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Resolving complex cartilage 
structures in developmental 
biology via deep learning‑based 
automatic segmentation of X‑ray 
computed microtomography 
images
Jan Matula  1, Veronika Polakova1, Jakub Salplachta  1, Marketa Tesarova  1, 
Tomas Zikmund  1, Marketa Kaucka  2, Igor Adameyko  3,4 & Jozef Kaiser  1*

The complex shape of embryonic cartilage represents a true challenge for phenotyping and basic 
understanding of skeletal development. X-ray computed microtomography (μCT) enables inspecting 
relevant tissues in all three dimensions; however, most 3D models are still created by manual 
segmentation, which is a time-consuming and tedious task. In this work, we utilised a convolutional 
neural network (CNN) to automatically segment the most complex cartilaginous system represented 
by the developing nasal capsule. The main challenges of this task stem from the large size of the image 
data (over a thousand pixels in each dimension) and a relatively small training database, including 
genetically modified mouse embryos, where the phenotype of the analysed structures differs from 
the norm. We propose a CNN-based segmentation model optimised for the large image size that 
we trained using a unique manually annotated database. The segmentation model was able to 
segment the cartilaginous nasal capsule with a median accuracy of 84.44% (Dice coefficient). The time 
necessary for segmentation of new samples shortened from approximately 8 h needed for manual 
segmentation to mere 130 s per sample. This will greatly accelerate the throughput of μCT analysis of 
cartilaginous skeletal elements in animal models of developmental diseases.

Abbreviations
μCT	� X-ray computed microtomography
CNN	� Convolutional neural network
ReLU	� Rectified linear unit
SELU	� Scaled exponential linear unit
DSC	� Dice–Sørensen coefficient
TP	� True positive
TN	� True negative
FP	� False positive
FN	� False negative
IQR	� Interquartile range

To understand the complexity of embryonic development, it was essential to assess the shape and structure of 
tissues and organs in three-dimensional space. It also enabled us to dissect the sequential steps of their forma-
tion. Pioneering work introduced tissue contrasting techniques that enabled the detection of previously hidden 
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structures such as embryonic cartilage or even their predecessor, mesenchymal condensations, using X-ray 
computed tomography1–3. The newly generated knowledge revolutionised the field of developmental biology 
and enabled, among others, the detection of the onset of congenital disorders and uncovering the origin and 
sequential steps of complex structure formation4, 5. During embryogenesis, the formation of the skull is preceded 
by the formation of chondrocranium. This cartilaginous 3D blueprint of future skeletal elements in the head 
is formed quite early in embryonic development and establishes the original layout of the future facial shape6. 
The shape of the head, specifically the face, is important for many aspects of everyday life—eating, breathing, 
vision, communication and mutual recognition in humans. Any morphological change in chondrocranium 
will be maintained even after replacement by bone. Therefore, when we aim to investigate the formation of the 
face, it is necessary to look at the embryonic stages and the 3D shape of the cartilage. Approximately 30% of 
congenital syndromes are represented by craniofacial malformations7. Investigations of the underlying causes 
were performed mainly using mouse genetic models that in part uncovered the basis of selected malformations. 
Nevertheless, numerous genetic perturbations were embryonically lethal and did not allow researchers to analyse 
and understand their role in the formation and shaping of embryonic structures.8, 9.

Historically, the investigation of head skeletal system formation relied on basic methodology such as his-
tological staining of sections and a subsequent assembly of the 2D images into a stack10. Needless to say, this 
approach was prone to artifacts and time- and effort-demanding, not allowing us to unwind the 4D dynamics 
of face formation to the full extent or at high resolution. With the technological and contrasting advances in 
recent years, it has become possible to visualise nearly any structure in the developing embryo using 3D imag-
ing techniques2, 3 and obtain more profound insights into the mechanisms of skeletal development, shaping 
and origin of craniofacial malformations. X-ray computed microtomography (μCT) is an imaging technique 
capable of capturing complex geometries in 3D with a high spatial resolution in the range of micrometres. This 
methodology became an ultimate booster in developmental biology, where the high spatial resolution allowed 
researchers to accurately assess the morphological properties of both hard and soft tissues of biological samples11. 
While advanced imaging protocols currently allow the detection of even delicate structures, such as embryonic 
cartilage shaping the face, the subsequent image processing preceding any further analysis remains enormously 
time-consuming and represents the major drawback of this methodology.

