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Abstract

Background: Colon cancer is common worldwide and is the leading cause of cancer-related death. Multiple levels
of omics data are available due to the development of sequencing technologies. In this study, we proposed an
integrative prognostic model for colon cancer based on the integration of clinical and multi-omics data.

Methods: In total, 344 patients were included in this study. Clinical, gene expression, DNA methylation and miRNA
expression data were retrieved from The Cancer Genome Atlas (TCGA). To accommodate the high dimensionality
of omics data, unsupervised clustering was used as dimension reduction method. The bias-corrected Harrell’s
concordance index was used to verify which clustering result provided the best prognostic performance. Finally,
we proposed a prognostic prediction model based on the integration of clinical data and multi-omics data. Uno’s
concordance index with cross-validation was used to compare the discriminative performance of the prognostic
model constructed with different covariates.

Results: Combinations of clinical and multi-omics data can improve prognostic performance, as shown by the
increase of the bias-corrected Harrell’s concordance of the prognostic model from 0.7424 (clinical features only)
to 0.7604 (clinical features and three types of omics features). Additionally, 2-year, 3-year and 5-year Uno’s
concordance statistics increased from 0.7329, 0.7043, and 0.7002 (clinical features only) to 0.7639, 0.7474 and 0.7597
(clinical features and three types of omics features), respectively.

Conclusion: In conclusion, this study successfully combined clinical and multi-omics data for better prediction of
colon cancer prognosis.

Keywords: Colon cancer, Prognostic prediction, Integrative analysis, Multi-omics study, The Cancer genome atlas
(TCGA)

Background
Colon cancer, which is a subset of colorectal cancer
(CRC), is common worldwide and is the leading cause of
cancer-related death. Although incidence and mortality
rates have declined in recent years due to changes in risk
factors and recent improvements in screening tests and

treatments, there are large differences in 5-year colon
cancer survival rates across countries and regions [1, 2].
Because of the development of sequencing technology,

precision medicine has become a popular field in cancer
research. Omics data have been widely used for cancer
classification based on identified gene signatures, gene
pathways, and protein-protein interaction networks,
among others [3–5]. Such classifications can help
oncologists provide more accurate treatment regimens
for individuals. Gene expression data are among the
most widely analyzed types of omics data and can be
used for such endeavors as biomarker identification, pa-
tient classification, and prognostic prediction [4, 6–8]. In
addition, one published classification organized CRC
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into four consensus molecular subtypes using gene ex-
pression data, and this classification represents the best
description of CRC heterogeneity at the gene expression
level and shows the potential of merging additional scale
data in the future [9].
The American Joint Committee on Cancer (AJCC)

tumor, node and metastasis (TNM) staging system is
an important tool used for clinical colon cancer
prognostic predictions. However, no molecular fac-
tors or omics features were included in the TNM
system for colon cancer in the recently published
8th version [10]. In contrast, the 8th AJCC TNM
staging system for breast cancer already includes
biomarkers, which is very different from the 7th
AJCC TNM staging system [11]. The National
Comprehensive Cancer Network (NCCN) Guidelines
for Patients includes RAS mutations, BRAF V600E
mutations, mismatch repair (MMR) and microsatel-
lite instability (MSI) as recommended molecular test-
ing in colon cancer patients [12].
As cancer research has entered the fields of preci-

sion medicine and personalized medicine, non-

molecular features have become insufficient, whereas
the inclusion of molecular features is becoming an
increasingly popular research direction. Scientists
have been attempting to integrate multiscale omics
data to gain deeper insight into cancer mechanisms
as the human body is a complex system. The Cancer
Genome Atlas (TCGA) conducted a series of com-
prehensive integrative molecular analyses with multi-
scale data types to identify the genomic alterations
in several cancer types; five genome-wide platforms
were used to identify somatic alterations in colorec-
tal carcinoma [13]. Kim D. et al. conducted a series
of studies with TCGA datasets to identify interac-
tions among multi-omics data and associate these
interactions with cancer clinical outcomes [14–16].
Pan-cancer studies were also performed with integra-
tive analyses [17, 18]. These studies suggest that
multiscale or multiplatform genomic studies outper-
form single-scale studies in cancer research.
The performance of cancer prognostic analyses may

benefit from the integration of clinical features and
molecular features [19]. Previous studies have identified

Fig. 1 Flowchart of data processing for the TCGA-COAD dataset
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several candidate biomarkers, and some biomarkers,
such as HER2 status and ER status in breast cancer
patients, have been verified and used in clinical decision
making, suggesting that the integration of clinical
features and single-scale molecular features can improve
the performance of cancer prognosis [11, 20]. Another
study combined clinical, genomic and treatment
domains to predict GBM survival outcomes, though the
genomic domain only used 33 specific gene signatures
[21]. Exarchos and colleagues combined clinical, imaging
tissue and gene expression data from circulating blood
cells to model the progression of oral cancer [22]. Re-
cently, a workflow named SwissMTB was reported that
could link molecular profiling to treatment decisions
[23]. Combining clinical data with single-scale omics
data has shown a considerable effect on cancer progno-
sis, but it remains unclear whether the integration of
clinical data and multiscale omics data can help improve
cancer prognosis performance.
To improve the prediction performance of colon

cancer prognosis, an integrative prognostic analysis of
colon cancer was proposed in this study based on
clinical, gene expression, DNA methylation and miRNA
expression data from TCGA.

