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Actin is the structural protein of microfilaments, and it usually exists in two forms:
monomer and polymer. Among them, monomer actin is a spherical molecule
composed of a polypeptide chain, also known as spherical actin. The function of actin
polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton
is considered to be an important subcellular filament system. It interacts with numerous
relevant proteins and regulatory cells, regulating basic functions, from cell division and
muscle contraction to cell movement and ensuring tissue integrity. The dynamic
reorganization of the actin cytoskeleton has immense influence on the progression and
metastasis of cancer as well. This paper explores the significance of the microfilament
network, the dynamic changes of its structure and function in the presence of a tumor, the
formation process around the actin system, and the relevant proteins that may be target
molecules for anticancer drugs so as to provide support and reference for interlinked
cancer treatment research in the future.
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INTRODUCTION

Actin polymerization is essential for cell migration and various cellular biological processes. It is
indispensable for actin to go through a nucleating process to evolve actin filaments before starting
polymerization. Nucleating agents include the formin family and actin-associated protein 2/3
(Arp2/3) complexes. Arp2/3 complexes containing Arp1b and Arpc5l subunits are efficiently
superior to Arpc1a and Arpc5l complexes in accelerating actin assembly (1). The nucleating factors
include WASP, Scar/WAVE, WASH and WHAMM (2, 3). The actin system performs a key
function in the process of cell migration (4). As the intracellular integration of cadherin and integrin
adhesion and due to the collective migration of cells, the actin system continuously promotes the
epithelial mesenchymal transition (EMT) of tumor cells through continuous rearrangement of
actin, upregulation or downregulation of relevant proteins, and ubiquitination, even transferring. In
the tumor-associated environment, the microfilament connection between cancer and immune cells
also restrains the killing capability of immune cells, which puts the cancer cells in a state of tumoral
immune escape. Therefore, both microfilaments and their associated proteins could be applied as
potential therapeutic targets and lay a foundation for clinical application in approaching years.

In basic research, a fluorescence polarization microscope can show the position and direction of
fluorescence molecules and can be used to analyze the conformation of actin skeleton proteins.
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However, the difficulty of real-time actin imaging is that actin
has two forms, monomer and polymer, and it is in dynamic
equilibrium. Therefore, the traditional GFP/RFP fluorescent
group labeling often produces a diffuse signal. The newly
developed selective F-actin probes Lifeact and Utr-CH can
improve this problem. Lifeact can bind to both monomers and
polymers but maintains the high affinity of F-actin, and Utr-CH
only binds to F-actin. Many recent studies have further edited the
Lifeact and Utr-CH probes to better locate F-actin (5, 6).
BASIC FUNCTION OF THE
MICROFILAMENT NETWORK AND
ASSOCIATED PROTEINS

Basic Function of the
Microfilament Network
The actin cytoskeleton is an important subcellular filament
system. Microfilaments, microtubules, and intermediate
filaments make up the vast majority of the cytoskeleton. Actin
is the most abundant protein in almost all cells. It is available to
polymerize from globular subunits into microfilaments rapidly,
which helps to regulate the movement of whole cell and
intracellular transportation. In addition, microfilaments could
Frontiers in Oncology | www.frontiersin.org 2
generate the inner core of microvilli and produce division rings
during cell division, providing support for molecular motors
involved in cargo transportation and sliding microfilament
contraction (7–9).

Integrin-mediated mechanotransduction is also associated
with actin networks. To interpret the biological information in
the extracellular matrix (ECM), cells transmit the traction force
produced by myosin to the ECM through adhesion. Integrin is a
transmembrane protein, which connects the ECM and the actin
skeleton in the cell and transmits the rearward driving force of
the aggregated actin network at the membrane bulge to the ECM
through mechanical sensitive proteins, such as talin and vinculin.
This kind of mechanotransduction affects downstream
molecules, such as Rho GEFs, RhoA, Rho-related kinase
(ROCK), etc. A high degree of ECM fossilization can affect the
cascade reaction of FAK, Srk, phosphoinositide 3-kinase, and the
JNK pathway, thus affecting the activation of the YAP/TAZ
factor in the Hippo pathway, promoting cell proliferation and
differentiation, and inducing the expression of prosurvival
genes (10–12).