An essential step before any further analysis of μCT images is the segmentation of the structure of interest. 
Image segmentation is the task of assigning a class label to each pixel or, in the case of volumetric image data, 
the voxel of an image12. Many image segmentation algorithms have been developed and are actively utilised to 
segment mineralized matrices from μCT data. However, the low contrast of soft tissues (cartilage, peripheral 
nerves and others) represents a significant challenge for their application. High X-ray attenuation coefficients of 
hard tissues, such as bones and teeth, allow their segmentation with relative ease by applying simple segmenta-
tion algorithms, e.g., basic thresholding. Such image processing is unfeasible in the case of soft tissues13. The low 
X-ray attenuation provided by the various soft tissues present in biological samples renders them nearly trans-
parent for X-rays with energies used in traditional laboratory μCT systems. Tissue contrasting with substances 
containing elements with high atomic numbers (iodine14, osmium15, tungsten16) is frequently used to enhance 
the visibility of soft tissues. The contrast between various soft tissues (for instance, peripheral nerves, cartilage, 
muscles or parts of the brain) results from the differential uptake of the contrast solution17. However, the gen-
erated contrast is insufficient for utilising traditional fully automatic segmentation algorithms. In many cases, 
the desired structures must be segmented manually due to the complex shapes and uncertain borders between 
different tissues. This manual segmentation is a taxing and time-consuming task, especially in the case of volu-
metric image data containing thousands of tomographic cross-sections. One such difficult-to-segment structure 
is the cartilaginous nasal capsule of a developing mouse embryo. 3D models created by manual segmentation 
were crucial in the work of Kaucka and colleagues.2, 3. Manual segmentation was a significant bottleneck in data 
processing in these publications, as the manual segmentation of cartilaginous nasal capsule in one μCT scan of a 
mouse embryo required at least 8 h of an expert’s time. Therefore, a fully automatic solution that could decrease 
the time requirement and manual work of the expert is highly sought after.

Deep learning and, specifically, convolutional neural networks (CNNs) consistently achieve state-of-the-art 
results in image segmentation tasks18. Therefore, they seem to be a logical candidate for automatic segmentation 
of the nasal capsule cartilage; however, there are several challenges. The µCT measurement provides extremely 
large image data (thousands of pixels in each plane). Such a high resolution cannot be compromised, as it is 
crucial in studies where minor morphological differences among several samples are sought and compared2, 3. 
Furthermore, the segmented cartilage is structurally inhomogeneous, and its shape differs considerably depend-
ing on its location within the embryonic head. Additionally, subtle intraspecies differences in cartilage geometry, 
structure and thickness are observed among individuals. The size of the training database also plays an important 
role in creating a robust CNN-based segmentation model.

U-Net is a well-established convolutional neural network architecture for the segmentation of biomedical 
images12. Its ability to learn from size-limited datasets stems from its fully convolutional nature with so-called 
skip connections and the lack of any fully connected layers. The success of the U-net architecture greately 
increased the popularity of so-called encoder-decoder architectures with skip connections in segmentation of 
biomedical images, where the encoder is responsible for feature extraction and the decoder for the localisation 
and segmentation of the desired structures. U-net’s power in segmentation of datasets with a limited training 
database stems from its fully-convolutional nature. In the work of Rytky and colleagues19 the authors propose a 
method for segmentation of calcified articular cartilage in µCT images of rabbit knees, where they utilise a feature 
pyramid network decoder with a ResNet-1820 encoder trained in the ImageNet dataset21. As articular cartilage 
is a relatively spatially homogeneous structure, the authors in19 can apply patch-based training with a relatively 
low input size. Similarly, the authors in the work of Léger and colleagues22 employ a 3-D U-Net CNN to seg-
ment mineralised cartilage in µCT images of the Achilles tendon-to-bone interface and can employ patch-based 
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training due to the homogeneity of the segmented structure. To our knowledge, there is only one work dealing 
with a similar high-resolution segmentation of chondrocranium in developing mouse embryos imaged via µCT, 
published by Zheng and colleagues23. A manually annotated database is not available to the authors, and they 
approach the segmentation task using sparse annotation with uncertainty-guided self-training. The authors 
segment cartilage in the whole chondrocranium. They evaluated the performance of their method on selected, 
manually annotated subregions of the whole 3-D volume, as manual annotations of the whole chondrocranium 
were not available. This manual selection of the evaluation region may skew the final evaluation accuracy.