Methods
Data preparation
Normalized and preprocessed clinical data and omics
data (gene expression, DNA methylation and miRNA
expression data) of primary tumors included in the
TCGA-COAD (colon adenocarcinoma) project were
downloaded from the new TCGA data portal (https://
portal.gdc.cancer.gov/repository) with the provided data-
transfer tool. Then, the downloaded raw data files were
reprocessed following the flowchart shown in Fig. 1.
This procedure aimed to merge the individual files of
each patient into one matrix of samples and features by
data type.

Clinical data preparation
The tumor invasion depth, lymph node status, meta-
static status (T, N and M stages) and age at initial
diagnosis were chosen as clinical features, as previous
studies have shown that these four features have sig-
nificant effects on CRC prognosis [24]. Patients with
Tis tumor invasion depth (1 patient), N1c lymph
node status (2 patients), and Mx metastatic status
(metastatic status that could not be assessed) were re-
moved from the study. Patients without any of these
four features or survival information were also re-
moved. Survival information, including survival time
and death status, was also obtained from the clinical
data. Overall survival was used for the following

analyses in this study to reflect the overall survival in-
formation of the patients.

Omics data preparation

Prior Knowledge Prior knowledge was based on the
pathways and microRNAs involved in CRC according
to the Kyoto Encyclopedia of Genes and Genomes
(KEGG, http://www.genome.jp/kegg/) database and
other omics features that showed potential relation-
ships with colon cancer prognosis in previous articles
[25–27]. A collection of prior knowledge lists of the
three types of omics data was built, including 114 fea-
tures of gene expression, 56 features of DNA methy-
lation and 56 features of microRNA expression. The
details of the prior knowledge lists are provided in
Additional file 1.

Gene Expression For gene expression data, fragments
per kilobase of transcript per million mapped reads

Table 1 Feature statistics of the clinical data used in the
prognostic analysis

Features Statistics

Cases with Clinical and Omics Data 344

Gender: Male 182 (52.9%)

Female 162 (47.1%)

Survival Status: Alive 273 (79.4%)

Dead 71 (20.6%)

Survival Time: Mean 779.8 (days)

Median 575.5 (days)

T Stage: T1 10 (2.91%)

T2 62 (18.02%)

T3 254 (73.84%)

T4a 12 (3.49%)

T4b 6 (1.74%)

N Stage: N0 211 (61.3%)

N1a 35 (10.2%)

N1b 40 (11.6%)

N2a 32 (9.3%)

N2b 26 (7.6%)

M Stage: M0 292 (84.9%)

M1 52 (15.1%)

Age at Initial Diagnosis: Basic Statistics
(years)

Min: 31, Median: 69,
Mean: 66, Max: 90

31–59 86 (25.0%)

59–69 85 (24.7%)

69–77 82 (23.8%)

77–90 91 (26.5%)
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(FPKM) normalized data were chosen for further ana-
lysis, and the original Ensembl IDs were converted to
gene symbols with the biomaRt R package. Then, each
feature with more than 5% NA or 0 values was removed.
Features with the top 25% of coefficients of the variable
along with features in the prior knowledge list of gene
expression were selected. Ultimately, 4691 features were
selected for further analysis.

MicroRNA Expression For miRNA expression data,
reads per million mapped reads (RPM) normalized
data were chosen for further analysis. Each feature
with more than 5% NA or 0 values was removed.
Features with the top 25% of coefficients of the vari-
able along with features in the prior knowledge list
of microRNA expression were selected. Ultimately,
111 features were selected for further analysis.

DNA Methylation For DNA methylation data, the beta
values were used in the analysis, whereas various
probes (485,577 probes for HM450 and 27,578 probes
for HM27) were converted into 34,040 gene symbols.
The conversion procedure was performed by calculat-
ing the average DNA methylation beta value of the
CpG sites in a particular region of a gene based on
TCGA-assembler 2 [28]. In addition, CpG sites with
chromosome X or Y and more than 5% NA beta values
were removed as colon cancer is not a gender-specific

disease. Each feature with more than 5% NA or 0 values
was removed. Features with the top 25% of coefficients of
the variable along with features in the prior knowledge list
of DNA methylation were selected. Ultimately, 4441 fea-
tures were selected for further analysis.

