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Objective. To investigate the mechanism of jujube (Ziziphus jujubaMill.) in appetite regulation based on network pharmacology.
Methods. *e active components and action targets of jujube were retrieved through the TCMSP and TCMID databases.
GeneCards, DisGeNet, *erapeutic Target Database, and OMIM were used to screen the related targets for appetite, appetite
suppression, and appetite regulation, and the intersection target of the two was selected. A protein-protein interaction (PPI)
network was constructed. Important protein nodes and subnets were predicted based on the cytoHubba plug-in, and the hub gene
was screened. Additionally, GO and KEGG pathway analyses were performed to obtain potential biological processes and
signaling pathways of key targets. And the active ingredient-target-action pathway diagram was constructed. Results. A total of 16
active components were screened from jujube, including 131 action targets related to appetite and appetite regulation. *ree key
targets (MAOA, MMP2, and HSPB1) were screened out by MCODE analysis. KEGG enrichment analysis was mainly enriched in
neuroactive ligand-receptor interaction, serotonin-containing synapse, gap junction, cAMP signaling pathway, and dopaminergic
synapse. Molecular docking results showed that the components coclaurine, (−)-catenin, (+)-stepholidine, berberine, cianidanol,
coclaurine, andmoupinamide in jujube had strong binding activity to the main targets (ESR1, ADRA2C, andMMP2). Conclusion.
Based on network pharmacology, the appetite modulating effects of jujube on multiple components, targets, and channels were
explored, and the main active components of jujube were predicted to act on multiple signaling pathways to regulate appetite.*e
molecular docking results showed that the components in jujube had strong binding activity to the main targets, which provided
new ideas and methods to further investigate the mechanisms of appetite regulation by jujube.

1. Introduction

Hyperphagia is one of the most common and intractable
symptoms in diabetic patients and is an important culprit in
disrupting glucose homeostasis [1]. Studies have shown that
recurrent blood glucose fluctuations are an independent risk
factor for increased diabetic complications and cardiovascular
mortality, and hyperphagia is a key driver of blood glucose
drift and disease progression. *e existing diabetes treatment
drugs GLP-1 agonists can play a role in suppressing appetite
in diabetic patients by inhibiting the appetite center and
delaying gastric emptying [2, 3]. However, these drugs are
expensive and can cause varying degrees of vomiting,
headache, nasopharyngitis, and significant weight loss.

Fatty and sweet foods can trap the spleen and stomach,
which will lead to spleen deficiency for a long time and
eventually become diabetic, manifesting as easy hunger.
Supplementing spleen deficiency and responding to the
sweet nature of the spleen is one of the main tools in the
clinical treatment of hyperphagia in diabetes in Chinese
medicine [4, 5]. Spleen deficiency and overflow of Qi are the
keys to the pathogenesis of hyperphagia in type 2 diabetes
(T2DM), and the main treatment rule is to “conform to the
preference of the sick, use sweet herbs to treat the spleen” [4].
Clinical practice has shown that large doses of jujube
(Ziziphus jujubaMill.) decoction can produce the symptoms
of gastric fullness in patients and then achieve good results in
appetite control without producing more obvious blood
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glucose fluctuations, but can also assist other glucose-low-
ering treatment options to maintain blood glucose ho-
meostasis [4, 5]. Some basic studies suggest that jujube
components have antioxidant [6], improving insulin resis-
tance [7], inducing cancer cell apoptosis [8], inhibiting
α-glucosidase activity [9], and sedative-hypnotic effects [10].
However, there is a relative lack of research on the phar-
macological mechanisms of action of jujube on appetite
regulation.

Network pharmacology is a research method that uses
high-throughput screening in databases, network visuali-
zation, and data analysis techniques to reveal the complex
biological network relationships among drugs, targets, and
diseases and to analyze and predict the pharmacological
mechanisms of drugs [11]. Molecular docking is a powerful
tool for predicting the affinity and binding mode of proteins
and ligands. For a given protein and ligand (protein, DNA/
RNA, or small molecule), their binding mode and free
energy of binding can be predicted to investigate their
functions and mechanisms of action [12]. Virtual screening
based on molecular docking methods has become one of the
required processes for drug development against specific
target proteins [12]. By constructing a database based on the
main components of jujube and establishing a Chinese
medicine target dataset through target prediction, then
constructing a compound-target network, constructing a
protein-protein interaction (PPI) network [13], performing
gene ontology (GO) function enrichment analysis [14], and
performing pathway-based enrichment analysis, we can
explain the effects of jujube on appetite regulation at the
molecular level by constructing a multidimensional net-
work of Chinese medicine chemical composition-target of
action-disease target-PPI network. By constructing a
multidimensional network of Chinese herbal chemical
constituents-targets-disease targets-PPI network, we can
explain the effects of jujube on appetite regulation at the
molecular level.