Here, we provide a methodology for fully automatic segmentation of highly complex cartilaginous nasal 
capsules in µCT images of mouse embryos. We utilised a CNN trained in a supervised training mode on a 
unique database of 14 manually annotated µCT scans of mouse embryo heads on their 17th day of embryonic 
development. We employed different modifications to a basic encoder-decoder CNN architecture to improve 
the segmentation performance of the model. We experimentally validated the proposed methodology for the 
particular image segmentation task. This µCT image segmentation model can be further used to segment newly 
scanned mouse embryos, thus greatly reducing the time required for processing new samples. The segmenta-
tion model is ready to be trained to include additional embryonic developmental stages or used as a basis for 
transfer learning for other high-resolution µCT segmentation tasks. We also show that the data provided by the 
proposed automatic segmentation methodology can be further quantitatively analysed in the same manner as 
manually segmented data.

Methods
Samples.  The database for training and testing the proposed segmentation method consists of 14 micro-CT 
scans of mouse embryonic heads at E17.5 (developmental stage). The heads were contrasted using the PTA-
staining procedure before scanning, which enabled the detection of tissues with low density (e.g., cartilage and 
muscle)24. The staining protocol was previously described in2, 3, 25. A subset of the dataset was published and is 
available for inspection in26. All samples utilised in this work are summarised in Suppl. Table S1. All animal work 
was approved by the Local Ethical Committee on Animal Experiments (Norra Djurförsöksetiska Nämd, ethical 
permit N226/15 and N5/14) and conducted according to The Swedish Animal Agency´s Provisions and Guide-
lines for Animal Experimentation recommendations. In order to comply with the 3R strategy of animal welfare, 
we decided to use data generated for previous studies2, 3. No additional animals have been used in this study. All 
experiments on animals were conducted in compliance with the ARRIVE guidelines.

Multiple genetically modified embryos with altered cartilage development were included in the database 
to improve the generalisability of the developed method. As proper sample preparation is very important, we 
included an improperly stained embryo during the sample preparation procedure. The differences are further 
visualised in the tomographic cross-section in Fig. 1a. The changes in the cartilaginous nasal capsule geometry 
and morphology in genetically modified samples differ in severity from moderate to severe. The shape differences 
found in mutant embryos are visualised as 3-D renders in Fig. 1b.

Sample preparation.  Mice were sacrificed with isoflurane (Baxter KDG9623) overdose or cervical dislo-
cation, and embryos were dissected and collected in ice-cold PBS. Subsequently, the samples were fixed in 4% 
paraformaldehyde (PFA) in PBS solution for 24 h at + 4 °C with slow rotation. Before contrasting, samples were 
dehydrated in incrementally increasing ethanol concentrations (30%, 50%, 70%), one day in each concentration 
to minimise the shrinkage of the tissue. Samples were transferred into 1.5% PTA (phospho-tungstic acid) in 90% 
methanol for tissue contrasting. The PTA-methanol solution was changed every 2–3 days. Samples were stained 
for seven weeks. The contrasting procedure was followed by rehydration of the samples by incubation in an 
ethanol series (90%, 70%, 50% and 30%).

μCT measurement.  The samples were scanned with a laboratory μCT system GE Phoenix v|tome|x L 240 
(Waygate Technologies GmbH Germany). The system was equipped with a high contrast flat panel detector 
DXR250 with 2048 × 2048-pixel resolution and 200 × 200 μm2 pixel size. The embryos were fixed in polyimide 
tubes filled with 1% agarose gel to prevent sample movement during the µCT stage rotation. Two thousand 
projections were acquired with an exposure time of 900 ms per projection. Each projection was captured three 
times, and an average of the signal was used to improve the signal-to-noise ratio. The acceleration voltage of the 
X-ray tube was 60 kV, and the tube current was 200 μA. The X-ray beam was filtered with a 0.1 mm aluminum 
plate. Tomographic reconstruction of the obtained set of projections was performed using the FDK reconstruc-
tion algorithm27 in GE phoenix datos |× 2.0 3D computed tomography software (Waygate Technologies GmbH 
Germany). Output of the reconstructed CT slices was 16-bit integer. To compensate for small and smooth drift 
of axis (samples and detector) and focus (X-ray tube) position, scan optimiser module was applied during the 
reconstruction. Beam hardening correction was applied by the commercially available module in the recon-
struction software with parameter 7 for different materials. The voxel size was variable depending on the sample 
size (see Suppl. Table S1 for complete information).