Fig. 2 Pipeline of the integration of the clinical data and multi-omics data for the prognostic analysis

Table 2 Information regarding the omics data used in the
prognostic analysis

Features Statistics or Description

Gene Expression

Platform Illumina Genome Analyzer RNA Sequencing

Reference Genome GRCh38

Measurement FPKM normalized value

Number of Features 4691

DNA Methylation

Platform Illumina Infinium Human Methylation 27 (HM27)
and Human Methylation 450 (HM450)

Reference Genome GRCh38

Measurement Beta value

Number of Features 4441

miRNA Expression

Platform Illumina Genome Analyzer miRNA Sequencing

Reference
Annotation

miRBase v21 and UCSC

Measurement RPM

Number of Features 111
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Results of the data preparation
Patients with both clinical data and the three types of
omics data were chosen for our analysis. Overall, 344
patients had both clinical data and the three types of
omics data, resulting in 4691 features in the gene ex-
pression profiles, 4441 features in the DNA methyla-
tion profiles and 111 features in the miRNA
expression profiles. Detailed information regarding the
clinical and omics data is shown in Table 1 and
Table 2, respectively.

Pipeline of the prognostic study
The overall pipeline for the construction of the prog-
nosis prediction model is shown in Fig. 2. First, we
solved the problem of imbalanced feature numbers

and different measurements between the clinical
features and multi-omics features by unsupervised
clustering and generated new omics features with low
dimensions. Then, a prognostic prediction model was
constructed using both the clinical features and new
omics features. Different combinations of the clinical
features and omics features were tested and compared
to determine whether the integration of the clinical
features, gene expression profiles, DNA methylation
profiles and miRNA expression profiles could offer
the best prognostic performance.

Processing of the multi-Omics data
Hierarchical clustering was used for the cluster ana-
lysis because this approach is an unsupervised cluster
method that is widely used in omics data analyses.

Table 3 Cluster parameters selected for different types of omics data in prognostic models with different covariates

Covariates Gene Expression DNA Methylation miRNA Expression

Gene Expression Distance Method: Canberra

Linkage Method: Ward.D

Cluster Number: 6

DNA Methylation Distance Method: Maximum

Linkage Method: Ward.D

Cluster Number: 10

miRNA Expression Distance Method: Maximum

Linkage Method: Ward.D2

Cluster Number: 4

Clinical and Gene Expression Distance Method: Manhattan

Linkage Method: Ward.D

Cluster Number: 4

Clinical and DNA Methylation Distance Method: Canberra

Linkage Method: Ward.D

Cluster Number: 3

Clinical and miRNA Expression Distance Method: Canberra

Linkage Method: Ward.D

Cluster Number: 3

Clinical and Gene Expression and DNA Methylation Distance Method: Manhattan Correlation

Linkage Method: Ward.D Ward.D2

Cluster Number: 4 3

Clinical and Gene Expression and miRNA Expression Distance Method: Manhattan Manhattan

Linkage Method: Ward.D Ward.D

Cluster Number: 4 4

Clinical and DNA Methylation and miRNA Expression Distance Method: Maximum Canberra

Linkage Method: Ward.D Ward.D

Cluster Number: 10 3

Clinical and All Three Types of Omics Data Distance Method: Manhattan Maximum Manhattan

Linkage Method: Ward.D Ward.D Ward.D2

Cluster Number: 4 10 4
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Fig. 3 (See legend on next page.)
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The following three parameters were employed in this
unsupervised clustering step: the distance method was
used as the metric, the linkage method was used as
the linkage criteria, and the cluster number was used
as the cut-off condition. In addition, each cluster
should contain at least 10 patients. Overall, seven dis-
tance methods, including Euclidean, Maximum, Man-
hattan, Canberra, Binary, Minkowski and Correlation;
eight linkage methods, including Ward.D, Ward.D2,
Single, Complete, Average, Mcquitty, Median and
Centroid; and cluster numbers ranging from 2 to 11
were applied to evaluate different combinations of the
cluster parameters.
Clustering of the three types of omics data was per-

formed. Different combinations of distance methods,
linkage methods and cluster numbers were used, and
the combination that provided the best prognostic in-
formation was selected by fitting a single-covariate
Cox proportional hazards (PH) model. The cluster la-
bels generated by the identified clustering parameters
were used as new omics features for the three types
of omics data. In addition, we investigated whether
the integrated multi-omics data could improve the
prognostic prediction performance over that of separ-
ate multi-omics data combined with clinical features.
Then, we conducted a cluster-of-clusters (C-o-C) ap-
proach based on these new omics features to inte-
grate the three types of omics data because this
approach has shown excellent performance in previ-
ous single-cancer and pan-cancer studies [17, 29, 30].
The newly generated features of the three types of
omics data were coded into one binary matrix of pa-
tients and cluster labels, and clustering by hierarchical
clustering was performed again. The same varieties of
combinations of distance methods, linkage methods
and cluster numbers were used, and the combination
that provided the best prognostic information was se-
lected by fitting a single-covariate Cox PH model.
These identified cluster labels were regarded as fea-
tures of the integrated omics data. The generated
omics features in both the separated status and inte-
grated status were used for further analysis. Finally,
cluster analyses of the three single types of omics
data and one cluster analysis of the integration of the
three types of omics data were performed for further
analysis.