Cell migration is essential for the development and various
physiological processes in multicellular organisms. It is driven by
specific processes and contractile actin filament structures.
However, the types and relative contributions of these actin
filament arrays vary with cell types and the cell environment.
A

B

C D

FIGURE 1 | The function of microfilaments: Actin is the most abundant protein in most cells. It possesses the ability to rapidly polymerize from globular subunits into
microfilaments, which regulates overall cell movement and intracellular transport. (A) Microfilaments can be used as a skeleton to support cells that are in the
process of nonstop assembly and depolymerization. (B) Microfilaments can provide a platform for intracellular transport vesicles. (C) Microfilaments produce division
rings during cell division. (D) Microfilaments can provide support for the morphological changes of cells.
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Besides individual migration behavior, collective cell migration is
more effective, which indicates that cell-to-cell interaction occurs
during collective migration (4, 13–15) (Figure 1). In addition,
the destruction of the microfilament cytoskeleton is one of the
symbols of cell morphological changes, inducing apoptosis via
the PKB/survivin approach (15). Nuclear actin is involved in
many DNA-related processes, including chromatin remodeling,
transcription, replication, and DNA repair. It regulates the
activity of RNA polymerase, the chromatin remodeling
complex, and histone deacetylase (16, 17).

The Function of Inter-relevant
Microfilament Proteins
Magnanimous inter-relevant proteins and regulatory elements
interact with the actin skeleton, which makes it play a
corresponding role. Rho GTPases are a family of molecular
switches that control the signal conduction pathway in
eukaryotic cells, including Rho, RAS, Cdc42, etc. (18). Rho
promotes actin polymerization into linear fibers through
straight interaction with the target formin homologous domain
mDia protein (9, 19), in which formin protein is in a position to
be activated separately but is self-inhibited (2) and is capable of
touching microfilament components through activating ROCK.
Rac releases wave protein to activate Arp2/3, which elongates
from the side of preexisting microfilaments to create the actin
network (1, 2, 19, 20) (Figure 2).
Frontiers in Oncology | www.frontiersin.org 3
DOCK is a member of the GEF family (19). DOCK8 encodes
a guanine nucleotide exchange factor that is highly expressed in
lymphocytes and regulates the actin cytoskeleton. A scarcity of
DOCK damages the migration, function, and survival of immune
cells and affects the innate and adaptive immune response (21).
Syndecans, a small family of heparan sulfate proteoglycans
(HSPGs), which are a kind of transmembrane glycoprotein,
regulate the microfilament system by interacting with Rho and
Rac and mediate the regulation of calcium metabolism on
microfilaments forthrightly (22). Taken as a cofactor, Actin
interacting protein 1 (AIP1) preferentially promotes the
decomposition and recombination of the actin filament
modified by actin depolymerization factor (ADF)/cofilin (23,
24). Ezrin radixin moesin (ERM) protein is a sort of highly
homologous protein that is indispensable for structural stability
and integrity, maintaining the cell cortex by coupling
transmembrane protein to the actin skeleton, and the binding
is contributed by protein phosphorylation (25). Microfilament-
associated protein palladin is an ezrin-related protein that
possess a positive effect on actin skeleton assembly of dendritic
cells (26). Drebrin is a widely distributed actin-related protein
that is stored in many cell culture lines and tissues of epithelial,
endothelial, smooth muscle, and nerve origin. It is rich in actin
filaments related to plaque connection, and drebrin E is also
essential for the remodeling of the actin cytoskeleton and the
formation of cellular processes (27–30).
FIGURE 2 | The formation of microfilaments: Rho-GTPases are a family of molecular switches that control the signal transduction pathway of eukaryotic cells. Rho
promotes actin to aggregate into tension linear fibers and attach to the cell membrane through direct interaction with the target formin homologous domain mDia
protein. It can also trigger the assembly of microfilaments by activating ROCK. Rac releases wave protein to activate Arp2/3, which elongates from the side of
preexisting microfilaments to form the actin network.
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REARRANGEMENT IN THE ACTIN
SKELETON AND METASTASIS OF
TUMORS