Manual segmentation.  Avizo image processing software (version 7, Thermo Fisher Scientific, USA) was 
used to manually segment the nasal capsule cartilage in the reconstructed CT images. The data were aligned for 
each embryo head to have the same orientation. The manual segmentation of the cartilaginous nasal capsule 
tissue takes at least 8 h16, depending on the sample and operator’s experience. As a result of the cartilage being 
segmented by multiple operators, some intraoperator variability is introduced into the manually segmented 
samples. It was partially avoided by the quality check performed by a single expert, but it might still affect the 
quality of the dataset and then further evaluation of the segmentation accuracy. To make the load of 3D seg-
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mentation volume easier to handle, only every 3rd slice was manually segmented, and the remaining slices were 
calculated by linearly interpolating between adjacent manually segmented slices. Figure 2 depicts the segmented 
structure in the context of the whole head in 3-D volume.

Neural network architecture.  We aimed to fully preserve the resolution provided by the µCT imaging 
modality. In the CNN architecture design, we had to keep in mind the large size of the segmented images, which 
is over 1000 voxels in all three dimensions. Utilising a fully 3-D CNN architecture for the segmentation of 
image data of this size is not feasible due to memory limitations. A piecewise segmentation of patches extracted 
from the 3-D volume seems to be a possible solution to this problem; however, even the segmented structure is 
enormous for a typical segmentation via 3-D CNN (see Suppl. Table S1). The size of the segmented structure is 
in each case over 700 × 1000 × 600 pixels. By extracting patches from the whole 3-D volume, much of the global 
spatial context needed for proper localisation and segmentation of the cartilage would be lost. For these reasons, 
a slice-by-slice approach to segmentation is the most appropriate. Manual segmentation was performed in the 
axial slices of the whole 3-D volume, and we thus decided to utilise the axial plane for training and subsequent 
inference of the developed segmentation model.

We use the basic U-Net shape; however, the input is downsampled only four times in the original 
implementation12. To compensate for the large image size, two additional levels were added to the architecture. 
This means that the input, set to a fixed size of 1792 × 1280 pixels, is downsampled a total of 6 times to the size of 

Figure 1.   Visualisation of selected samples included in the database utilised in this work. (a) Visualisation of 
challenging cases compared to control mouse embryo represented in the majority of the database. The figure 
shows selected tomographic cross-sections of properly stained control embryos in comparison with improperly 
stained embryos. Red arrows indicate the difference in cartilage staining between properly stained samples and 
an improperly stained sample. A tomographic cross-section of genetically modified sample 10 is also shown. 
The green arrow shows the main phenotype difference: the underdeveloped nasal septum. Scale bar 2 mm. (b) 
Frontal view of 3-D rendering of the segmented nasal capsule cartilage of the control (Sample 8), moderate 
shape change in Sample 6 and severe shape change in Sample 10. Scale bar 1 mm.
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28 × 20 pixels in the lowest level of the network. This makes the network very deep, and issues such as the vanish-
ing gradient could significantly hinder the training of the model. For this reason, the architecture was enhanced 
by utilising residual blocks that had been first proposed in20. Residual blocks are a structure consisting of stacked 
layers utilised in CNNs. They improve the information flow through the deep network, prevent vanishing gradi-
ent problems, and improve the network’s training28. Three types of residual blocks are used in the architecture 
(see Fig. 3). A downsampling residual block implements dimensionality reduction in the encoding part of the 
CNN architecture. Strided convolutional layers achieve dimensionality reduction in the convolutional path of the 
residual block and max-pooling in the identity path of the residual block. Because in U-Net-based architectures, 
the number of filters increases twice with each dimension reduction level, it is also necessary to increase the 
number of filters in the identity part of the residual block. This is performed by a 1 × 1 convolutional layer with 
the required number of filters to perform the addition of the feature maps from the convolutional and identity 
paths. Another type of residual block in the proposed architecture is a so-called flat block that outputs feature 
maps with the same dimensions as the output. The third type of residual block utilised in the proposed architec-
ture is an upsampling block. The upsampling block is a residual equivalent of the transposed convolutional layers 
of the decoder part of the basic U-Net architecture. The upsampling is performed by transpose convolutional 
layers in the convolutional path of the residual block and by nearest neighbor interpolation in the identity path. 
The 1 × 1 convolutional layer in the identity path ensures the correct number of feature maps for the addition 
with the feature maps from the convolutional path. As in any U-Net-based architecture, feature maps from the 
encoder are concatenated with the decoder feature maps. The overall CNN architecture is visualised in Fig. 3.