Integration of clinical data and Omics data for the
construction of the prognostic prediction model
A multi-covariate Cox PH model was used for the prog-
nostic analysis, and different combinations of clinical
features and omics features were used as covariates in
the Cox PH model. The formula of the Cox PH model
used in our study was as follows:

h tð Þ ¼ h0 tð Þ exp
X

βnzn þ
X

βmzm
� �

;

where h(t) is the hazard (risk of death) at time t, h0(t) is
the baseline hazard (when covariates zn and zm are all
zero), βn is the regression coefficient of the clinical
features, βm is the regression coefficient of the omics
features, zn represents the different clinical features, and
zm represents the different omics features. The T, N, and
M stages and age at initial diagnosis were used as the
clinical features. The omics features consisted of differ-
ent types of omics data, including three features of the
single types of omics data and one feature of three inte-
grated types of omics data. Cox PH models with differ-
ent combinations of clinical features and omics features
were constructed. The prognostic performance of each
model was compared to verify that the integration of
clinical data and multi-omics data provided the best
prognostic performance.

Model evaluation
We focused on the discriminative performance of the
prognostic model. Therefore, the concordance index
(C-index) was used as the main evaluation metric,
with a C-index of 1 indicating perfect discrimination
and a C-index 0.5 indicating a random guess. We
used Harrell’s C-index during the model construction
procedure to select the model with best overall dis-
criminative performance [31]. Then Uno’s C-index,
which is free of censoring, and the likelihood ratio
test were used to compare the performance of differ-
ent models [32, 33]. The PH assumption was tested
to ensure that the constructed Cox PH model satis-
fied the assumption and that the covariates had no
time-varying coefficients; a p-value greater than 0.05
suggests no time-variation issue [34]. In addition, the
likelihood ratio, score and Wald test were applied to
investigate the covariate effect in the Cox PH model;
a p-value of less than 0.05 indicates that the covariate

(See figure on previous page.)
Fig. 3 Performance of prognostic models with different covariates. For the labels used in the figure, the symbol “+” indicates that the covariates
were used separately in the model. a Bias-corrected Harrell’s C-index of prognostic models with different covariates with 95% CIs summarized
from 500 bootstrapping replicates; b -log10(p-values) of the likelihood ratio test, the score test and the Wald test of Cox models with different
covariates; the red dotted line indicates –log10(0.05); c Plot of the p-values of the global PH assumption tests
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in the model has a significant effect [35]. These
metrics were calculated with the rms (https://cran.r-
project.org/web/packages/rms/index.html) and survC1
(https://cran.r-project.org/web/packages/survC1/index.
html) R package.
Considering the moderate sample size, we preferred a

bootstrapping analysis, which revealed the ability to
optimize the estimation of the C-index caused by over-
fitting, to generate the bias-corrected C-index rather
than the original Harrell’s C-index [36–39]. Random
resampling with replacement was performed with 500
iterations to generate a distribution of the 500 bias-
corrected C-indexes and the mean value was used as the
final bias-corrected C-index during model construction.
In addition to the original Uno’s C-index, we resorted to
5-fold cross-validation with 500 iterations to obtain
more reliable values following a procedure similar to
that introduced in Zhao’s work, with 500 Uno’s C-
indexes and one average Uno’s C-index for each model
[40]. Based on the distribution of C-indexes of different
prognostic models, the Wilcoxon signed-rank tests were
used to evaluate the significance of the difference in pre-
diction performance between the C-indexes.

Results
Results of Omics data processing
Overall, eight combinations of distance methods, linkage
methods and cluster numbers were identified for cluster-
ing of different types of omics data while combining
with clinical features, including two combinations for
gene expression, three combinations for DNA methyla-
tion and three combinations for miRNA expression.
Cluster parameters of the three types of omics data for
prognostic models with different covariates are listed in
Table 3. For the C-o-C approach, the Manhattan
distance method, Average linkage method and cluster
number 3 were used to cluster the newly generated
features of the three types of omics data used in the
integrated prognostic model with covariates of clinical
features and all three types of omics data.