2. Materials and Methods

2.1. Composition of Jujube. *e Chinese medicine name
jujube was used to obtain drug composition information
using the TCMSP (https://tcmspw.com/tcmsp.php) [15]
database, TCMID (https://www.megabionet.org/tcmid/)
[16] database, and other Chinese medicine composition
databases, including the number of ingredients, molecular
name, and molecular mass. *e structures were imported
into PubChem (https://pubchem.ncbi.nlm.nih.gov/) [17] for
searching and normalization, supplementing their Pub-
Chem CID, and downloading the SDF structures.

2.2. Screening of Active Ingredients in Jujube. ADMET [18] is
the absorption, distribution, metabolism, excretion, and
toxicity of a drug. ADME is the study of drug metabolism
kinetics and is commonly used in contemporary drug design
and screening. In this study, we used the ADMET De-
scriptors module of Discovery Studio 2017R2 to predict the
ADMET parameters of herbal ingredients, based on which

human intestinal absorption (ADMET_Absorption_Level)
and ADMET-Aqueous Solubility was used for the screening
of the Chinese herbal ingredients. Compounds with
ADMET_Absorption_Level 0, 1, 2 and ADMET_Solubili-
ty_Level 1, 2, 3, 4 were selected for inclusion in the study.

2.3. Prediction Screening of Target Proteins of Active Ingre-
dients of Jujube. *e predictive screening of the active in-
gredient target proteins of jujube was performed using the
following two steps: the smile structures of the screened
active ingredients were entered into DrugBank (https://go.
drugbank.com/) [19], *erapeutic Target Database (https://
db.idrblab.net/ttd/) [20], and Swiss Target Prediction plat-
form (https://www.swisstargetprediction.ch/) [21] to predict
the relevant targets of the active ingredients of the herbs and
select “Homo sapiens” for the screening. *e targets of
“Homo sapiens” species were selected for screening, and a
database of active ingredient targets of jujube ingredients
was constructed.

*e target prediction was carried out according to the
method of Fu et al. [22], and all targets in the target database
were scored by deep learning and a Bayesian network al-
gorithm. *e network topology parameters were calculated
according to the scores, and the targets of the active in-
gredients of jujube were screened for subsequent research.

2.4. Disease Target Screening. *e search term “Appetite
Depressants/Appetite/Appetite Regulation” was set and the
GeneCards database (https://www.GeneCards.org/) [23],
the DisGeNet database (https://www.disgenet.org/) [24], the
*erapeutic Target Database, and the OMIM database
(https://www.omim.org) [25] were used to obtain the dis-
ease-related targets. *e GeneCards database was applied to
screen genes with a score greater than 2.3, and the DisGeNet
database was queried for genes derived from the CTD
(https://ctdbase.org/)-human [26] database. *e OMIM and
*erapeutic Target Database were applied to collect disease-
associated genes. *e data obtained from the four databases
were merged to take the intersection, and the duplicate or
invalid genes were removed to build the disease target
database.

2.5. PPI Network Construction and Screening of Hub Genes.
STRING database [27] is a database for searching known
proteins and predicting protein-protein interactions, which
contains 2031 species containing 9.6 million proteins and
138 million protein-protein interactions. We used the
STRING database to construct a PPI network for the in-
tersection of compounds and disease targets. *e intersec-
tion was taken for the targets of the active ingredient of the
compound and the disease targets. *e intersection targets
were uploaded to the STRING database (https://string-db.
org/). *e information of the constructed PPI network was
imported into Cytoscape 3.8.2 software [28], based on the
cytoHubba [29] plug-in topological algorithm to predict the
important protein nodes and subnetworks in the network.
And this study used DEGREE (Degree Correlation), MNC
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(Maximum Neighborhood Component), MCC (Maximal
Clique Centrality), EPC (Edge Percolated Component),
CLONESS (Closeness Centrality), and visualized hub gene.
Cluster analysis was performed using the plug-in MCODE
[30] to find gene clusters by using the correlation between
proteins in the network, derive subnetworks, extract the
differential genes contained in each gene cluster, and analyze
the subnetworks.*emain biological processes of the targets
in the subnetworks are analyzed by finding gene clusters
using correlations between proteins in the network, deriving
subnetworks, and extracting the differential genes contained
in each gene cluster.