Furthermore, we used the SELU activation function29 with LeCun normal weight initialisation in the pro-
posed CNN architecture30. SELU is designed by its authors to have a so-called self-normalizing property which 
makes the training of the network more stable implying better network´s performance. A great advantage of 
SELU over the other normalization techniques is no need for hyperparameter tuning as well as no dependency 
on the mini-batch size. To support weight updates even in the deepest part of the network, additional paths were 
added to each upsampling block: a 1 × 1 convolution layer with a sigmoidal activation function followed by a 
basic upsampling layer that transforms the feature map dimension to the dimensions of the ground-truth mask. 
The losses were weighed by the following weights from the deepest layer to the shallowest: 0.03, 0.05, 0.08, 0.12, 
0.15, 0.2, and 0.37, with the largest weights being given to the layers with the feature maps of largest dimensions.

Figure 2.   Visualisation of the segmented structure of interest in the context of the mouse embryo head. (a) 3-D 
rendering of the embryo head, (b) 3-D rendering of craniofacial cartilage tissue (yellow) in the context of the 
whole embryo head (grayscale), (c) clipping plane through the 3-D rendering showing the tomographic data, 
and (d) yellow showing the manually segmented craniofacial cartilage tissue. Scale bar 1 mm.
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Experiments
Implementation.  The proposed CNN was implemented in the programming language Python (version 
3.7.9) using the library Keras31 (version 2.3.1) with the TensorFlow backend32 (version 2.1.0). CUDA (ver-
sion 10.1) and CUDnn (version 7.6.5) were used for GPU acceleration of the training and inference process. 
NumPy33, scikit-image34 and Pillow libraries were used for manipulating and transforming the image data.

Data preparation.  As the proposed CNN architecture requires a fixed size input, the CT images’ dimen-
sions and corresponding manual segmentation masks had to be unified. First, we rescaled the data to a unified 
voxel size of 6 μm by bilinear interpolation. A suitable dimension size proved to be 1792 × 1280 pixels. This value 
allowed us to crop the tomographic cross-sections in the case of larger datasets without any loss of relevant 
information. In the cases where one or both dimensions of the data were smaller than this value, the image data 
were padded with zero-value pixels. Such prepared data were standardised to 0 mean and standard deviation 1.

Training.  For better generalisation of the trained segmentation model, a custom augmentation procedure is 
proposed. The augmentation consists of random rotation, vertical flipping, elastic deformation, gamma trans-
form with random parameter gamma, and random scaling (see Table 1) for the transform parameters). Each 
training image has a certain probability of undergoing two consecutive augmentation transforms. These prob-

Figure 3.   The proposed CNN architecture for segmentation of nasal capsule cartilage.

Table 1.   Augmentation parameters.

Parameter range

Random rotation − 10° to 10°

Vertical flipping –

Random gamma transform 0.9–1.1

Random elastic –

Random scaling 0.9–1.1
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abilities are shown in Table  2. The network is trained with the Adam optimisation algorithm35 with an ini-
tial learning rate of 1e−4, and AMSgrad enabled to improve convergence36. Dice loss is utilised37. The CNN is 
trained with a batch size of 4. A nVidia Quadro P5000 with 16 GB of graphical memory was utilised to train the 
CNN on a system equipped with 512 GB of RAM and an Intel® Xeon® Gold 6248R CPU.

