere-based crisis that promotes CLL progression [132]. In particular, CLL cells
had defective telomeres, using single-telomere length analysis (STELA) [133]. Additionally,
the scientists pointed out that complete telomeric loss events, fusion events, and genomic
rearrangements were centered at telomeres, implying that telomere shortening is a critical
mediator of severe genomic instability [133]. In addition, patients with dysfunctional
telomeres also had poor prognostic indicators of CLL disease including (Binet stage C,
VH-unmutated status, and high Zap-70 expression) [133].

In order to elucidate the potential prognostic value of telomere length in CLL pathol-
ogy, CLL patients under different therapeutic regimens were evaluated. Interestingly,
high-risk, relapsed CLL patients treated with alemtuzumab were shown to have short
telomeres that are significantly correlated with the limited progression-free survival (PFS)
of CLL patients, suggesting that telomere shortening drives genomic instability in high-risk
CLL patients [134]. Also, CLL patients treated with a chemoimmunotherapy (CIT) combina-
tion composed of fludarabine, cyclophosphamide, and rituximab (FCR) illustrated different
survival outcomes depending on their genetic characteristics. In particular, IGHV-mutated
patients presented significantly better overall survival (OS) than that of IGHV-unmutated
patients, and patients with 17p deletion (p53 mutation) or 11q deletion (ATM mutation)
experienced poorer outcomes with this regimen [99,135,136]. CIT resistance and decreased
survival were shown to be linked to p53 alterations in CLL patients [137]. Low-burden p53
mutations were proved to exert a detrimental prognostic effect in CLL patients who did
not receive treatment, since p53 mutations existed before the therapy of CLL patients and
grew to become the predominant clone during patients’ relapse [137].

From this perspective, the potential prognostic value of telomere length in predicting
the response to a FCR chemotherapeutic scheme in CLL patients was also underlined.
Initially, CLL patients with short telomeres at the point where telomere fusions appeared
showed worse overall survival than others [138]. In this way, the prognostic value of telom-
eres was proved, regardless of cytogenetic risk factors and IGHV mutation status [138].
The detection of telomere fusion events in early-stage patients with telomere shorten-
ing provided important predictive information about telomere length and CLL disease
progression [133]. The presence of telomere fusions was shown to occur before CLL de-
velopment, and their frequency increased with disease progression [133]. Indeed, the
critical short telomeres start rounds of anaphase-bridging, breaking, and fusion, causing
extensive genomic reorganization that could lead to the tumor’s clonal development and
deficiencies in DNA damage checkpoint response [133]. In another study, researchers used
high-throughput single telomere length analysis (STELA) assay to examine if CLL patients
with telomeres inside the fusogenic range (TL-IFR) and CLL patients outside the fuso-
genic range presented differences in their overall survival (OS) and FCR response, taking
into consideration that patients with very short telomeres at their chromosomes probably
present chromosome fusion events [139]. It was proved that patients with telomeres inside
the fusogenic range (TL-IFR) presented reduced FCR response, contributing to low overall
survival (OS) and progression-free survival (PFS) [139].
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4.2. The Association of Telomere Shortening with Genomic Abnormalities Occurred in Chronic
Lymphocytic Leukemia (CLL)

Regarding the relationship between telomere length values and gene abnormalities,
extensive research has been undertaken. In a molecular setting, short telomere length
values in CLL patients have been proven to be associated with high-risk genomic abnor-
malities, including increased genomic complexity, 11q deletion/mutated ATM gene, and
17p deletion/mutated p53 gene, as well as the unmutated status of the immunoglobulin
heavy-chain variable (IGHV) region gene. According to current research, patients with CLL
who have short telomeres are significantly more likely to have deletions in 11q, 17p, and
two or more cytogenetic abnormalities [138,140–142]. In particular, telomere shortening
occurs in CLL patients when genomic areas (11q, 17p) are deleted. Following this, the
activation of DNA damage response (DDR) occurs along with the upregulation of p53
and ATM critical checkpoint genes [130]. In leukemia, research has highlighted that short
telomere length values provide a lot of selection pressure on CLL cells with unmutated
IGHV to lose checkpoint genes like p53 or ATM, further leading to more pronounced telom-
ere shortening and cell divisions [130,143]. These tumor cell clones with dysfunctional
checkpoint genes (ATM or p53 deletion) accentuate the genome complexity with increased
formation of breakage-fusion-bridge (BFB) cycles [125,130,144]

In addition, the relationship between telomere length values, chromosomal alterations,
and karyotype has been extensively elucidated in CLL patients [140]. Initially, researchers
used the quantitative polymerase chain reaction (qPCR) and quantitative fluorescence in
situ hybridization (qFISH) experiments, and they demonstrated that telomere shortening
is more pronounced in CLL patients with at least two aberrations (5). The qPCR analysis
revealed that CLL patients had a significantly shorter mean telomere length than the
control group [140]. Based on the FISH analysis and the cytogenetic characteristics of
patients, it was noted that those with del11q/17p exhibited a lower median telomere
length than CLL patients with the 13q14 deletion as a single alteration, in a statistically
significant manner [140]. The median telomere length was higher in CLL patients with
no aberrations and those with aberrant karyotypes compared to CLL patients with at
least one aberration [140]. Following this, CLL patients with two or more alterations
had a significantly lower treatment-free survival rate than those with no alteration (NA)
and one abnormality [140]. Consequently, telomere shortening is shown to be crucial in
promoting genomic instability in CLL, thereby substantiating the relationship between
telomere shortening and chromosomal abnormalities in this disease.

In another study, researchers have elucidated the association between telomere length
values and the function of the p53 and ATM genes in CLL patients [145]. More specifically,
the researchers examined whether the complex karyotype in CLL patients is attributed
to telomere shortening and loss of repair mechanisms [145]. To address this issue, the
researchers used telomere/centromere fluorescence in situ hybridization (T/C-FISH), en-
hancing the ability to identify structural and numerical abnormalities in interphases and
metaphases of chromosomes (translocations and dicentric chromosomes) after combining
fluorescent in situ hybridization (FISH) in cytogenetic analysis [145]. The results proved
that median telomere length was lower in CLL patients with complex karyotypes [145]. The
accelerated telomere shortening rate was observed in CLL patients with mutant p53 status
and complex karyotype [145]. Similar results arose to a lesser extent when the telomere
length values were examined in CLL patients with complex karyotypes and ATM muta-
tion [145]. As a result, a positive relationship between telomere length, specific cytogenetic
aberrations, and genetic mutations was suggested [145]. In line with this, researchers
employed a karyogram of CLL patients following the in situ hybridization of multicolor
fluorescence (mFISH), which illustrated the complicated karyotype of CLL patients with
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unexpected abnormalities [145]. They showed that chromosome breakage points and
the respective chromosomal translocations were more prevalent in nearby chromosome
areas in CLL patients with aberrant karyotype and p53 deletion or mutation [145]. In
contrast, patients with complex karyotypes without p53 involvement are characterized by
less genome instability [145]. The above findings acquire more importance, taking into
consideration that the T/C FISH labeling enables the accurate identification of chromo-
somal abnormalities, including the reciprocal translocation and the precise location of
chromosome breakpoints [146].