2.6. Functional Enrichment andDisease Enrichment Analysis.
GO functional annotation analysis is a common approach to
perform large-scale functional enrichment studies of genes,
including biological process (BP), molecular function (MF),
and cellular component (CC). *e Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway is a widely used
database for storing information about genomes, biological
pathways, diseases, and drugs. *e screened hub genes were
imported into the DAVID 6.8 database (https://david.
ncifcrf.gov/) [31], and the species selection “Homo sapi-
ens” was used for GO analysis and KEGG pathway analysis
(P< 0.05) to analyze the key targets involved in the relevant
biological processes. Signaling pathways were analyzed and
visualized using Cytoscape software.

2.7. Construction of “Active Ingredient-Potential Target-Ac-
tion Pathway” Network. Cytoscape 3.8.2 software [28] was
used to construct the “active ingredient-potential target-
action pathway” network. *e network consists of three
parts, namely, active ingredients, target proteins, and
pathways, to analyze and explore the multicomponent-
multitarget-multipathway mechanism of Chinese medicine
for the treatment of diseases.

2.8. Molecular Docking of Key Targets and Components.
Molecular docking was performed using CDOCK in the
Receptor-Ligand International module of the software
Discovery Studio 2017 R2 [32] to precisely dock and analyze
the key targets and the main components of Chinese
medicine. *e 3D structures of the small molecule com-
pounds of the main active ingredients of traditional Chinese
medicine were downloaded from PubChem (https://
pubchem.ncbi.nlm.nih.gov/) according to their PubChe-
m_ID numbers and imported into Discovery Studio 2017
R2. *e high-resolution crystal structures of the targets were
downloaded from the PDB [33] (https://www.rcsb.org/pdb/
home/home.do) protein database, and the active sites of the
proteins were centered on the active amino acid sites of the
original ligand action labeled in the crystal structure itself,
and the corresponding “active pockets” were constructed, so
that the system searches for “active pockets” near the active
site and finally locates the “active pocket” information to the
target “active pocket.”

*e parameters of the CDOCKER algorithm [34]
module were set as follows: Pose Cluster Radius was set to
0.5, Random Conformations was set to 10, Orientations to
Refine was set to 10, and the rest of the default parameters
were kept unchanged. *e process is shown in Figure 1.

3. Results

3.1. Screening of Active Compounds in Jujube. A total of 21
chemical components were obtained from the database
collected for the jujube (DZ), with the main structural types
being flavonoids, phenylpropanoids, alkaloids, terpenoids,
etc. Chinese medicine contains a large number of chemical
components, and the DS software was used to predict the
ADMETparameters of the chemical components contained
in the compound based on their chemical structures, which
helps to find the possible active components quickly. Finally,
a total of 16 active ingredients were screened, and the
corresponding information about the screened active in-
gredients is detailed in Table 1.

3.2. Screening of Appetite-Related Targets in Jujube. *e
targets with p value >0.9 were screened from the prediction
results of the target database as active ingredient targets, and
a total of 194 active ingredient targets were obtained from
the Chinese herbal compound. A larger number of targets
were screened in the GeneCards database according to the
search term “Appetite,” and 3330 targets were selected based
on the criterion of score >2.3. 224 targets were obtained from
OMIM database, and 275 targets were obtained from Dis-
GeNEt. A total of 3552 targets were obtained after com-
bining and deweighting, with 275 targets in OMIM database,
275 targets in DisGeNEt database, and 1 target in TTD
database. *e 194 potential targets of Chinese herbal in-
gredients were intersected with 3552 targets of disease
targets, and a Wayne diagram was drawn (Figure 2(a)), and
131 potential targets of Chinese herbal compounds were
initially obtained, and a compound name-Chinese herbal
medicine-drug target interaction network was constructed
(Figure 2(b)).