Changes to the Actin Skeleton in the
Tumor Environment
The increase of exercise activity, the increase of the cell
proliferation rate, and the removal of cell–cell contact are the
chief culprits of tumor origination, and metastasis is the cause of
the largest-scale proportion of cancer deaths (31). Migration of
cancer cells is composed of a series of discrete but continuous
steps, which include detachment from the primary tumor, cell
migration and invasion, intravenous injection, detachment by
inducing the death of vascular cells, extravasation, and
deterioration of the secondary tumor (32) (Figure 3). The
change in cell diffusion is a representative feature of metastasis,
which stimulates tumor cell movement to local and distant
metastasis in vivo . The key factor is the dynamic
reorganization of the actin skeleton, and microfilaments are
attached to a special position on the plasma membrane. These
adhesion structures connect the ECM with the nucleus through
integrin. The reorganization of the actin cytoskeleton is crucial
for the trans-differentiation of epithelioid cells into motile
mesenchymal-like cells. This process is called EMT, which
enables cells to elongate and move in a directional manner
dynamically; the migration phenotype increases consequently
(33, 34). EMT is associated with loss of the intercellular adhesion
molecule E-cadherin, the destruction of intercellular junctions,
and the acquisition of migration characteristics (including
reorganization of the actin cytoskeleton and the activation of
RhoA GTPase) (35). Transforming growth factor beta and the
RhoA-LIMK2-confilin-1 signaling pathway regulate the actin
skeleton, mediating the programming of EMT. EMT is the
Frontiers in Oncology | www.frontiersin.org 4
starting link of metastasis. When EMT occurs, the adhesion
between tumor cells is reduced, and the abilities of movement
and invasion are enhanced, which is conducive to the tumor cells
leaving the primary lesion and entering the peripheral vascular
or lymphatic system. Under the influence of the tumor
microenvironment, tumor cells that have undergone EMT
transformation reverse to restore the epithelial phenotype and
regain adhesion ability, which is conducive to the homing and
proliferation of tumor cells and the formation of metastasis. This
reverse process of EMT is called mesenchymal epithelial
transition (MET) (36). It is widely considered that the
aggregation state of actin and the tissue of actin filaments are
related to cell transformation. The proportion of polymerized
actin in malignant keratinocytes is considerably reduced, and the
stress fibers in cancer cells are concentrated into plaques at
multiple points (37).

The invasive phenotype of cancer cells comprises the
formation of typical protuberant structures, such as
plasmalemma vesicles , invadopodia, podosomes, or
pseudopodia, and all are dependent on the nucleation and
assembly of actin filaments. The plasmalemma vesicle is an
extremely dynamic protuberance due to the increase in
hydrostatic pressure in the weak area of cortical actin, and the
expansion of the plasma membrane, ERM, and formin proteins
play a role (38–40), such as stem cell vesicle-like migration (39,
41). An invasive foot is a kind of actin-rich cell process, which is
specially designed for the degradation of ECM. Its formation
depends on the actin assembly driven by N-WASP-Arp2/3 (42,
43). A podosome is a special, dynamic, point-like structure
enrichment in actin. There is an Arp2/3-dependent actin
polymerization system inside its core tissue. Its adhesion to the
underlying matrix is mediated by a ring containing integrins and
integrin-related adhesion components (44). The pseudopodia of
FIGURE 3 | The vascular pathways of metastasis and diffusion of cancer cells include cell detachment from the primary tumor, invasion of blood vessels, and
metastasis to other tissues for secondary tumor growth.
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cancer cells is lamellar and dependent on the aggregation and
assembly of actin under the nucleation mechanism of WASP-
Arp2/3 (33) (Figure 4).

The Association Between Cancer Cells
and Other Cell Microfilaments in the
Tumor Environment
Immune evasion is a characteristic of cancer, which causes
cancer progress and invasion and shows resistance to
chemotherapy. The adhesion of cytotoxic T cells (CTLs) to
target cells is an important stage for effective cleavage of target
cells, such as cancer cells. The binding and synaptic maturation
of CTLs depend on the interaction of integrins on both sides of
the synapses. Under normal circumstances, in CTLs and natural
killer (NK) cells, the involvement of activated receptors induces
phosphorylation of signal molecules at the proximal end of the
membrane, forming a signal body containing many signal and
adaptor molecules, which continuously stimulate actin
polymerization and form a branched actin network around the
synapse. The immune synapse (IS), also known as a
supramolecular activation cluster (SMAC), is composed of
concentric rings, which are divided into three parts: central
SMAC (cSMAC), peripheral SMAC (pSMAC), and distal
SMAC (dSMAC). The three parts form a bull’s-eye shape. In
the immune synapse, CTL is located in the target cell base. Soon
after the initial binding of the TCR–MHC-I complex, actin
polymerization in CTL is activated, thus forming a circular
branch chain actin network in dSMAC. This Arp2/3-mediated
branch chain actin network is highly similar to the lamellar actin
network of migrating cells, which allows CTL to diffuse on the
surface of the target cell and supports the symmetrical retrograde
Frontiers in Oncology | www.frontiersin.org 5
movement of actin to cSMAC. pSMAC is composed of a sheet-
like actin arc network, which mediates the radial symmetry of IS,
and its assembly is mediated by formins. cSMAC is a low-density
region of actin.