In this context, another recent study has also reported that changes in telomere length
values were associated with p53 mutation status and other related genomic features in CLL
patients during their follow-up [147]. In particular, young CLL individuals exhibited a con-
siderably higher frequency of short telomeres, based on qPCR analysis [147]. The increased
telomere instability in young CLL individuals implied the evolution of leukemia clones
with p53 mutations, suggesting a potential mechanism behind telomere shortening, which
is independent of B-cell receptor (BCR) signaling [147]. This shows that telomere shorten-
ing and genomic p53 abnormalities in CLL patients provide poor prognostic information
regarding CLL disease progression [147]. Indeed, a significant positive relationship was
also observed between diminished BCR signaling activity and telomere shortening [147].

Interestingly, telomere dysfunction has been seen in CLL, which is associated with
complicated karyotypes and chromothripsis. A series of detrimental genomic events begins
to occur, including telomere crisis, which is defined by the critical telomere shortening
and the general malfunctioning of telomeres. As observed in CLL, telomere shortening is
associated with the increased generation of breakage-fusion-bridge (BFB) cycles in which
chromosomes without telomeres fuse end-to-end and break during mitosis, thus increase
genome instability [133,140,148,149]. Telomere crisis drives the positive selection of tumor
clones with mutations that confer advantages for the proliferation of cancer cells, rendering
them therapy-resistant. Interestingly, short telomeres and chromothripsis have been linked
to reduced chemotherapy response in CLL [150].

4.3. The Inclusion of Telomere Length as a Parameter in Clinical Trial of Chronic Lymphocyic
Leukemia (CLL)

The potential predictive significance of telomere length in CLL has been examined
from a clinical perspective. In this context, a clinical trial has demonstrated that telomere
length can play a crucial role in assessing the course of the illness. In particular, short
telomere length values at diagnosis are associated with poor clinical outcomes, indicating
the unfavorable prognostic significance of telomere length in CLL disease [124]. Notably,
the positive association of telomere length with other adverse prognostic factors for CLL
progression, such as p53, NOTCH1, and SF3B1 alterations, was reported [124]. In this
clinical trial, telomere length remained stable in follow-up CLL patients 5–8 years after
their diagnosis, regardless of the intervention [124].

Following this, another clinical trial showed that CLL patients with 17p- and 11q-
associated p53 and ATM loss, respectively, exhibited the shortest telomeres, even when
these abnormalities were present in minor subclones [42]. Thus, telomere shortening was
observed to occur before the emergence of high-risk aberrations, contributing to the disease
progression [42]. Consequently, telomere shortening is linked to both clonal evolution and
an increase in genomic complexity, underscoring the significance of telomere length as a
potential biomarker, especially in assessing the progression of non-high-risk CLL [42].

In line with this, a recent high-impact factor journal proved that only a tiny percent-
age of CLL patients achieved long-term progression-free survival (PFS). The prognostic
markers that appeared to provide information for CLL patients following chemotherapy
included the evaluation of p53 status, IGHV mutation status, telomere length, and CD49d
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expression [151]. The results of that study are consistent with the role of prognostic markers.
Short telomeres, unmutated IGHV status, and increased CD49d expression in leukemia
cells are linked to unrestricted cell proliferation, leading to greater genomic complexity.
The p53 deficiency in leukemia cells seems to evade the apoptotic response to drugs, which
is associated with chemotherapy resistance [151]. As a result, CLL patients with mutated
IGHV, long telomeres, and absent CD49d expression following treatment with CIT showed
a lower risk of relapse and improved PFS [151]. Notably, the inclusion of telomere length
in the existing prognostic stratification algorithm makes it easier to identify a subset of
patients who benefit most from FCR/FCR-based treatment plans [151].

In addition to the above, telomerase has been studied as a potential predictive
biomarker for the progression of CLL. Importantly, researchers have claimed that hu-
man telomerase reverse transcriptase (hTERT) expression can have a potential predictive
significance in B-CLL cases [127]. In particular, an inverse relationship was revealed be-
tween the percentage of IGVH mutational load and full-length (FL) transcript encoding the
functional telomerase [127]. The overall survival of CLL patients with IGVH unmutated
cases and low hTERT levels was comparable to that of CLL patients with IGHV mutant
status and high hTERT levels, using the threshold of 40 copies of FL hTERT transcripts [127].
In this manner, the length of the hTERT transcript provides prognostic information about
the overall survival of CLL patients [127].

To sum up, telomere length and telomerase expression can be potentially prognos-
tic biomarkers in providing information about CLL survival, progression, and response
to therapy.

5. The Telomere Length Signature in Chronic Myeloid Leukemia (CML)
The clonal, myeloproliferative disease known as chronic myeloid leukemia (CML)

begins with aberrant changes in the hematopoietic stem and progenitor compartment
(HSPC), thus leading to a significant increase in myeloid cell size [152]. In CML, the
Philadelphia chromosome (Ph) and the BCR-ABL fusion oncogene are primarily generated
when chromosome 9 and chromosome 22 undergo a reciprocal translocation (t(9;22)),
accounting for unlimited cell proliferation and resistance to apoptosis [153]. In general, the
clinical course of CML includes a relatively stable chronic phase (CP) that lasts for several
years before moving into an accelerated phase (AP) and ultimately blast crisis (BC) [25,154].
In the CP of CML disease, less than 10% of the cells in the bone marrow and blood are blast
cells in chronic phase CML [25,154]. In the AP of CML disease, blast cells constitute 10% to
19% of the blood and bone marrow. In the blast phase of CML disease, at least 20% of the
bone marrow or blood cells are blast cells [25,154].

Initially, it was shown that the telomere length of Ph+ peripheral leukocytes was
shorter by one kilobase compared to that of controls [155]. In line with this, fluorescence
in situ hybridization and flow cytometry experiments proved that the telomeres of leuko-
cytes derived from CML patients were significantly shorter than those of age-matched
controls and normal lymphocytes from the same individual [156]. On the molecular set-
ting, the increased telomere shortening in the peripheral blood myeloid cells in CML
patients was substantiated by the accelerated cellular turnover of clonal BCR-ABL-positive
hematopoietic stem progenitor cells (HSPCs) [156]. Compared to cells from CML patients
in chronic phase (CP) or cytogenetic remission, leukocytes in accelerated phase or blast
phase (AP/BP) displayed a noticeably more pronounced telomere shortening rate [156]. In
particular, telomeres of leukocytes were noticeably shorter in patients who transitioned
from CP to BP of CML disease within two years than in those who did not [156]. In addition,
it was highlighted that telomere length reduction in the leukocytes of CML patients was
substantially correlated with time from diagnosis to AP but not during the progression
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from diagnosis to BP [156]. Overall, telomere shortening in CML patients emerged as a
strong prognostic marker for disease progression [156]. In this context, another study has re-
ported that the telomere length in leukocytes of CML patients was reduced by 2.2 kilobases
compared to that of controls [157].