Prognostic performance of the models based on Harrell’s
C-index
Overall, we included four clinical covariates, three omics
covariates and one integrated omics covariate. The four
clinical covariates were used as clinical covariates;
alongside the three omics covariates, they formed seven
different combinations. The prognostic model we pro-
posed was constructed with clinical, gene expression,
DNA methylation and miRNA expression as covariates.
In addition, we constructed three models with clinical
covariates and two types of omics data, three models
with clinical covariates and one type of omics data, four
models with clinical covariates or one type of omics data

Table 4 Regression coefficients of our integrated prognostic
model

Covariate Coefficient ± SE HR 95% CI P

T stage

T1 1

T2 −3.125 ± 1.253 0.0439 0.00377–0.513 0.0127

T3 −1.186 ± 0.810 0.305 0.0624–1.493 0.143

T4a −0.298 ± 1.069 0.742 0.0913–6.033 0.780

T4b 0.530 ± 1.152 1.699 0.178–16.241 0.646

N stage

N0 1

N1a 0.266 ± 0.504 1.305 0.486–3.506 0.598

N1b 0.175 ± 0.450 1.191 0.493–2.877 0.697

N2a 1.355 ± 0.396 3.876 1.785–8.416 0.0006

N2b 0.985 ± 0.468 2.679 1.071–6.703 0.0352

M stage

M0 1

M1 1.644 ± 0.362 5.178 2.546–10.532 5.64 e-6

Age

31–58 1

59–70 0.654 ± 0.449 1.923 0.798–4.635 0.145

70–78 1.045 ± 0.411 2.842 1.269–6.363 0.0111

79–90 1.244 ± 0.382 3.469 1.641–7.333 0.0011

Gene Expression

Cluster1 1

Cluster2 0.970 ± 0.454 2.638 1.083–6.429 0.0328

Cluster3 2.404 ± 0.551 11.067 3.758–32.591 1.28 e-5

Cluster4 0.597 ± 1.160 1.817 0.187–17.641 0.606

DNA Methylation

Cluster1 1

Cluster2 −0.138 ± 0.576 0.871 0.281–2.695 0.811

Cluster3 0.764 ± 0.577 2.146 0.693–6.645 0.185

Cluster4 0.352 ± 0.465 1.423 0.572–3.539 0.449

Cluster5 −0.132 ± 0.667 0.876 0.237–3.239 0.843

Cluster6 −0.895 ± 0.604 0.409 0.125–1.336 0.139

Cluster7 − 0.397 ± 0.673 0.672 0.180–2.514 0.555

Cluster8 −1.960 ± 1.128 0.141 0.0155–1.284 0.0822

Cluster9 −1.848 ± 0.809 0.157 0.0323–0.769 0.0223

Cluster10 −1.015 ± 0.732 0.362 0.0863–1.521 0.165

miRNA Expression

Cluster1 1

Cluster2 0.527 ± 0.341 1.693 0.867–3.305 0.123

Cluster3 0.276 ± 0.450 1.318 0.546–3.182 0.539

Cluster4 −0.669 ± 0.503 0.512 0.191–1.373 0.184

Origin concordance: 0.8345; bias-corrected concordance: 0.7604
SE standard error, HR hazard ratio, CI confidence interval
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alone, and one model with clinical covariates and C-o-C
results.
First, all models passed the PH assumptions test, as

shown in Fig. 3c. The bias-corrected C-index of the
different models is shown in Fig. 3a. These results sug-
gest that the model with only the clinical covariates
(0.7424 ± 0.0030) performed better than any model with
the omics covariates (range from 0.5591 ± 0.0029 to
0.6238 ± 0.0029). A combination of clinical covariates
and all three types of omics data achieved the best
performance among all prognostic models (0.7604 ±

0.0028). The regression coefficients of the integrated
prognostic model constructed with clinical, gene expres-
sion, DNA methylation and miRNA expression features
are summarized in Table 4. Detailed origin concordance
and bias-corrected concordance statistics for all models
are listed in Additional file 2: Table S1.
The p-values of the likelihood ratio test, the score test

and the Wald test are plotted in Fig. 3b; these plots
indicate that each combination of covariates had a sig-
nificant effect on each prognostic model. However, using
omics data alone as covariates had a reduced effect.