As mentioned, synaptic maturation depends on the
interaction of integrins on both sides of the synapse. (1) The
density of integrin increases with the increase of the density of
LFA-1 at the boundary of the pSMAC and cSMAC. (2) Integrin-
mediated adhesion rings around the cSMAC are also considered
to be helpful in blocking the directional degranulation of the
dissolved vesicles in the direction of the target cells. (3) The shear
force produced by the reverse flow of actin supports the
intercellular adhesion between LFA-1 and its ligand by
inducing conformational changes of LFA-1 with high affinity.
(4) Finally, LFA-1 and ICAM-1 can also be used as costimulatory
molecules for CTL activation.

In a nutshell, TCR–MHC-I interaction alone is not enough to
activate CTL. After TCR activation, it is necessary to induce the
change of CTL adhesion through the actin skeleton. Cancer cells can
promote the actin skeleton changes of CTL, downregulate the RAS
homologs Rho and Rac1, and promote the living star of Cdc42,
resulting in negative regulation of integrin in CTL and subsequent
mucosal and motor defects (45–47). At the same time, it can also
increase the mobility of cancer cells to prevent the formation of a
closed ring at the pSMAC/cSMAC boundary, thus reducing the
transport rate of cytotoxic particles (Figure 5). Similarly, the actin
cytoskeleton also plays an important role in the resistance of cancer
cells to NK cells. NK cells need to form IS with cancer cells to inject
cytotoxic mediators, such as perforin and granzyme B, into cancer
cells to induce apoptosis. This key to formation requires significant
accumulation of microfilaments (48).
FIGURE 4 | The invasive phenotype of cancer cells includes the formation of typical protuberant structures, such as protruding bleb, invadopodia, podosomes, or
pseudopodia, which are dependent on the nucleation and assembly of actin filaments. Protruding bleb is a highly dynamic protuberance, which plays a role under
the action of ERM and formin proteins. Invadopodia is a kind of actin-rich cell process, and its formation depends on the actin assembly driven by N-WASP-Arp2/3.
The core tissue of a podosome contains an Arp2/3-dependent actin polymerization system, and its adhesion to the underlying matrix is mediated by integrins.
Pseudopodia of cancer cells is lamellar, which depends on the polymerization and assembly of actin under the nucleation mechanism of WAVE-Arp2/3.
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In addition to the microfilament communication between
cancer cells and other cells, it can also affect the configuration of
the actin network through integrin-mediated mechanotransduction
with ECM. Tumor progression is usually associated with
pathological stiffness caused by extensive connective tissue
proliferative responses. High density and hardness of ECM can
promote integrin-dependent mechanotransduction and actin-
mediated cell contraction, including subsequent YAP/TAZ
activation, promoting cell proliferation, inhibiting cell apoptosis,
leading to loss of cell contact inhibition, and promoting cell
deterioration and transformation. This mechanical interaction
between stroma and epithelial cells promotes tumor progression
in a self-reinforcing feedback loop (10).
The Promoting Effect of Microfilament-
Relevant Proteins on Cancer
It is revealed that RhoA regulates several downstream targets,
inc luding ROCK, LIM kinase (LIMK) and cofi l in .
Dephosphorylation of cofilin enables actin depolymerization
creation (49). Pre-mRNA processing factor 4B (PRP4) is
overexpressed in HCT116 colon cancer cells by inhibiting
RhoA activity and inducing cofilin dephosphorylation by
inhibiting the Rho-ROCK-LIMK cofilin pathway and
regulating the actin skeleton of cancer cells (50). However, the
microfilament regulatory protein MENA accelerates RhoA
activity and living cancer metastasis (51, 52). LMO2 is a
crucial transcription regulator in the process of embryonic
Frontiers in Oncology | www.frontiersin.org 6
hematopoiesis and angiogenesis. The new effects of LMO2 are
realized through its main cytoplasmic localization and
interaction with cofilin1. High expression of LMO2 is
positively correlated with lymph node metastasis in SCID
mice, driving tumor cell migration and invasion and enlarging
distant metastasis (53). Rho guanine nucleotide exchange factor
7 (ARHGEF7) is involved in cytoskeleton remodeling, which is
very practical for cell motility and invasiveness, and it
demonstrates frequent high-level gene amplification in
colorectal adenocarcinoma metastasis (54). Syndecans is a
small family of HSPGs, which interacts with Rho and Rac to
regulate the microfilament system. Among them, SDC2 is a
unique factor in cancer progression as it participates in the
formation of EMT and relevantly increases the migration of a
combination of tumor types, for instance, melanoma and nuclear
fibrosarcoma, but it acts as a negative part in lung cancer and
neuroendocrine tumor (55).