Based on this, the telomere length in CML patients was studied at all phases of
the disease, and the follow-up of CML patients was based on the cytogenetic response
to imatinib mesylate [158]. Follow-up measurements were performed on patients who
achieved either a complete cytogenetic response (CCR) or no complete remission (CR) [158].
The flow-FISH experiments showed that telomeres in the accelerated phase (AP) and blast
crisis (BP) of CML patients were significantly shorter than in the chronic phase (CP) of
CML patients. Importantly, the same study showed that the mean telomere shortening
was substantially more significant in high-risk CML patients with high Hasford score
than in low-risk patients at diagnosis [158]. As the CML disease progresses, the rate of
shortening was observed to be 10–20 times observed to be increased than that of normal
granulocytes [158]. In addition, the flow-FISH technique was applied to peripheral blood
leukocytes in CML patients.

In CML, telomere length can be a prognostic marker for monitoring therapy effective-
ness. According to ELN criteria, patients with the longest telomeres have a lower clinical
risk profile than those with shorter telomeres, suggesting the importance of telomeres in
predicting disease progression [159]. The telomere length values can provide essential
insights into TKI responsiveness after 12 and 18 months [159]. Regarding tyrosine kinase
inhibitor (TKI) treatment, individuals who had been taking imatinib for over 144 days
exhibited noticeably longer telomeres than those who had just initiated TKI treatment [160].
In comparison to samples from patients with minor cytogenetic response or no cytogenetic
response, telomere length was found to be greater in samples from patients in significant
or complete cytogenetic remission [160].

Besides the potential prognostic value of telomere length, telomerase also has potential
prognostic implications during CML disease progression. Telomerase seems to provide
crucial predictive information about the CML disease progression and survival [155,161].
Interestingly, there is a correlation between telomerase activity and the development
of acute vs. chronic types of CML [155,162]. Initially, it was shown that telomerase
activity was significantly higher in the BP than in the CP of CML disease, considering
that CP-CML showed detectable telomerase activity above baseline [155]. In particular,
telomerase activity is increased in CP-CML and may rise by up to 50 times in the BP of
CML patients [155,162].

From a therapeutic perspective, BCL-2 and Bruton’s tyrosine kinase inhibitors (BTKis)
affect the telomere length dynamics in chronic myeloid leukemia (CML). According to a
study, BTK has a crucial role in CML’s imatinib resistance [163]. The imatinib targets the
fusion BCR:ABL1 gene that forms the so-called Philadelphia chromosome [163]. Never-
theless, there is currently little direct evidence connecting BTK inhibitors to alterations
in telomere length in CML. Accordingly, telomerase activity may be decreased by BCL-2
inhibition, implying a reduction in telomere length values, considering that increased
telomerase activity has been linked to BCL-2 upregulation [164]. Although venetoclax and
other BCL-2 inhibitors are approved for use in several blood cancers [165,166], the effect of
these inhibitors on telomere length values in CML remains unknown.

In addition, the treatment of chronic myeloid leukemia (CML), particularly in patients
who are resistant or intolerant, has changed with the introduction of second-generation TKIs
(such as dasatinib, nilotinib, and bosutinib) and third-generation TKIs (such as ponatinib
and asciminib) [167]. Progressive telomere shortening is frequently seen in patients who
achieve long-term molecular remission, especially in CD34+ progenitor cells [168].
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Regarding the change in telomere length dynamics from used therapeutic in CML,
a clinical trial examined whether the telomere length changes in peripheral blood gran-
ulocytes were related to therapy response with the selective tyrosine kinase inhibitor
(imatinib) [169]. During the therapy response of CML patients up to 144 days, they had
shorter telomeres than those of CML patients after 144 days of therapy response [169]. In
another clinical trial, the degree of telomere destruction in Ph-negative hematopoiesis fol-
lowing a successful therapy for CML was assessed over a 22-month follow-up period [170].
The results showed that CML patients in complete cytogenetic remission had accelerated
telomere shortening compared to healthy individuals [170]. In line with this, a recent
clinical trial compared the telomere length of non-leukemic BCR ABL-CD34+CD38 nega-
tive hematopoietic stem cells (HSC) to that of their BCR-ABL positive leukemic stem cell
(LSC) derived from the bone marrow of CML patients at diagnosis [168]. As anticipated,
LSC exhibited substantially more significant telomere shortening than non-leukemic cells.
Indeed, the degree of LSC telomere shortening is related to the number of leukemic clones,
suggesting that telomere shortening is a predictable consequence of uncontrolled leukemia
cell growth [168]. No statistically significant differences were observed in granulocytes
between AML patients and controls. The results of this clinical trial provide compelling
evidence regarding the prognostic value of telomere length in CML [168]. To sum up, the
prognostic value of telomere length is proven in CML disease during pathogenesis and
therapy response.

6. The Telomere Length Signature in Different Types of Acute Leukemias
Acute leukemia represents a disease caused by clonal expansion and arrest at a specific

stage of myeloid or lymphoid hematopoiesis. Leukemia is a disease characterized by
cytogenetic and molecular abnormalities, and it has significant biological and prognostic
implications that impact treatment stratification. A large number of chromosomal rear-
rangements characterize both types of ALL [171]. The origin of ALL is immature T or T
lymphoid progenitors, whereas myeloid progenitors give rise to AML. Known genetic
alterations in B-ALL are hyperdiploidy or hypodiploidy, t(12;21) or ETV-RUNX1 fusion
gene, t(9;22) or lysine-specific methyltransferase 2A (KMT2A) gene rearrangements, IKZF1
deletion or intrachromosomal amplification of chromosome 21 (iAMP21) or t(1;19) TCF3-
PBX1 fusion gene. Each of the above cytogenetic abnormalities carry prognostic significance
and aid in risk stratification and the therapeutic management of ALL patients [172]. Be-
sides the TERT and the shelterin protein complex, expression varies according to type
of ALL [173]. ALL therapy includes multi-agent chemotherapy with CNS prophylaxis
and hematopoietic stem cell transplantation (HSCT) in high-risk or relapsed patients. Tar-
geted therapies are added in cases of known targetable genetic lesions, such as TKIs in
Philadelphia positive B-ALL [174,175]. The common genetic abnormalities of AML are the
following: translocation between chromosomes 15 and 17 (PML-RARA in APL), translo-
cation between chromosomes 8 and 21 (RUNX1-RUNX1T1), FLT3-ITD, NPM1, CCAAT
Enhancer Binding Protein Alpha (CEBPA) mutations, the inversion of chromosome 16, and
KMT2A rearrangement [176]. Telomere shortening is a characteristic feature of high-risk
AML [96]. Most AML treatment protocols are based on chemotherapy with anthracyclines
and cytarabine, with HSCT reserved for high-risk or relapsed patients. Currently used
novel therapies include anti-CD33 monoclonal antibody, targeting inhibitors against Fms-
like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 and 2 (IDH1/2) and venetoclax,
a BCL2 inhibitor. Acute promyelocytic leukemia (APL) is treated with all-trans retinoic
acid (atRA) and arsenic trioxide (ATO) [177,178].

Acute Lymphoblastic Leukemia (ALL) accounts for 80% of all childhood leukemias, of
which 85% are B-cell ALL (B-cell) and 15% T-cell (T-ALL) [179]. There are distinct molecular
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markers for T-ALL and B-ALL cells. Some of them, including cytokine receptors and protein
kinases, are reliant on chromosome rearrangements and mutations in lymphocytes [172].
Remarkably, up to 75% of childhood acute lymphoblastic leukemia cases exhibit evidence
of chromosomal gains, losses, or translocations.