Fig. 4 The 2-year, 3-year and 5-year Uno’s C-index of different prognostic models. a 2-year Uno’s C-index of prognostic models with different
covariates; b 2-year Uno’s C-index with cross-validation of prognostic models with different covariates; c 3-year Uno’s C-index of prognostic
models with different covariates; d 3-year Uno’s C-index with cross-validation of prognostic models with different covariates; e 5-year Uno’s C-
index of prognostic models with different covariates; f 5-year Uno’s C-index with cross-validation of prognostic models with different covariates
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Prognostic performance of the models based on Uno’s C-
index
We calculated 3-year and 5-year Uno’s C-index values
for all 12 prognostic models. In addition, as the median
survival time of the dataset was approximately 26
months, the 2-year Uno’s C-index was also inferenced.
The 2 year Uno’s C-indexes without and with cross-
validation are shown in Fig. 4a and b, respectively. The
3-year Uno’s C-indexes without and with cross-
validation are shown in Fig. 4c and d, respectively. The
5-year Uno’s C-index without and with cross-validation
are shown in Fig. 4e and f, respectively. The difference
in the 2-year, 3-year and 5-year Uno’s C-indexes with
95% CI are summarized in Table 5, with p values of the
likelihood ratio tests between different prognostic
models. The results of the Wilcoxon signed-rank test for
the differences in the C-indexes of different models fur-
ther confirmed that our prognostic model showed the
best prognostic performance, as summarized in Table 6.
In summary, these results clearly indicate that among

all models, our prognostic model showed the best dis-
criminative performance. Both the likelihood ratio test
and the Wilcoxon signed-rank test of difference between
distributions of C-index of these two models suggest our
prognostic model owned better prognostic performance.
In addition, paired comparisons of prognostic model
with only clinical covariates, the best prognostic model
with clinical covariates and one type of omics data and
the best prognostic model with clinical covariates and
two types of omics data suggested that the more types of

omics data that were used, the better the prognostic per-
formance was.

Evaluation of the contribution of each covariate in our
prognostic model
We investigated how the performance of our prognostic
model changed after one of the covariates was removed.
The same evaluation procedures were used to compare
the performance of our prognostic model with that of
the model with one covariate removed.
The results of the comparison of the Uno’s C-index

without cross-validation and the likelihood ratio test are
summarized in Table 7 and shown in Fig. 5c, e and g,
and the results of the Harrell’s C-index without
bootstrapping are shown in Fig. 5a. The likelihood ratio
test suggested that only removing miRNA expression
caused no significant difference in the model. In
addition, the 2-year, 3-year and 5-year Uno’s C-index
without cross-validation all suggested that removing
miRNA expression would cause a negligible decrease.
However, the 2-year and 3-year Uno’s C-index without
cross-validation both suggested that removing T stage
would cause a slight improvement, while the 5-year
Uno’s C-index without cross-validation suggested that
removing miRNA expression would cause a numerically
larger decrease than removing T stage.
The results of the comparison of Harrell’s C-index

with bootstrapping and Uno’s C-index with cross-
validation are summarized in Table 8 and shown in Fig.
5b, d, f and h. The comparison of Harrell’s C-index with

Table 5 Difference in discriminative performance between our prognostic model and other models

Comparison 2-year ΔC ± 95% CI 3-year ΔC ± 95% CI 5-year ΔC ± 95% CI P value of LRT

CGMm vs CMm 0.0067 ± 0.027 0.0010 ± 0.040 0.0152 ± 0.033 0.00147

CGMm vs CGM 0.0317 ± 0.033 0.0328 ± 0.032 0.0480 ± 0.047 0.000217

CGMm vs CGm 0.0284 ± 0.035 0.0266 ± 0.035 0.0497 ± 0.054 0.000582

CGMm vs CA 0.0349 ± 0.040 0.0497 ± 0.040 0.0694 ± 0.057 0.000312

CGMm vs CG 0.0315 ± 0.037 0.0293 ± 0.031 0.0485 ± 0.049 0.000203

CGMm vs CM 0.0402 ± 0.041 0.0541 ± 0.042 0.0687 ± 0.056 6.919 e-7

CGMm vs Cm 0.0291 ± 0.044 0.0324 ± 0.045 0.0654 ± 0.060 1.528 e-6

CGMm vs C 0.0374 ± 0.040 0.0496 ± 0.042 0.0683 ± 0.054 2.335 e-6

CGMm vs G 0.262 ± 0.12 0.241 ± 0.13 0.268 ± 0.12 2.178 e-12

CGMm vs M 0.143 ± 0.076 0.131 ± 0.079 0.119 ± 0.069 3.426 e-10

CGMm vs m 0.305 ± 0.10 0.259 ± 0.11 0.223 ± 0.15 7.776 e-13

CMm vs CG 0.0247 ± 0.042 0.0284 ± 0.055 0.0333 ± 0.056 0.0118

CMm vs Cm 0.0224 ± 0.035 0.0314 ± 0.040 0.0502 ± 0.054 8.658 e-5

CMm vs C 0.0307 ± 0.040 0.0273 ± 0.052 0.0531 ± 0.061 0.000130

CG vs C 0.00591 ± 0.030 0.0203 ± 0.032 0.0198 ± 0.028 0.000689

Cm vs C 0.00825 ± 0.024 0.0173 ± 0.036 0.00290 ± 0.029 0.270

ΔC difference in C-index, CI confidence interval, LRT likelihood ratio test;
In the Comparisons column, C stands for clinical, G for gene expression, M for DNA methylation and m for miRNA expression. The words on both sides of vs are
the covariates in prognostic model
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bootstrapping suggested that removing any covariates
would cause a significant decrease. In contrast, Uno’s C-
index suggested that removing miRNA expression would
significantly reduce the model’s performance only at the
5-year time point, while removing T stage would signifi-
cantly increase the model’s performance at all three time
points. In addition, removing age would not affect the
discriminative performance of our prognostic model at
the 3-year time point.
Based on current analysis pipeline and results, remov-