3.3. Construction of the PPI Network and Screening of Key
Targets. *e screened potential targets were input into the
STRING database to obtain the target protein interaction
information and imported into Cytoscape to construct the
PPI network (Figure 3(a)), which had 130 nodes (target
proteins) and 1004 edges (protein interactions). It indicated
that among the predicted disease-related targets, the more
targets could have effective interactions with that target.
Using the five parameters of MNC, DEGREE, MCC,
CLONESS, and EPC for screening (Figure 3(b)), the algo-
rithm’s computational analysis of the network structure and
weighted linkage between nodes could screen out important
key genes. *e intersection of the top 30 results of each
algorithm was taken to obtain 11 key targets (Figure 3(c),
Tables 2 and 3).
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3.4. Subnetwork Analysis. MCODE subnetwork analysis can
discover more closely connected groups or genes in the
network. It is calculated by weighting the points with the
highest weight and set as SEED, from SEED, recursively
move outward to find nodes that can join the subnetwork.
Subnetwork 1 is centered on MAOA, and the important
targets connected to it, such as SLC6A3, DRD3, DRD4,
SLC18A2, andHTR1A, are all dopaminergic synapse-related
targets, indicating that subnetwork 1 is closely related to
dopaminergic synapses (Figure 4(a)). *e core of subnet-
work 2 is MMP2, and the important targets connected with
it, such as TNF, are all targets related to inflammatory
processes, indicating that subnetwork 2 is closely related to
the regulation of tryptophan channels by inflammatory
mediators (Figure 4(b)). *e core of subnetwork 3 is HSPB1,

and the important targets connected with it, such as
CHRNA4, BRCA1, and HTR3A, are all targets related to
cAMP signaling pathway, indicating that subnetwork 3 is
closely related to cAMP signaling channels (Figure 4(c)).

3.5. GO Enrichment Analysis. In order to explore the
functional distribution of key targets, 131 key targets were
entered into the DAVID 6.8 database for GO enrichment
analysis. *e results showed 343 biological processes, 103
molecular functions, and 58 cellular components. Combined
with the literature, the key targets in the biological process
were filtered by P< 0.5 and the number of enriched targets
was high, and the key targets were concentrated in response
to stimulus, signaling, cell proliferation, positive regulation
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Figure 1: Flowchart.

Table 1: Chemical composition and ADME parameters of jujube.

No. Compound PubChem CID ADMET_Absorption_Level ADMET_Solublity_Level Herb
DZ1 (−)-Catechin 73160 0 3 Jujube
DZ2 (+)-Stepholidine 12442999 0 2 Jujube
DZ3 Berberine 2353 0 2 Jujube
DZ4 Betulinic acid 64971 2 1 Jujube
DZ5 Ceanothic acid 161352 2 1 Jujube
DZ6 Cianidanol 9064 0 3 Jujube
DZ7 Coclaurine 160487 0 3 Jujube
DZ8 Coumestrol 5281707 0 2 Jujube
DZ9 Malkangunin 90473155 0 3 Jujube
DZ10 Mauritine D 6443026 1 2 Jujube
DZ11 Moupinamide 5280537 0 3 Jujube
DZ12 Nuciferine 10146 0 2 Jujube
DZ13 Protopine 4970 0 2 Jujube
DZ14 Quercetin 5280343 1 3 Jujube
DZ15 Spiradine A 441756 0 3 Jujube
DZ16 Stepharine 98455 0 3 Jujube
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of biological process, negative regulation of biological
process, etc. (Figure 5(a) and Table 4). Among the molecular
functions, molecular transducer activity, catalytic activity,
transporter activity, and transcriptional regulation activity
are mainly involved (Figure 5(b) and Table 4). Among the
cellular components, the membrane is the most involved
target, followed by synapse, organelle part, and cell junctions
(Figure 5(c) and Table 4).

3.6. KEGG Pathway Analysis. *e KEGG pathway enrich-
ment analysis of potential targets by the DAVID 6.8 data
platform (P< 0.05) is shown in Figures 6(a)–6(d). *e top 10
pathways were Neuroactive ligand-receptor interaction,

Serotonergic synapse , Gap junction, cAMP signaling pathway,
Dopaminergic synapse, Calcium signaling pathway, Hypoxia-
inducible factor pathway (HIF-1 signaling pathway), Prolactin
signaling pathway, *yroid hormone signaling pathway, and
Inflammatory mediator regulation of TRP channels (Table 5).
It is suggested that jujube components may exert appetite
modulating effects through the above pathways.