Adult ALL has generally had a poor prognosis, with limited treatment options and a
cure rate of less than 40% compared to pediatric ALL [180]. More than 70% of the various
forms of leukemia that occur in children are caused by ALL [181]. Adult patients exhibit
more cooperative mutations, fostering epigenetic changes that may lead to the formation
of B cells [182]. In children, the overall five-year event-free survival rate for the disease
exceeds 90%. However, recurrences result in the deaths of 10–20% of patients, which is
highly fatal [183].

Regarding the prognostic markers of B-cell acute lymphoblastic leukemia (B-ALL), age
and white blood cell count are two significant predictors of the outcomes in B-ALL [184].
Patients aged between 1 and 10 years with an initial white blood cell count (WBC) of less
than 50,000/mm3 [standard risk (SR)], which encompasses two-thirds of B-ALL patients,
have an event-free survival (EFS) of over 80% within 4 years. Conversely, the remaining
patients [high risk(HR)] have an EFS of 75% within 4 years [184]. Regarding age, patients
under 1 year of age and those over 10 years of age have a worse prognosis than children
between 1 and 10 years of age. Infants under 1 year of age have the worst prognosis [184].
Regarding white cell count, children with a higher WBC tend to have an inferior prognosis.
In addition, factors that are considered in risk classification include the immunophenotype
and cytogenetics of ALL patients. Cytogenetics has revealed that combinations of chromo-
somes 4 and 10 trisomies are associated with favorable outcomes. Similarly, translocations
involving ETV6-RUNX1 are also linked to excellent prognoses. However, translocations
involving the MLL rearrangement on 11q23 are associated with inferior prognoses. Histori-
cally, the Philadelphia chromosome t(9;22) (q34;q11) ALL has been associated with a poor
prognosis [184]. However, incorporating tyrosine kinase inhibitors (TKIs) into the intensive
chemotherapy regimen has significantly improved the disease’s outcome. Hyperdiploidy,
characterized by a chromosome number above 50 or a DNA index of 1.16, is associated
with a favorable prognosis. On the contrary, patients with hypodiploid blasts, having fewer
than 44 chromosomes or a DNA index of 0.81, have a significantly poorer prognosis [184].

Noteworthy, the presence of central nervous system (CNS) disease at diagnosis is
an adverse prognostic factor despite the intensification of therapy with CNS irradiation
and additional intrathecal therapy [184]. Of particular significance is the prognosis for
patients who do not achieve remission at the conclusion of induction therapy. Individuals
with positive Minimal Residual Disease (MRD) at the end of induction therapy exhibit a
significantly unfavorable prognosis [184].

In general, acute leukemia patients are characterized by telomere shortening com-
pared to controls [185]. Initially, Southern blot analysis proved that this decreasing trend
of telomere length values is accelerated when acute leukemia patients relapse [185]. Fur-
thermore, B-ALL patients have shorter telomere length values compared to those of T-ALL
patients [185]. In contrast, a negative correlation between telomere length and telomerase
has been observed in acute leukemia patients [185]. Compared to patients with early-
stage disease, those with late-stage disease have higher telomerase activity and shorter
telomere length values, presenting more adverse five-year survival [185]. Overall, the
short telomere length values in combination with high telomerase activity are proven poor
prognostic indicators of acute leukemia, contributing to advanced disease progression and
relapse [185].

Regarding telomere length in ALL, T-ALL patients present with longer telomeres
than B-ALL patients. Indeed, ALL patients with complex karyotypes exhibited a faster
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telomere shortening rate than all patients with normal karyotypes [186]. The increased rate
of telomere shortening can also provide predictive information about the aggressiveness of
ALL [186]. Recently, it has been underlined that the increased recovery rates of B-ALL are
associated with low telomerase activity and telomere length elongation [173].

In the majority of studies, it has been shown that acute leukemias have high telomerase
activity and short telomere length values. According to Capraro et al., telomere length
is significantly lower in AL patients with an aberrant karyotype compared to those with
a normal karyotype, and the shortest telomeres are found in individuals with multiple
abnormalities. In particular, all cases with aberrant karyotypes had shorter telomeres than
those of ALL patients with a normal karyotype, with telomerase activity being greater in
B-ALL cases compared to those of T-ALL cases [186]. In line with this, male patients have
been found to have a higher telomerase activity in ALL cells than female patients. This
could be because estrogen has an adverse regulatory effect on telomerase [187].

In addition, it is essential to note that the levels of telomerase in adults’ lymphoblasts
with ALL have been observed to be lower compared to those in patients with pediatric
ALL [188,189]. In this manner, the telomeres in adults’ lymphoblasts are shorter than those
of children. In lymphoblasts of high-risk pediatric patients at diagnosis, the telomerase
levels are increased, contributing to the establishment of telomerase as a prognostic marker
in children with ALL [188,189]

Even though allogeneic hematopoietic stem-cell transplantation (HSCT) offers children
with high-risk ALL exceptional cure rates, relapses continue to be the primary cause of
treatment failure [190]. The donor-killer cell immunoglobulin-like receptor (KIR) genotype
has been shown to affect the recurrence rate in pediatric ALL after hematopoietic stem cell
transplantation (HSCT). Specifically, the presence of KIR B haplotypes at the centromeric
region and their absence at the telomeric region are associated with a decreased risk of
relapse in children with ALL [190].

In acute leukemias, AML is a type of aggressive cancer arising from gene or chromo-
some mutation in blood or bone marrow cells and is more prevalent in adults aged 60 and
older. Although at least one cytogenetically identifiable lesion is present in 55% of AML
patients at diagnosis, the remaining 45% are not [191].

Several studies have elucidated the role of telomere length in different types of acute
leukemia. Patients with ALL have presented with shorter telomeres than those with AML.
In contrast, the telomeres of AML patients become shorter at a faster rate than those of ALL
patients when the disease worsens [186,189]. The shortest telomeres are usually found in
ALL and AML cells with cytogenetic abnormalities, while the lowest levels of telomerase
expression and longer telomeres are found in AML [186,189].

Significant differences have been observed between ALL and AML cells regarding
telomerase expression. Initially, telomerase is higher at the time of diagnosis or progression
of AML patients than at the time of remission in the disease, and it corresponds with
hTERT but not with an RNA template (hTR) expression in AML [192]. In line with this,
AML patients with several cytogenetic abnormalities have presented with the shortest
telomeres [193].