ing miRNA expression from our prognostic model may
have a minimal effect on short-term prognostic predic-
tion, but would have a significant effect on long-term
prognostic prediction. In addition, removal of T stage
had a positive prognostic effect on our model.
Considering the overall evaluation, T stage was the

least important covariate of the clinical covariates in our
prognostic model, while miRNA expression was the least

important covariate of the omics covariates in our prog-
nostic model.

Discussion
First, we successfully performed unsupervised clustering
to aggregate patients in our dataset into different groups
based on different types of omics data profiles. Accord-
ing to the evaluation of the single-covariate Cox PH
model shown in Fig. 3a and b, DNA methylation can be
used as a prognostic predictor even when used alone,
whereas gene expression and miRNA expression per-
formed relatively poorly on this task.
Then, we integrated the clinical data and used differ-

ent combinations of omics data by fitting a multi-
covariate Cox PH model, and the results confirmed that
we had successfully integrated the clinical features, gene
expression, DNA methylation and miRNA expression to
improve the colon cancer prognostic performance. The

Table 7 Difference in performance of our prognostic model and the model with one covariate removed

Comparison 2-year ΔC ± 95% CI 3-year ΔC ± 95% CI 5-year ΔC ± 95% CI P value of LRT

Without T stage −0.00141 ± 0.027 −0.00135 ± 0.024 0.00264 ± 0.021 0.0126

Without N stage 0.0341 ± 0.043 0.0332 ± 0.041 0.0285 ± 0.037 0.00863

Without M stage 0.0320 ± 0.042 0.0203 ± 0.038 0.00457 ± 0.031 7.755 e-6

Without Age 0.0121 ± 0.029 0.000144 ± 0.034 0.0227 ± 0.036 0.00688

Without Gene 0.0108 ± 0.025 0.0138 ± 0.024 0.0225 ± 0.030 0.000133

Without Methylation 0.0273 ± 0.035 0.0260 ± 0.037 0.0457 ± 0.052 0.000609

Without miRNA 0.00357 ± 0.011 0.00380 ± 0.013 0.0068 ± 0.018 0.103

Table 6 Wilcoxon signed-rank test of difference in C-index distribution between our prognostic model and other models

Comparison P value of the 2-year C-index P value of the 3-year C-index P value of the 5-year C-index P value of the bootstrap results

CGMm vs CMm < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CGMm vs CGM < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 1.091 e-5

CGMm vs CGm < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 0.000102

CGMm vs CA < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 5.028 e-12

CGMm vs CG < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CGMm vs CM < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CGMm vs Cm < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CGMm vs C < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CGMm vs G < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CGMm vs M < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CGMm vs m < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

CMm vs CG < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 0.0209

CMm vs Cm < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 0.00161

CMm vs C < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 1.452 e-7

CG vs C < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

Cm vs C 3.413 e-16 < 2.2 e-16 0.00323 7.012 e-13

In the Comparison column, C stands for clinical, G for gene expression, M for DNA methylation and m for miRNA expression. The words on both sides of vs are
the covariates in the prognostic model
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evaluation metrics used on the models based on differ-
ent covariates suggested that combining clinical features
and all three types of omics data could offer the best
prognostic performance. The p-values of the three tests
of the prognostic model were improved, especially the
score test, which is consistent with the findings from a
previous study [20]. In Table 4, Cluster 3 of gene expres-
sion showed the highest HR, thus differential expression
analysis and pathway enrichment analysis were con-
ducted based on cluster labels of gene expression, with
the edgeR (https://bioconductor.org/packages/release/
bioc/html/edgeR.html) and the Database for Annotation,
Visualization and Integrated Discovery database (DA-
VID; version 6.8; david.ncifcrf.gov/). In total, 57 differen-
tially expressed genes were identified, as listed in
Additional file 3. These included PRSS2, EPHB6 and
FABP4, which showed correlation with colorectal cancer
prognosis, whereas high expression of these genes was
related to poor prognosis [41–43]. These genes were
enriched in Reactome pathway EPH-ephrin mediated re-
pulsion of cells, which might be a potential therapeutic
target in colon cancer [44, 45].
Our study indicated that combining clinical covariates