3.7. “Active Ingredient-Key Target-Pathway” Network Con-
struction for Jujube. *e active ingredients, potential targets,
and selected signaling pathways of jujube were imported
into Cytoscape 3.8.2 software to construct the “jujube-ac-
tive-ingredient-target-action pathway” diagram

DZ

63 131 3421

Appetite

(a) (b)

Figure 2: Interaction network diagram of jujube for appetite treatment. (a) Venn diagram of jujube action targets and disease targets; (b)
jujube-component-target interactions network. Green hexagon is Chinese medicine, red circle is component, and blue diamond is target.

(a) (b) (c)

Figure 3: Protein interaction network diagram. (a) All target protein interaction network; (b) top 30 target Venn diagram of MNC,
DEGREE, MCC, CLONESS, and EPC; (c) key target protein interaction network diagram.
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(Figure 7(a)). *eMCC algorithm of cytoHubba was used to
further calculate the closest association of each component
with key targets (Figure 7(b)). *e results concluded that 5-
hydroxytryptamine (5-HT)-containing synapses was the key
pathway of action.

3.8. Molecular Docking Simulation of Target Interaction with
Related Compounds. *e docking of key target genes and
their related compounds revealed that the docking binding
energies of the targets and their related compounds were all
negative (Table 6), indicating that the related compounds
bind well to the targets. Among them, coclaurine had the

lowest docking binding energy of −8.38 with ESR1,
(−)-Catechin and ESR1, (+)-Stepholidine and ADRA2C,
Berberine and ADRA2C, Cianidanol and ESR1, Coclaurine
and ESR1, Moupinamide and MMP2, Quercetin and SCR,
and Quercetin and TNF all had binding energies <−5 kcal/
mol, and the binding patterns are shown in Figures 8(a)–8(h).

4. Discussion

Chinese medicine is difficult to elucidate molecular mech-
anisms due to the complexity of their chemical composition.
Network pharmacology has been increasingly applied to the
study of Chinese pharmaceutical preparations in recent

Table 2: cytoHubba five-algorithm calculation results ranking.

Rank MCC CLONESS MNC EPC DEGREE
1 MAOA MAPK3 MAPK3 MAPK3 MAPK3
2 DRD2 EGFR EGFR SRC EGFR
3 HTR1A SRC SRC EGFR SRC
4 DRD4 HSP90AA1 HSP90AA1 APP HSP90AA1
5 DRD3 ESR1 TNF HSP90AA1 TNF
6 SLC6A3 TNF ESR1 ESR1 ESR1
7 SLC18A2 APP APP PIK3CA APP
8 ADRA2C PIK3CA PIK3CA TNF PIK3CA
9 ADRA2A BRCA1 BRCA1 RELA BRCA1
10 HTR3A RELA GRIN2B BRCA1 GRIN2B
11 HTR1B GSK3B SLC6A3 GSK3B SLC6A3
12 CHRNA4 GRIN2B HTR3A GRIN2B HTR3A
13 ACHE MAPT RELA NTRK2 RELA
14 PIK3CA PRKCA CHRNA4 NFKB1 CHRNA4
15 HTR2A PPARG ACHE CHRNA4 ACHE
16 ADRA1B NTRK2 CDK1 DRD2 GSK3B
17 ADRA1A NFKB1 DRD2 SLC6A3 CDK1
18 ADRA1D CDK1 MAOA PRKCA DRD2
19 HTR2C DRD2 NTRK2 ACHE MAOA
20 HTR2B ACHE GSK3B MAPT PPARG
21 APP HIF1A PPARG IGF1R NTRK2
22 OXTR CHRNA4 HIF1A CDK1 HIF1A
23 F2 CDK5 MAPT HIF1A SLC18A2
24 NTSR1 GRIN1 MMP2 HTR3A GRIN1
25 SRC IGF1R TOP2A SLC18A2 MAPT
26 EGFR ABCB1 NFKB1 PPARG MMP2
27 MAPK3 PTPN1 SLC18A2 ADRA1B TOP2A
28 HSP90AA1 MMP2 GRIN1 MAOA NFKB1
29 ESR1 TOP2A PRKCA MCL1 PRKCA
30 RELA F2 DRD4 GRIN1 DRD4

Table 3: Analysis of topological parameters of key targets.