In adults, telomerase expression seems to be highest in B-cell ALL, followed by AML
and T-cell ALL [186]. An increase in telomerase activity is not simply related to an overall
rise in TERT expression but to altered levels of expression of the different isoforms of
TERT [186]. Consistent with this, telomere length values were also observed to be higher
in AML, and the telomere length values followed a decreasing trend first in T-cell ALL
and then in B-cell ALL, confirming the reversing action of telomerase against telomere
shortening [186]. Meanwhile, AML and B-cell ALL presented higher hTERT and telomerase
expression, followed by T-cell ALL in children [194].
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In addition, the prognostic value of telomere length in AML is substantiated since
the overall survival of AML patients is prolonged for six months when their telomeres
are elongated [195]. In particular, longer telomere length values are proven to be associ-
ated with mutations in the epigenetic modifying enzymes, the IDH1/2 genes; a positive
relationship has been observed between IDH mutations and positive clinical outcomes
in AML [196]. This study provides initial evidence about the positive prognostic role of
telomere length elongation on the overall survival of AML patients [195]. Consistent with
this, it was also revealed that bone marrow mononuclear cells from patients with acute
myeloid leukemia presented an accelerated telomere shortening rate from their diagnosis
to their relapse. On the contrary, telomere length elongation was observed in the bone
marrow mononuclear cells of diagnosed patients during their chemotherapy-induced re-
mission [197]. In a recent study, thirteen telomere-regulated genes (TRGs) were evaluated
for the prognosis of AML [198]. In particular, B cells, T helper cells, natural killer cells,
tumor-infiltrating lymphocytes, regulatory T (Treg) cells, M2 macrophages, neutrophils,
and monocytes were more prevalent in the group of AML patients with a high expression of
the TRG signature, supporting its prognostic value for poorer overall survival among AML
patients [198]. Accordingly, the TRG signature can aid in risk assessment, thus guiding
specialized treatment approaches [198]. As a result, a potential predictive and therapeutic
biomarker can be generated by combining the characteristics of the immune cell landscape
and the expression of telomere-related genes. Interestingly, approximately 10% of patients
with TBDs are at high risk of developing cancer, primarily myeloid neoplasms (MNs) such
as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) [199]. Notably,
patients with TBD are more likely to develop clonal hematopoiesis (CH), which is char-
acterized by a clonal growth of mutations in myeloid genes in hematopoietic stem and
progenitor cells, preceding the occurrence of MDS/AML [200]. Dyskeratosis Congenita is
the most prevalent TBD. The detection of a disease-causing mutation in one of the genes
influencing telomere length balance, specifically DKC1, TERC, and TERT, can contribute to
the identification of TBD [201].

In this context, patients with Hodgkin’s lymphoma (HL) and non-Hodgkin’s lym-
phoma (NHL) who underwent autologous hematopoietic stem cell transplantation (aHCT)
one to three years prior experienced recurrence, developing acute myeloid leukemia (AML)
or therapy-related myelodysplasia (t-MDS) due to reduced telomere length values [202].
After autologous transplantation for lymphoma, therapy-related myelodysplasia or acute
myeloid leukemia may occur due to a persistent rate of telomere shortening in myeloid
cells, regardless of other risk factors for these diseases, as evidenced by multivariate anal-
ysis [202]. One year following aHCT, short telomere length values in the hematopoietic
cells of HL/NHL patients typically precede the onset of AML/t-MDS, suggesting the
prognostic significance of telomere shortening in these diseases [202]. This accelerated
telomere shortening observed in HL/NHL patients who relapse after aHCT likely reflects
the rapid proliferation of the leukemic cell clone, along with the inactivation of telomerase
during the early stages of leukemia [202]. Regarding myelodysplastic syndrome (MDS),
the aforementioned results can be supported since a subgroup of patients with greater
severity of MDS and complex karyotypic alterations show reduced telomere length reduc-
tion [203,204]. Some individuals with bone marrow (BM) failure syndromes have mutations
in telomere-related genes [205]. For example, Dyskeratosis Congenita, an inherited BM
failure disease, is linked to an increased risk of AML due to telomerase dysfunction [206].

Last but not least is a telomeric repeat-containing RNA (TERRA), which is transcribed
from subtelomeric promoters toward chromosome ends. MLL-rearranged ALL and AML
present the overexpression of TERRA [207,208]. Increased TERRA levels may be a po-
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tential marker, particularly in AML and MLLr-ALL, and they correlate with leukemic
load [207,208].

To sum up, the aforementioned evidence supports the prognostic role of telomere
length in ALL survival and aggressiveness. In the panel of prognostic makers in ALL dis-
ease, telomerase also has its value. Similar findings have been proven in AML pathogenesis.

7. Telomerase—A Potential Therapeutic Target in Leukemias
The primary function of telomerase is to preserve telomere length and compensate

for the gradual loss of telomeres after replication cycles. Telomerase is a ribonucleoprotein
complex comprising a telomerase RNA component (hTR), providing an RNA template
and a catalytic protein with telomere-specific reverse transcriptase activity (hTERT), which
extends hexameric TTAGGG repeats to the chromosomal ends [209]. The expression of
hTERT has been associated with telomerase activity [209].

The vast majority of post-mitotic cells are senescent and are characterized by telomere
shortening due to the lack of telomerase activity. On the contrary, the progenitor and cancer
cells display high telomerase activity, contributing to their telomere length maintenance
and unrestricted cell proliferation [63,210,211]. Numerous investigations discovered a
connection between telomerase activity and the clinical aggressiveness of some cancers,
such as leukemia [203].

Hematologic and solid tumors in adults and children are described to have short telom-
eres and detectable amounts of telomerase [212]. In adults, telomerase could provide prog-
nostic information in CLL, myeloproliferative disorders, and solid malignancies [212,213].
In pediatric patients, telomerase has been described as a prognostic marker in both AML
and ALL [214,215] and, for this reason, telomerase inhibitors are administered.

Telomerase is also an appealing target for cancer therapy. The enzyme is found in most
analyzed cancer cells but is absent in nearly all normal somatic cells, making telomerase
inhibitors highly specific and telomerase a universal oncology target. Furthermore, because
normal cells have longer telomeres compared to cancer cells, the toxicity of these inhibitors
in normal tissues is minimal [216,217].

Firstly, it is essential to distinguish between telomerase-based therapies; on the one
hand, therapeutic approaches based on telomerase inhibition are designed to directly
inhibit the enzyme, thus hindering its telomere maintenance mechanism. This leads to the
progressive shortening of telomeres, induced senescence, and culminates in apoptosis [218].
Telomerase inhibitors may trigger both a delayed antiproliferative response via a gradual
mechanism, mostly involving telomere degradation (e.g., hTR inhibitors) or an immediate
antiproliferative response through a rapid mechanism, primarily centered on telomere
uncapping (e.g., hTERT inhibitors) (Figure 3) [219].

On the other hand, a vaccination containing antigen-presenting cells that have been
either exposed to high concentrations of an immunogenic hTERT peptide or engineered to
overexpress an immunogenic portion of hTERT is used in telomerase-targeted immunother-
apy (Figure 3). After being administered to a patient, antigen-presenting cells trigger the
production of a specific immune response against the telomerase antigen epitope. These
cells can identify and eliminate cancer cells that express telomerase (Figure 3) [220]. Telom-
erase vaccines can be DNA, peptide, or dendritic cell-based vaccines that trigger tailored
and powerful anti-leukemia immune responses (Figure 3).

Considerable research has focused on developing drugs targeting telomerase for cancer
treatment. Despite the ongoing challenges, strategies aimed at telomerase hold significant
potential for revolutionizing cancer therapy. Recent advancements in computational models
of human telomerase enhance the likelihood of developing clinically effective drugs [221].