with omics data could improve prognostic performance,
and that the more types of omics data that were used,
the better the improvement was. Compared to a previ-
ous study conducted by Zhao et al. [40], our study suc-
cessfully integrated gene expression, miRNA expression,
DNA methylation and clinical features rather than using
only gene expression and clinical features. In addition,
the integration of clinical and multi-omics data may
offer researchers more appealing discoveries than would
result from exploring clinical or omics data separately.
This study highlights our ongoing work. Colon cancer

prognosis may benefit from the integration of clinical

and omics features. However, cooperation among bio-
medical scientists, oncologists and biologists is necessary
for implementing the practical application of a personal-
ized prognostic model. A platform that offers integrative
analyses of clinical and omics data and management and
storage of clinical and omics data is essential. Our
current study approach offers a fundamental framework
for this type of platform. In addition, our approach can
be easily extended to other types of omics data, such as
copy number variations or somatic mutations. We aim
to build a classifier based on the identified cluster labels
of different omics data and develop a web-based tool for
practical application in the coming future. Moreover, we
aim to identify patients with good versus poor prognoses
with integrated clinical and multi-omics features.
However, our current study was limited by the TCGA-

COAD datasets and the use of only three types of omics
data and four clinical features. Therefore, we hope to
collect omics data from patient follow-ups performed at
the hospital. Such collection may provide access to more
clinical features, including treatment, larger samples and
more types of omics data for analysis. Such advance-
ments may validate the extensibility of this integrative
analytic approach. The finding that miRNA expression
had a negligible prognostic contribution to the short-
term prognosis indicated that we might need a better
analysis method for miRNA expression. Based on Uno’s
C-index, the contribution of T stage to our prognostic
model was questionable, though Harrell’s C-index sug-
gested that T stage had a positive contribution to our
prognostic model. These inverse results might be due to
the limitation of Uno’s C-index, as there were no events
for different T stages except for the T3 stage before the
2-year time point, as shown in Additional file 4. Such
phenomenon could also be observed for the covariate

(See figure on previous page.)
Fig. 5 C-indexes of our prognostic model with one covariate removed. a Harrell’s C-index of our prognostic model with one covariate removed;
b Harrell’s C-index with bootstrapping of our prognostic model with one covariate removed; c 2-year Uno’s C-index of our prognostic model
with one covariate removed; d 2-year Uno’s C-index with cross-validation of our prognostic model with one covariate removed; e 3-year Uno’s C-
index of our prognostic model with one covariate removed; f 3-year Uno’s C-index with cross-validation of our prognostic model with one
covariate removed; g 5-year Uno’s C-index of our prognostic model with one covariate removed; h 5-year Uno’s C-index with cross-validation of
our prognostic model with one covariate removed

Table 8 Test of C-index distribution differences between our prognostic model and model with one covariate removed

Comparison P value of the 2-year C-index P value of the 3-year C-index P value of the 5-year C-index P value of bootstrap results

Without T stage < 2.2 e-16 < 2.2 e-16 2.384 e-6 < 2.2 e-16

Without N stage < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

Without M stage < 2.2 e-16 < 2.2 e-16 4.5 e-5 < 2.2 e-16

Without Age < 2.2 e-16 0.228 < 2.2 e-16 < 2.2 e-16

Without Gene < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 < 2.2 e-16

Without Methylation < 2.2 e-16 < 2.2 e-16 < 2.2 e-16 9.179 e-9

Without miRNA 0.102 0.431 0.00527 < 2.2 e-16
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age in Additional file 5, as rare events occurred between
the 2-year and 3-year time points, causing age to have
no significant prognostic contribution at 3-year time
point based on Uno’s C-index.
The results suggested that the current C-o-C approach

may not be suitable for integrating multi-omics data in
our current study [17, 29, 30]. This might be caused by
the insufficient use of interactions between different
omics data sets in the second layer of clustering or the
limitations of our dataset. In addition, our C-o-C
approach was carried out separately with the clinical
features, which might contain several pieces of informa-
tion overlapping with the clinical features. More com-
plex methods, such as machine learning methods or
deep learning methods, may be good replacements for
the current C-o-C approach and may make better use of
integrated omics data in combination with clinical fea-
tures, as has been shown in recent studies applying deep
learning methods or similarity network fusion to inte-
grate multi-omics data [46–50].

Conclusion
In conclusion, we applied a pilot integrative prognostic
analysis of colon cancer based on clinical features, gene
expression, DNA methylation and miRNA expression
data. This approach successfully increased the predictive
performance of an integrated prognostic model of colon
cancer patients compared to the performance achieved
using clinical features alone, and all types of omics data
had significant effects on the prognostic model. There-
fore, our study has the potential to help colon cancer
oncologists treat patients more accurately.
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