Name Closeness Betweenness Degree
ACHE 0.486792 0.014869 26
APP 0.565789 0.062058 39
CHRNA4 0.481343 0.011892 27
DRD2 0.490494 0.010911 26
EGFR 0.611374 0.077568 52
ESR1 0.570796 0.054579 42
HSP90AA1 0.586364 0.072456 46
MAPK3 0.641791 0.140011 58
PIK3CA 0.56087 0.052588 38
RELA 0.533058 0.011697 27
SRC 0.605634 0.073436 49

6 Contrast Media & Molecular Imaging



Cluster 1: 9.625

(a)

Cluster 2: 7.647

(b)

Cluster 3: 5.143

(c)

Figure 4: Subnetwork diagram. (a) Subnetwork 1; (b) subnetwork 2; (c) subnetwork 3. *e larger the node, the darker the color means the
higher the degree value of the target point.

GO:0065008 regulation of biological quality

Top 20 of GO Enrichment

GeneNumber

pvalue
1.2e-25
9.0e-26

3.0e-26
6.0e-26

4.0e-39

60
80
100
120

GO:0010243 response to organonitrogen compound
GO:1901698 response to nitrogen compound

GO:0007267 cell-cell signaling
GO:0042493 response to drug

GO:0051716 cellular response to stimulus

GO:0050896 response to stimulus
GO:0070887 cellular response to chemical stimulus

G
O

te
rm

GO:0009719 response to endogenous stimulus

–0.04 0.00

RichFactor

0.04 0.08

GO:0023051 regulation of signaling
GO:0023052 signaling

GO:0010646 regulation of cell communication
GO:0099537 trans-synaptic signaling

GO:0098916 anterograde trans-synaptic signaling
GO:0007268 chemical synaptic transmission

GO:1901701 cellular response to oxygen-containing compound
GO:0099536 synaptic signaling

GO:0042221 response to chemical
GO:0010033 response to organic substance

GO:1901700 response to oxygen-containing compound

(a)

GO:0004888 transmembrane signaling receptor activity

GO:0097159 organic cyclic compound binding

GO:0099528 G protein-coupled neurotransmitter
receptor activity

GO:0004993 G protein-coupled serotonin receptor activity
GO:0099589 serotonin receptor activity

GO:0051378 serotonin binding
GO:1901338 catecholamine binding

GO:1901363 heterocyclic compound binding
GO:0004952 dopamine neurotransmitter receptor activity

GO:0004935 adrenergic receptor activity

GO:0043176 amine binding

GO:0043167 ion binding

GO:0042802 identical protein binding

GO:0042165 neurotransmitter binding
GO:0008144 drug binding

GO:0070405 ammonium ion binding

GO:0038023 signaling receptor activity
GO:0008227 G protein-coupled amine receptor activity

GO:0060089 molecular transducer activity
GO:0030594 neurotransmitter receptor activity

Top 20 of GO Enrichment

GeneNumber

pvalue

2.0e-11
1.5e-11

5.0e-12
1.0e-11

20
40
60
80

G
O

te
rm

0.00 0.25

RichFactor

0.50 1.000.75

(b)

GO:0045202 synapse

GO:0120025 plasma membrane bounded cell projection

GO:0030425 dendrite

GO:0120038 plasma membrane bounded cell projection part
GO:0005887 integral component of plasma membrane

GO:0031226 intrinsic component of plasma membrane
GO:0098590 plasma membrane region

GO:0043235 receptor complex
GO:0044456 synapse part
GO:0098794 postsynapse

GO:0005886 plasma membrane
GO:0071944 cell periphery

GO:0030424 axon

GO:0044463 cell projection part
GO:0097447 dendritic tree

GO:0044459 plasma membrane part

GO:0036477 somatodendritic compartment
GO:0042995 cell projection

GO:0097458 neuron part
GO:0043005 neuron projection

Top 20 of GO Enrichment

GeneNumber

pvalue

6e-13
4e-13
2e-13

40
60
80

G
O

te
rm

–0.04 0.00

RichFactor

0.04 0.08

(c)

Figure 5: GO enrichment analysis of the key targets. (a) Biological process (BP) analysis result; (b) molecular functions (MF) analysis result;
(c) cellular components (CC) analysis result.

Table 4: GO analysis table.