Cancers 2025, 17, 1936 23 of 40

 

Figure 3. The telomerase-based therapeutic options in leukemias. Telomerase inhibitors include
hTR inhibitors that block telomere extension and hTERT inhibitors that disrupt telomerase complex
formation, leading to telomere shortening or uncapping and triggering senescence or apoptosis of
leukemic cells. In telomerase-targeted immunotherapy, peptide vaccines present hTERT antigens
via major histocompatibility complex (MHC) I/II to activate CD8+ and CD4+ T cells. DNA vaccines
deliver hTERT DNA to induce effector T cell responses. In dendritic cell-based vaccines, dendritic
cells are loaded with hTERT peptides or transfected with hTERT mRNA, and they present hTERT
epitopes to stimulate cytotoxic CD8+ and helper CD4+ T cells for killing leukemia cells (created with
BioRender.com).

7.1. Telomerase Inhibitors in Leukemias

Telomerase inhibitors can restrict the growth of malignancies and cause gradual
telomere shortening by inducing the DNA damage response, thereby causing senescence
or apoptosis [222,223]. In addition, telomerase activity plays a crucial role in maintaining
leukemia stem cells’ ability to self-renew and telomere length values. In this regard,
telomerase suppression can interfere with LSC efficacy, thus compromising the risk of
leukemia recurrence [224].

In the field of telomerase inhibitors, a recently approved drug, imetelstat, offers
promising results. The molecular mechanism of imetelstat is based on interfering with
telomerase’s association with the catalytic subunit by attaching to the intrinsic RNA tem-
plate with considerable affinity and specificity [225]. Imetelstat is an hTR inhibitor that
acts by interfering with the RNA component of telomerase (hTR) (Figure 3). This com-
petitive telomerase inhibitor received FDA approval in 2024 for treatment [226]. Recent
preclinical and clinical studies have shown the effectiveness of imetelstat in hematologic
malignancies, specifically myeloproliferative neoplasms, myelodysplastic syndromes, and
AML [212,227]. The imetelstat is considered FDA-approved for treating myelodysplastic
syndromes (MDS), and is being studied for myelofibrosis (MF) and acute myeloid leukemia
(AML) [228]. In AML, imetelstat selectively diminishes leukemia stem cells (LSCs), which,
when paired with chemotherapy, delays the disease course and lowers the potential for
recurrence [229]. In line with this, the clinical benefit of imetelstat is seen in the case of
myeloproliferative neoplasms (MPN) that can convert into cases of AML. In MPN patients
treated with the telomerase inhibitor GRN163L (imetelstat), two phase II clinical trials
have been conducted, demonstrating a positive effect of imetelstat as patients responded
positively [230]. However, telomerase inhibition does not constitute the main mechanism
of action of imetelstat in MPN, as some of the clinical responses of patients are considered
the result of the medication’s adverse effects, such immunosuppression [231]. Imetelstat
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treatment has demonstrated its clinical benefit in patients with essential thrombocythemia,
characterized by an excess of platelets, who did not respond to previous medications or
experienced intolerable side effects [232].

In addition, imetelstat and dasatinib efficiently reduce TKI-resistant LSCs during
the blast phase of chronic myeloid leukemia (CML) by suppressing β-catenin signaling
cascade [224]. From a molecular perspective, the mechanism of imetelstat is based on
reducing the telomerase levels and activity, as imetelstat is designed to target the RNA
component of telomerase (Figure 3) [212,227]. Likewise, in patients with myelofibrosis who
had relapsed or were unresponsive to a JAK inhibitor, imetelstat delayed fibrosis in 21% of
patients [230].

The structure of the telomerase holoenzyme was poorly characterized until recently,
which hindered the development of small-molecule inhibitors. BIBR1532 is a small-
molecule hTERT inhibitor that reduces telomerase activity, ultimately leading to telomere
uncapping. BIBR1532 induces telomere shortening in numerous solid tumor cell lines
in vitro and triggers p53-mediated apoptosis in an acute myeloid leukemia cell line, but
not in nonmalignant hematopoietic cells (Figure 3). Additionally, BIBR1532 inhibited
hTERT expression in primary chronic myelogenous leukemia cells and pre-B-cell acute
lymphoblastic leukemia cells [223,229,233]. As a result, BIBR1532 seems to cause apoptosis
and telomere shortening in AML and CLL cells in a p53-dependent manner. However, the
clinical development of BIBR1532 has been hampered by its poor pharmacokinetic and
bioavailability characteristics [229].

In this context, Li et al. discovered a compound, IX, an imatinib derivative with a
telomerase inhibitor fragment substitution, which eliminated LSCs without affecting HSC
survival [234]. It reduces drug-resistant K562/G and blast crisis CML primary patient
cell viability [234] (Figure 3). Additionally, IX can lower LSC frequency, colony-forming
abilities, and survival. In vivo, IX reduced tumor burden in the PDX model and pro-
longed lifetime [234]. Compound IX reduces telomerase activity and alternative telomere
lengthening. IX also inhibits canonical and non-canonical Wnt pathways [234]. This new
molecule offers promising perspectives in the treatment of drug-resistant leukemia, since
its molecular mechanisms of action rely on combinatorial targeting of signaling pathways
and telomerase action (Figure 3) [234].

Telomerase can also be used as a therapeutic option for ALL in the face of effective
telomerase suppression, particularly in individuals with a high-risk profile [214]. According
to the results of a recent study, imetelstat seems to exert a dose-dependent suppressive
effect on primary lymphoblasts of high-risk acute ALL children, since high-risk pediatric
ALL patients presented increased telomerase levels compared to those of non-high-risk
patients [214]. The elevated telomerase in high-risk pediatric ALL patients could be the
cause of higher telomere length values in lymphoblasts and B and T lymphocytes of ALL
children compared to those of ALL adults [214].

Last but not least, telomerase inhibitors have demonstrated increased potency when
used with conventional chemotherapeutic drugs, which may help overcome the resis-
tance of leukemia cells to standard chemotherapeutic options and improve treatment
results [235,236].

Despite significant progress, no telomerase inhibitors have gained approval for
leukemia treatment, underscoring the need for ongoing research to identify new com-
pounds with enhanced specificity and efficacy. Large-scale clinical trials are essential to
assess the long-term efficacy and safety of these therapies across various leukemia subtypes.
Current findings suggest that telomerase inhibitors exhibit low toxicity in normal cells, pri-
marily affecting malignancies associated with high telomerase activity and short telomeres.
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7.2. Telomerase-Based Immunotherapy in Leukemias

Towards developing leukemia treatment, the emergence of telomerase immunotherapy
provides novel insights into the potential therapeutic options against leukemias, leveraging
telomerase and the host immune system. Telomerase-based immunotherapy has garnered
considerable interest in recent years. Two methods of effective telomerase immunotherapy
have been described: human telomerase reverse transcriptase (hTERT) peptide adminis-
tration and the use of dendritic cell-based telomerase vaccines [237]. In both cases, the
cancer cells are killed explicitly by inducing the host’s cell immunity in an hTERT-specific
manner. Apart from these, TERT peptide and dendritic cell-based approaches, cell and
DNA-based approaches exist. In cell-based approaches, dendritic cells were transfected
with an adenovirus containing TERT cDNA. These cell-based TERT approaches have been
examined in both in vitro and in vivo settings [238,239].