It is credible that the formation of an invasive foot depends on
the actin assembly driven by N-WASP-Arp2/3 (56). In normal
cells, N-WASP, WASH, WHAMM, and WAVE form branch
actin networks on the dentate, endoplasmic, ER/Golgi surfaces
and lamellar edge, respectively. Arp2/3 inhibitory proteins arpin,
gadkin and PICK1 locally antagonize WAVE, WASH, and N-
WASP in their respective positions. During the process of tumor
progression and invasion, N-WASP is overexpressed and forms
an invasion foot. Arp2/3 is mediated by the Plk4 Polo-box 1-
Polo-box 2 domain, which phosphorylates Arp2/3 at the T237/
T238 activation site (57).
A B

FIGURE 5 | (A) IS are formed after CTL contacts with target cells. The initial binding of TCR–MHC-I complex activates actin polymerization in CTL. TCR–MHC-I
complex is located in dSMAC, forming a network of branched chain actin, and a sheet actin network mediated by formin is formed at pSMAC where integrin is
located. After the formation of an integrin-mediated adhesion ring at cSMAC, the targeted degranulation of dissolved vesicles in the direction of target cells is
promoted. Finally, it induces the cell death of the target cell. (B) CTL, under the influence of inhibition signals, such as PD-L1, decreases the adhesion of the actin
skeleton, inhibits the formation of actin-rich membrane processes, and reduces the transport rate of cytotoxic particles. It weakens the killing ability of CTL. At the
same time, it increases the actin skeleton dynamics of cancer cells to prevent the formation of an adhesion ring and achieves the effect of immune escape.
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Long nonencoding RNA (lncRNA) regulates ubiquitination
of actin skeleton–related factors in cancer progression, such as
ubiquitination of Ser3 and Tyr68 sites in cofilin, which slows
down its activity (58) and promotes actin depolymerization.
Small ubiquitin-related modifier (SUMO) family proteins are
small ubiquitin-relevant proteins, which can bind to ubiquitin in
a similar way as cell substrates on lysine residues. As for focal
adhesion (FA), a large multiprotein complex (59, 60) combines
ECM with transmembrane integrin molecules and connects with
the actin cytoskeleton so that cells are able to produce traction
force and play a central effect in cell migration, including FAK,
talin, etc. Talin, a key component of FAs, can be post-
translationally modified in MDA-MB-231 breast cancer cells
and U2OS osteosarcoma cells through sumoylation by
migration promoting activity (61, 62).