Class GO Term Count P value

Molecular function

GO:0060089 Molecular transducer activity 54 2.19E− 24
GO:0003824 Catalytic activity 74 4.44E− 09
GO:0005215 Transporter activity 21 9.23E− 05
GO:0005488 Binding 128 3.18E− 03
GO:0104005 Hijacked molecular function 3 1.70E− 02
GO:0016209 Antioxidant activity 3 2.42E− 02
GO:0098772 Molecular function regulator 20 4.35E− 02
GO:0140110 Transcription regulator activity 17 2.23E− 01
GO:0005198 Structural molecule activity 4 7.77E− 01

Cellular component

GO:0045202 Synapse 49 5.58E− 23
GO:0044456 Synapse part 34 3.96E− 15
GO:0030054 Cell junction 30 2.44E− 08
GO:0044425 Membrane part 81 4.76E− 08
GO:0032991 Protein-containing complex 68 2.16E− 07
GO:0016020 Membrane 96 6.75E− 07
GO:0031974 Membrane-enclosed lumen 66 1.02E− 06
GO:0044422 Organelle part 96 2.78E− 05
GO:0005623 Cell 130 1.52E− 04
GO:0044464 Cell part 130 1.52E− 04
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Table 4: Continued.

Class GO Term Count P value

Biological process

GO:0050896 Response to stimulus 125 3.86E− 29
GO:0023052 Signaling 108 1.98E− 26
GO:0032501 Multicellular organismal process 110 4.81E− 22
GO:0048518 Positive regulation of biological process 99 5.94E− 21
GO:0007610 Behavior 33 2.62E− 20
GO:0008283 Cell proliferation 53 1.19E− 18
GO:0048511 Rhythmic process 23 5.07E− 17
GO:0048519 Negative regulation of biological process 88 5.95E− 17
GO:0032502 Developmental process 91 4.46E− 15
GO:0065007 Biological regulation 126 7.53E− 15

Neuroactive ligand-receptor interaction

Serotonergic synapse

Gap junction

cAMP signaling pathway

Calcium signaling pathway

GrRH signaling pathway

Relaxin signaling pathway

PI3K-Akt signaling pathway

MAPK signaling pathway

Rap1 signaling pathway

Growth hormone synthesis, secretion and action
Cushing syndrome

Bile secretion
Regulation of lipolysis in adipocyte

Parathyroid hormone synthesis, secretion and action

Renin secretion

Phospholipase D signaling pathway

Hedgehog signaling pathway

Aldosterone synthesis and secretion

Phosphatidylinositol signaling system

Arachidonic acid metabolism

Synaptic vesicle cycle

Cytokine-cytokine receptor interaction
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Tryptophan metabolism

Long-term potentiation

Endocrine resistance
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Pathways in cancer
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Figure 6: KEGG pathway enrichment results. (a) KEGG pathway network diagram; (b) KEGG enrichment pathway annotated classification
results; (c) KEGG pathway enrichment circle diagram; (d) KEGG enrichment result bar graph.
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Table 5: KEGG pathway enrichment information.

Pathway Count P value
Neuroactive ligand-receptor interaction 30 1.28E− 15
Serotonergic synapse 18 4.07E− 14
Gap junction 15 3.49E− 12
cAMP signaling pathway 19 3.98E− 10
Dopaminergic synapse 14 1.04E− 08
Calcium signaling pathway 18 6.88E− 08
HIF-1 signaling pathway 10 9.55E− 06
Prolactin signaling pathway 8 1.60E− 05
*yroid hormone signaling pathway 10 1.68E− 05
Inflammatory mediator regulation of TRP channels 9 1.73E− 05

(a) (b)

Figure 7: Dates-component-target-pathway diagram. (a) Dazao-ingredient-target-pathway diagram; (b) the key target-ingredient diagram.
*e green hexagon is the name of a single herbal medicine, the red circle is the ingredient, the blue diamond is the target, and the purple
arrow is the pathway name.

Table 6: Molecular docking results of key targets and their related compounds.

Compound Target Combined energy (kcal/mol)

(−)-Catechin ESR1 −7.01
ADRA2C −5.47

(+)-Stepholidine ADRA2C −7.10
Berberine ADRA2C −7.80

Cianidanol ESR1 −7.14
ADRA2C −5.40

Coclaurine ESR1 −7.02
ADRA2C −4.82

Coumestrol ESR1 −8.38

Moupinamide MMP2 −7.87
EGFR −4.03

Nuciferine ADRA2C −6.79

Quercetin

TNF −7.61
SRC −6.95

MMP2 −6.72
MAPK3 −5.24

HSP90AA1 −6.25
ESR1 −7.36
EGFR −4.83
APP −4.57
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years [11]. It transforms drug research from a “single target,
single drug” model to a “network target, multicomponent
therapy” model [35]. Studies have shown a favorable effect of
jujube on glycosylated hemoglobin and some antioxidant
effects in patients with T2DM [36]. However, for the time
being, no studies have been conducted to analyze the net-
work pharmacology of the active ingredients of jujube.
*erefore, in this study, based on network pharmacology
and molecular docking research methods, we constructed a
multidimensional network through target prediction and
protein interaction networks to elucidate the principle of
action of jujube in treating diabetic hunger and regulating
appetite from molecular prediction level.