In the field of telomerase peptide vaccines, Vx-001, UV1, UCP-Vax, and GV1001, are re-
garded as essential peptide vaccines that elicit hTERT-specific immune responses [240,241].
The Vx-001 includes two hTERT peptides that are presented on the MHC I complexes of
antigen-presenting cells, causing the killing of cholangiocarcinoma, non-small cell lung
cancer, melanoma, and breast cancer cells by cytotoxic CD8+ T lymphocytes [242]. In
addition to this, the Vx-001 telomerase peptide vaccine is effective in low immunogenic
tumors with low penetration of tumor-infiltrating lymphocytes [243]. The UV1 peptide
vaccine involves three hTERT peptides and has been examined with checkpoint inhibitors.
When patients with malignant mesothelioma were treated with ipilimumab (cytotoxic T
lymphocyte-associated antigen-4, CTLA-4 inhibitor) and nivolumab (programmed death
1 blocker, PD-1 inhibitor) in combination with UV1, they recovered more rapidly, eliciting
immediate immune responses [244]. Likewise, further 5-year monitoring of metastatic
melanoma patients receiving UV1 in conjunction with ipilimumab revealed the accumu-
lation of UV1-specific helper CD4+ T lymphocytes [245]. Accordingly, UCP-Vax consists
of four universal cancer peptides that map hTERT, and they are presented in a major
histocompatibility complex (MHC) class II manner, showing good tolerance and significant
clinical efficacy against non-small lung cancer, hepatocellular carcinoma, glioblastoma, and
human papillomavirus-associated tumors [246].

Several clinical trials have provided clues that the GV1001 is an approved hTERT
peptide vaccine that is effective in hepatocellular carcinoma, pancreatic cancer, non-small
cell lung cancer, prostate cancer, and melanoma [247–250]. Interestingly, a clinical trial has
shown that GV1001 (mapping the 611–626 amino acid sequence of hTERT) and HR2822
(mapping the 540–548 amino acid sequence of hTERT) are telomerase peptide vaccines
that exert effective cytotoxic immune responses in an HLA-A2 restricted manner, thus
contributing to the increased clinical response of patients with non-small lung cancer [249].
In addition, the GV1001 peptide vaccine has been reported to ameliorate T-cell responses
in patients with advanced lung and pancreatic cancer in phase I/II trials, without causing
any clinical adverse effects [251]. The privilege of this GV1001 telomerase peptide vaccine
is based on stimulating cytotoxic CD8+ T lymphocytes and helper CD4+ T lymphocytes,
regardless of patients’ HLA typing [252,253].

Overall, the telomerase peptide vaccines are promising for combatting malignancies
due to their ease of manufacture and high specificity, which itself is due to their high
affinity with antigens. Despite the above, there are several challenges that should be
addressed to enhance their clinical efficacy. First of all, telomerase peptide vaccines induce
specific immune responses. The peptides are presented in an MHC-restricted manner by
antigen-presenting cells. Secondly, they are characterized by low immunogenicity, which is
improved with the help of adjuvants [240].
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In the field of dendritic-based cancer vaccines, dendritic cells have been employed
in cancer immunotherapy over the past ten years to elicit strong antitumor immune re-
sponses [254]. Dendritic-based cancer vaccines offer significant advantages since they stim-
ulate cytotoxic CD8+ T lymphocytes via MHC class I, generating strong and robust immune
responses [255]. In particular, activated CD8+ T cells multiply and convert into cytotoxic T
lymphocytes, which eventually migrate to the tumor region to eradicate numerous cancer
cells [255]. To eliminate cancer cells, cytotoxic T lymphocytes secrete pro-inflammatory
mediators, including cytokines, perforin, and granzyme [255]. An hTERT tumor-associated
antigen is included as a central part of research into this dendritic cell-based immunother-
apy option against cancer (Figure 4) [256]. Interestingly, dendritic cell-based telomerase
vaccines can be formed in two different ways. On one side, the in vitro activation of den-
dritic cells with hTERT antigen epitope and the infusion of stimulated antigen-presenting
cells into the host ex vivo boost the immune system to eliminate tumor cells [257]. On the
other side, dendritic cells fulfill their antigen-presenting role through the overexpression of
hTERT antigen epitope (Figure 4) [258].

Figure 4. The molecular mechanisms underlying dendritic cell-based vaccines. This figure illustrates
the mechanism of dendritic cell (DC)-based telomerase vaccines. Patient-derived DCs are either
transfected with mRNA encoding human telomerase reverse transcriptase (hTERT) and lysosomal-
associated membrane protein 1 (LAMP) or ex vivo loaded with hTERT peptide. Transfected DCs
translate and present the telomerase epitope via major histocompatibility complex (MHC)-I and
(MHC)-II, while peptide-loaded DCs present it via MHC-I. After injection into the patient, antigen-
loaded DCs migrate to lymph nodes and activate cytotoxic CD8+ T lymphocytes, recognizing and
killing hTERT-expressing tumor cells (created with BioRender.com).

Regarding the dendritic cell-based telomerase vaccine, p540 (peptide sequence—
ILAKFLHWL) was revealed as the first tumor-associated antigen (TAA) peptide as a
part of hTERT, presented by the surface of cancer cells in a human leukocyte antigen (HLA)
class I manner (Figure 4) [259]. These telomerase antigen epitopes presented on the HLA
class I surface of cancer cells can cause the activation of cytotoxic T lymphocytes to elimi-
nate hTERT+ tumors from several histologic origins (Figure 4) [260]. In addition, potent
cytotoxicity by cytotoxic CD8+ T lymphocytes has been demonstrated against the following
tumors, including carcinoma, sarcoma, myeloma, and melanoma, as well as newly isolated
lymphoma and leukemia cells, in an HLA-A*0201-specific manner (Figure 4). In addition to
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the lysis of leukemia cells by cytotoxic T lymphocytes, the hTERT epitope can be recognized
by antigen-presenting cells, thereby boosting either the promotion of helper CD4+ T cells
or cytotoxic CD8+ T cell responses (Figure 4) [241,261].

In B-cell chronic lymphocytic leukemia (B-CLL), natural antileukemic cytotoxic T
cells targeting telomerase-derived antigens are generated [262]. In particular, dendritic
cells loaded with the hTERT epitope cause the increased formation of hTERT-specific
cytotoxic CD8+ T lymphocytes (Figure 4) [262]. In this way, the concept of a telomerase
vaccination strategy that utilizes cytotoxic T cells to target tumor cells expressing telomerase
is supported (Figure 4) [35].