ERM is a class of highly homologous proteins. By coupling
transmembrane proteins to the actin skeleton, ezrin regulation in
breast cancer cells takes part in the interaction between adhesion
molecules (CD44, ICAM, E-cadherin) and tyrosine kinase growth
factor, epidermal growth factor (EGF), platelet-derived growth
factor (PDGF), and their receptors (63). The microfilament-
associated protein palladin is an ezrin-related protein that
promotes the invasiveness of tumor metastatic cells by
regulating the formation of invasive pods (64). ECM protein 1
interacts with mosesin (MSN), making it close to the cell
membrane, promoting the translocation and phosphorylation of
MSNmembranes and promoting the formation of an invasive foot
in breast cancer cells (65). With more miles to go, there are some
microfilament-relevant proteins associated with cancer. Adenylate
cyclase-associated protein (CAP) is a conserved actin regulatory
protein. N-terminal mediates the Ras/cAMP signal. The
C-terminal junction and separation of G-actin regulate the actin
skeleton and assist in actin skeleton rearrangement. On the one
hand, its upregulation supports metastasis; on the other hand, it
contributes to inhibit the invasion of cancer cells through the
FAK/ERK axis and Rap1 (66). Filamentous protein A (FLNA) is a
well-known actin cross-linked protein, which has a dual role in
cancer. When FLNA is localized in the cytoplasm, it functions to
promote tumors by interacting with signal molecules. When it
locates in the nucleus, it may interact with transcription factors to
inhibit tumor growth and metastasis (67, 68). DMTN is a
differentially transcriptional expressed gene; its downregulation
regulates the actin cytoskeleton through Rac1 signal transduction
and catalyzes the metastasis of colorectal cancer cells (69). The
upregulation of plasminogen activator inhibitor 1 (PAI1) drives
actin cytoskeleton rearrangement of triple negative breast cancer
(TNBC) cells and increases migration (70). Cell adhesion
molecules E-cadherin, phospholipase D (PLD), and various
integrins regulate cell polarity, differentiation, proliferation, and
migration through their close interactions with the actin
cytoskeleton network (44, 71–73).

Inhibition Effect of Microfilament-
Associated Proteins on Cancer
Some microfilament-relevant proteins are not only a critical
layer in promoting the progress of tumors, but they also stretch
Frontiers in Oncology | www.frontiersin.org 7
out in a complex, multifaceted way. For example, abnormal
ubiquitination of an actin cytoskeleton regulatory factor may
result in higher metastatic potential, but it is more likely to
contribute to tumor inhibition. For example, E3 ligase hace1 is
a tumor suppressor in NK cell malignancies and breast cancer
(58). MicroRNA (miR)-185-5p inhibits F-actin polymerization
by regulating advanced glycation end product–specific receptor
(RAGE) and inhibits S100A8/A9-induced EMT of human
breast cancer cells through the nuclear factor kappa B/snail
signaling pathway (74). Although mammalian transparent-
related formin2 (mDia2/Dia3/Drf3/Dia) assembles a dynamic
F-actin cytoskeleton, which is the basis of tumor cell migration
and invasion, studies disclose that cancer-associated fibroblasts
(CAFs) increase breast cancer movement by inhibiting mDia2.
Profilin I belongs to a small actin-binding protein family and is
held responsible for helping extend actin filaments at the front
of migrating cells (75). Traditionally speaking, profilin I is
considered an important control element for actin
polymerization and cell migration. However, profilin I was
downregulated in breast cancer and other cancer cells. It may
be due to the decrease of the actin filament flow fraction ratio
and the polymerization slow-down rate by increasing the
intracellular level of profilin I. Besides this, increasing the
profilin level also leads to the decrease of single-cell speed
and direction transformation (76).

There are some downregulated suppressor proteins as well,
such as collapse response mediator protein-1 (CRMP1), a
cytoplasmic phosphoprotein, which was primordially regarded
to be the mediator of signal transduction protein 3A involved in
axon differentiation during neurodevelopment. It plays a necessary
part in EMT andmetastasis inhibition in anterior adenocarcinoma
cells by regulating actin polymerization, which discloses that
CRMP targeted in actin tissue signaling may be a potential
strategy for the treatment of prostate cancer metastasis (77). An
actin-binding protein AIM1 is a key inhibitor of invasive
phenotypes in primary and metastatic prostate cancer (78).
DEVELOPMENT OF ANTICANCER DRUGS
FOR THE MICROFILAMENT SYSTEM

It is, thus, obvious that the rearrangement of the actin system has
an effect on tumor progression and migration, which also
induces microfilaments as an effective target for anticancer
drugs. Subsequently, we are more likely to put forward some
anticancer drugs for the microfilament system (79–81).

Microfilament-targeting drugs, such as cytochalasin and
jasmine lactone, have been intensively and effectively exerted
in clinical cancer treatment (82, 83), and staurosporin and
curcumin have equiform effects to cytochalasin B, which may
be on account of their ability to inhibit protein kinase C, a known
microfilament assembly enhancer (84).