In the present study, a total of 16 components including
coclaurine, (−)-catenin, (+)-stepholidine, berberine, cianida-
nol, coclaurine, and moupinamide were identified as potential
active ingredients of jujube. *ese active ingredients include
131 targets of action related to appetite and appetite regulation.
*rough PPI network analysis of jujube in appetite regulation,
we identified 11 key targets: MAPK3, EGFR, SRC, HSP90AA1,
and so on. For further screening by MCODE analysis, three

key targets (MAOA, MMP2, and HSPB1) were identified. *e
molecular docking results showed that the main components
of jujube had strong binding activity to themain targets (ESR1,
ADRA2C, and MMP2).

MAOA can metabolize monoamine neurotransmitters
[37]. Studies have shown that MAOA regulates food intake
and energy expenditure [38]. Gardner et al. [39] similarly
showed that MAOA is involved in regulating appetite and
food intake related to obesity genes. HSP27 regulates actin
dynamics and thus cell motility [40].*e inhibition of feeding
by fibroblast growth factor (FGF)-1 is accompanied by the
induction of HSP27 in periventricular astrocytes [41]. MMP2
is an endopeptidase that reduces the basement membrane
around adipocytes, thus promoting the development of ad-
ipocyte hypertrophy [42]. Studies have shown high levels of
MMP2 gene expression in patients with T2DM [43]. Previous
studies suggested that the significant anorexigenic effect of
estradiol in male rats would be related to ESR1 present in the
lateral hypothalamic region [44]. *e results of molecular
docking suggested that coclaurine had the lowest docking
binding energy with ESR1 at -8.38. And the stronger binding
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Figure 8: Molecular docking simulations of targets and compounds. (a) 3D and 2D plots of molecular docking of (−)-catechin-ESR1; (b) 3D
and 2D plots of molecular docking of (+)-stepholidine-ADRA2C; (c) molecular docking 3D and 2D diagrams of berberine-ADRA2C; (d)
molecular docking 3D and 2D diagrams of cianidanol-ESR1; (e) molecular docking 3D and 2D plots of coclaurine-ESR1; (f ) molecular
docking 3D and 2D plots of moupinamide-MMP2 target; (g) molecular docking 3D and 2D diagrams of quercetin-SCR; (h) molecular
docking 3D and 2D diagrams of quercetin-TNF.
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activity of coumestrol to ESR1 in jujube may be related to the
estrogen-like effect of coumestrol. *e accuracy of network
prediction was reflected from the side.

Further, GO enrichment and KEGG pathway enrichment
analysis showed that key genes act on signaling pathways such
as neuroactive ligand-receptor interaction, serotonergic
(5-hydroxytryptamine; 5-HT) synapse, cAMP signaling
pathway, dopaminergic synapse, calcium signaling pathway,
and hypoxia-inducible factor pathway. Among them, the key
pathway of 5-HT synapses was closely related to appetite
control and the treatment of related diseases. *e key role of
5-HT in appetite control was formally proposed almost 30
years ago [45]. Studies have shown that the biogenic amine
neurotransmitter 5-HT is negatively correlated with food
intake and that a decrease in food intake is associated with 5-
HT [46]. Agonists of 5-HT improve obesity and glycemic
control in the population [47].

However, it should be noted that network pharmacology
is based on existing databases and results for network
modeling, and there is a certain false-positive rate of pre-
dicted results due to the differences in raw experimental data
under different experimental conditions.

*is paper presents a predictive analysis of the appetite
regulation mechanism of jujube based on the theoretical
level, and we hope that the results of this analysis can provide
new ideas for the next in-depth research, and we also expect
better research basis at the level of new drug development.
Our research team will continue to focus on the progress of
pharmacological research on jujube and will use the results
of this paper as a reference to conduct relevant animal and
cellular experiments to further investigate the effects and
regulatory mechanisms of jujube on the appetite center of
the hypothalamus.
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