Despite the advances in AML therapy, relapse rates remain high and AML’s overall
survival is inferior to ALL. For this reason, an autologous telomerase-based dendritic cell
vaccination called AST-VAC1 (formerly called GRNVAC1) has effectively completed a
phase 2 clinical trial in ultimately relapsed patients with acute myeloid leukemia (AML)
(Figure 4) [35]. Patients received mature autologous dendritic cells loaded ex vivo with
mRNA encoding telomerase and a part of lysosomal-associated membrane protein 1
(LAMP), ensuring the degradation of TERT into small peptides (Figure 4) [258]. In this way,
dendritic cells present the telomerase antigen epitopes in a MHC class I or II to CD8+ T
or helper CD4+ T lymphocytes, boosting durable and specific immune responses against
leukemia cells (Figure 4) [237,238,263,264]. On one side, the hTERT antigen of tumor
cells forms a complex with an MHC class I of antigen-presenting cells, which activate
CD8+ T cells and induce their transformation into cytotoxic T cells that attack cancer cells
through increased secretion of the following factors: perforin, cytokines, and granzyme
(Figure 4) [242]. On the other side, the antigen-presenting cells phagocytose the tumor
antigens supplied by cancer cells after they have succumbed (Figure 4) [242]. The re-
leased hTERT antigenic peptides are presented on MHC class II of antigen-presenting
cells, activating CD4+T cells to assist the killing capacity of cytotoxic CD8+ T lympho-
cytes (Figure 4) [242]. The activated CD4+ T cells undergo differentiation into helper T
lymphocytes that mediate their action through increased release of pro-inflammatory cy-
tokines (Figure 4) [242]. In this way, the tumor immune evasion is thwarted to encourage
a long-lasting anti-cancer response (Figure 4) [265]. In addition, the increased synthesis
of antibodies in the fight against cancer cells is induced after the stimulation of helper
T lymphocytes by the hTERT antigen peptide-MHC class II complexes at the surface of
antigen-presenting cells (Figure 4) [242].

In the case of metastatic prostate cancer, the cytotoxic and helper immune responses
are generated to a greater extent in patients who have received dendritic cells transduced
with mRNA encoding hTERT than in patients without a dendritic cell-based vaccine [264].
In line with this, advanced prostate or breast cancer patients have shown cancer remission
through the induction of cytotoxic T cell response after the vaccination of patients with
dendritic cells loaded with hTERT 1540 epitope [266]. Other clinical trials, phase I or II, have
illustrated that dendritic cells loaded with TERT p540 peptide sustain the clinical response
of prostate, breast, lung cancer, and melanoma patients [257]. Accordingly, dendritic cells
loaded with hTERT p865 peptide (RLVDDFLLV amino acid sequence) have also shown
increased clinical efficiency in combating tumor burden [267]. In this study, fibroblast-
derived artificial antigen-presenting cells loaded with either TERT p540 or hTERT p865
peptide were generated to activate cytotoxic CD8+ T lymphocytes in an HLA class I A*0201
manner to avoid using antigen-presenting cells on an autologous basis [267]. Overall, the
intensity of cytotoxicity against hematologic and epithelial malignancies is associated with
the degree of hTERT activity in different malignancies [267].

In the clinical setting, GRNVAC1 is effective and well-tolerated by patients, with-
out apparent autoimmune responses [268]. Consistent with this, another study provides
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compelling evidence that engineering dendritic cells with hTERT antigen can mediate the
lysis of AML cells through the activation of the immune system in a good, tolerable, and
safe manner [269]. The prolonged administration of GRNVAC1 is linked to ameliorating
disease-free survival in high-risk AML patients through the increased generation of cyto-
toxic CD8+ T lymphocytes against the immunogenic hTERT epitope loaded by dendritic
cells [269]. Like GRNVAC1, GRNVAC2 is another dendritic cell-based vaccination option
produced using human embryonic stem cells rather than leukapheresis. Regarding the
delivery system, GRNVAC2 is considered more appropriate than the GRNVAC1 vaccine.
Interestingly, these dendritic cell-based cancer vaccines are regarded as very effective
against cancers with unknown T-cell epitopes due to their lack of human leukocyte antigen
(HLA) restriction [251,270].

Last but not least, in another clinical trial, the clinical efficacy of the telomerase-based
dendritic cell vaccine has been illustrated in advanced pancreatic cancer [271]. In particular,
the hTERT antigen epitope of pancreatic cancer cells, in combination with survivin (SRV.A2)
and carcinoembryonic antigen (CEA), can bind to the HLA-A2 on the surface of dendritic
cells, forming the antigen peptide-MHC class II complexes in antigen-presenting cells,
which in turn trigger cytotoxic CD8+ T lymphocytes that specifically target pancreatic
cancer cells in an hTERT-dependent manner [271]. As a result, this telomerase-based
dendritic cell vaccine increases the formation of hTERT-specific T cells, thus preserving the
clinical picture of pancreatic cancer patients and preventing the potential of metastasis [271].

In addition, hTERT DNA vaccines can also boost strong cytotoxic CD8+ or helper CD4+

immune responses, including the heightened expression of pro-inflammatory molecules,
such as tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), [272,273]. In more
detail, the DNA encoding the inactivated hTERT form is transferred into cancer cells
through electroporation, thus causing the presentation of the hTERT antigen epitope to
antigen-presenting cells and the subsequent activation of either cytotoxic or helper T im-
mune response. Interestingly, the hTERT DNA approach is superior to the hTERT approach
owing to the low cost and potential for infection [274]. The main beneficial features of DNA
vaccines are focused on their long-term reliability, assurance, and ease of manufacture. De-
spite these advantages mediated by DNA vaccines, the immune responses are attenuated,
mainly when the antigens are internal proteins and due to the dearth of a suitable delivery
system of DNA vaccines, significantly compromising their immunogenicity [275,276].

In the field of dendritic cell-based vaccines, the hTERT-targeted vaccines provide
deep insights into immunotherapy since they have the following advantages: (1) ease and
comfortability, (2) simplicity and reliability, (3) cost-effectiveness and easy manufacturing,
(4) high specificity and efficacy due to high affinity of telomerase antigen peptide to T
cell receptor (TCR) of T cells, and (5) minimal risk for undesirable effects [242]. However,
numerous obstacles can be overcome to enhance the hTERT-targeted specificity and efficacy
while lowering the possible autoimmune effects.

To sum up, telomerase-based vaccines can mediate different immune responses due to
the patient’s immunity and tumor microenvironment, contributing to the heterogeneity of
the clinical effectiveness mediated by telomerase-based vaccines. The need for ongoing re-
search for all immunotherapeutic telomerase-based options is urgently needed, particularly
in combination with other immunotherapy strategies like checkpoint inhibitors.

8. Conclusions
In conclusion, telomere dysfunction significantly influences clinical outcomes in the

four primary types of leukemia. This review examines the intricate relationship between
leukemia, telomere length, and telomerase activity. The essential role of telomeres and
telomerase highlights their prognostic importance, suggesting potential value in the clinical
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management of leukemia patients. Increasing evidence advocates for the routine telomere
length assessment as part of prognostic evaluation in CLL, CML, AML, and ALL, especially
when combined with established prognostic indicators. Moreover, leukemias are charac-
terized by elevated levels of oxidative stress and mitochondrial dysfunction, ultimately
resulting in telomere shortening and genomic instability. In light of the molecular mecha-
nisms behind telomere dysfunction, telomerase-targeted immunotherapeutic strategies are
being explored in an unprecedented manner, reflecting the urgent need to elicit specific and
robust immune responses that effectively limit tumor cells expressing telomerase epitopes.
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