3-bromopyruvate (3-bp) is an alkylating agent and glycolysis
inhibitor, which destroys the actin cytoskeleton and possesses the
potential to affect the treatment of metastatic prostate cancer
(85). Graphene inhibits the activity of the electron transfer chain,
March 2021 | Volume 11 | Article 620390
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resulting in the decrease of ATP production and subsequent
damage of F-actin cytoskeleton assembly, thus inhibiting tumor
metastasis (86, 87). p53 can also regulate actin cytoskeleton
remodeling in response to the extracellular microenvironment
and play an anticancer role (88) other than inducing apoptosis of
cancer cells. Linusorbs (LOS) can also delay the migration of C6
cells by inhibiting the formation of the actin skeleton (89).

Marine macrolide compounds, such as Sphinx lactone,
swinholide a, hurghadolide a, and syctophycins, novel and
effective anti-microfilament compounds, can bypass the
multidrug resistance mediated by P-glycoprotein or MRP
overexpression so as to cure drug-resistant tumors (90–93).
Diethyl 2-(aniline methyl) malonate (dam) increased the basal
activation of Smad2/3 and ERK and inhibited microfilament
remodeling and the growth of cancer cells (94). Staurosporine
(STS), a protein kinase inhibitor, is involved in cell death due to
mitosis and discordant lamellar foot activity (95). Wihaferin A is
mediated by annexin II to induce actin microfilament
aggregation to treat cancer (96). Pentoxifylline (PTX; Hoechst)
is a kind of microfilament depolymerization agent, which can
significantly inhibit the lung homing of B16F10 cells. The
microfilament network of cells treated with gyp was seriously
collapsed, and the number of microvilli was reduced to a large
extent (97).

Besides synthetic drugs, melatonin in the human body is the
main secretion product of the pineal gland in the dark phase of
the photoperiod and performs a cytoskeleton-regulating role in
normal and cancer cells and would alter the microfilament
phenotype of MCF-7 human breast cancer cells, from invasive
transitional cells to dormant microfilament phenotypes into
nontransitional cells (98).
EXISTING PROBLEMS AND PROSPECTS

The microfilament system is composed of actin and its relevant
proteins and elements. Actin-relevant proteins and factors have a
variety of functions, such as transmitting activation or inhibition
signals of the microfilament system; assembling actin; assisting
actin polymerization; enhancing the stability of actin fiber;
motivating its depolymerization by cutting actin fiber; and
mediating the connection between actin and the cell
membrane, ECM, or other cells. Actin does duty for the
physiological processes of cell morphology, adhesion,
movement, mitosis, differentiation, endocytosis, exocytosis,
organelles, and the transportation of various substances in the
cell. During the normal physiological function of actin and its
Frontiers in Oncology | www.frontiersin.org 8
relevant proteins, the abnormality of any component
(upregulation or downregulation of expression, enhancement
or inhibition of activity, abnormal structure or distribution, etc.)
may lead to or quicken the occurrence of tumors. If these
abnormal components can be rectified, the occurrence of
tumor may be restrained.

At present, innumerable studies on microfilaments and
cancer are being carried out all over the world. The principal
research orientations are as follows: (1) Abnormal function of
actin-relevant proteins, especially the RhoA-ROCK signaling
pathway and Arp2/3 microfilament regulation system; (2) local
adhesion of the microfilament system to cancer cells; and (3) the
microfilament system and EMT process.

Alternatively, there is a noteworthy research direction: the
vital influence of the microfilament cytoskeleton in the signal
transduction between ECM and the nucleus. This significant
research was carried out by Clubb et al. (99) but attracts little
public attention currently. Nowadays, there are a variety of
anticancer drugs for the microfilament system, such as
cytochalasin, marine macrolides, staurosporin, and melatonin.
However, most of them are still in the experimental stage;
consequently, there is still a long way to go before clinical
application. The microfilament system is an extremely complex
and precise cell system, which takes precedence over any other
systems in all stages of cancer occurrence. Its complexity bring
about a lot of unknown mysteries in research. Therefore, further
and more intensive research is required. However, it also
provides a fundamental and alternative direction for the
understanding of cancer and the research and development of
anticancer drugs.
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