Performance evaluation.  The performance of the proposed segmentation method was evaluated using 
the Dice similarity coefficient (DSC). DSC is a generally utilised binary segmentation mask overlap measure. Its 
maximum value is 1, which signifies a complete overlap of the evaluated segmentation mask and the ground-
truth mask38. The equation for computing the Dice coefficient from true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) segmented pixels can be seen in Eq. 1. A sevenfold cross-validation was 
performed to evaluate the accuracy of segmentation with the proposed model. This means that the model was 
trained on 12 samples and evaluated on the remaining two.

Ablation experiment.  To show the benefits of the proposed modifications to the base U-Net-shaped CNN 
architecture, we performed an ablation experiment. For each individual ablation, we eliminated one of the pro-
posed modifications from the CNN segmentation methodology. These modifications are: residual blocks, deep 
supervision, SELU activation, increased depth and the proposed augmentation techniques. Visualisations of 
the CNN architectures used for the ablation experiment can be found in the Supplementary material S1 of this 
work (supplementary Figs. S1–S4). To make the ablation experiment less time demanding, only a subset of the 
training database is used for the experiments. Every 200th tomographic cross-section not containing cartilage 
and every 30th cross-section from the region containing cartilage tissue is used from each sample. Other than 
these modifications to the methods, the remaining hyperparameters are kept identical to the hyperparameters 
outlined in the Training section of this chapter. We again performed the ablation experiment as a sevenfold 
cross-validation, where the models were trained on 12 samples and validated on the remaining two. The model 
from the epoch where the lowest validation loss was achieved was used for the cross-validation.

Wall thickness analysis.  Wall thickness analysis was performed using VG Studio MAX 3.5 software (Vol-
ume Graphics GmbH, Germany). The wall thickness for each voxel was calculated as the diameter of the largest 
inscribed sphere to the volume, which still contains the center position of the voxel.

Results and discussion
The results of the sevenfold cross-validation are summarised in Table 3. The results of the segmentation were 
compared with the ground-truth segmentation masks via the Dice coefficient. The results are also visualised in the 
form of a boxplot (Fig. 4a), where each point represents the segmentation accuracy of a 3-D segmented sample.

According to the Dice coefficient, the median segmentation accuracy is 84.44%, with the largest outlier being 
Sample 4, with a segmentation accuracy of merely 55.68%. As shown in Fig. 1, Sample 4 was improperly stained 
during the sample preparation procedure, and the proposed segmentation model could not correctly identify 
the necessary features for the accurate segmentation of the cartilage. It is thus essential that the staining protocol 
performed prior to the μCT measurement be followed correctly for the segmentation model to perform well. 
Sample 10 is a severely affected mutant embryo, significantly different from the rest of the available database. It 
was included in the training and evaluation of CNN to show its capabilities of processing even morphologically 
different samples. The DSC of 71.16% is relatively low compared to the remaining database, and more scans of 
mutant mouse embryos should be included in the training database to improve the model segmentation accuracy 
of this type of sample. The moderately changed mutant embryo (Sample 6) was segmented with an above-average 
accuracy of 86.67%. See Fig. 5a for a visualisation of the difference in the segmentation accuracy in genetically 
modified embryos. Figure 5b then shows an example of both manual and automatic segmentation in a selected 
tomographic cross-section of Sample 8.

We also evaluated the proposed method in comparison with 100 randomly selected tomographic slices from 
the validation fold of the available database, segmented by a second independent operator to see if the proposed 

(1)DSC =
2 ∗ TP

2 ∗ TP + FP + FN

Table 2.   Augmentation transform probabilities.

Transform 1

Transform 2

Random rotation Vertical flipping Random gamma Random elastic Random scaling No transform

Random rotation 0.01 0.02 0.01 0.03 0.02 0.01

Vertical flipping 0.02 0.04 0.02 0.06 0.04 0.02

Random gamma 0.01 0.02 0.01 0.03 0.02 0.01

Random elastic 0.03 0.06 0.03 0.09 0.06 0.03

Random scaling 0.02 0.04 0.02 0.06 0.04 0.02

No transform 0.01 0.02 0.01 0.03 0.02 0.01
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CNN behaves similarly to an independent human operator performing the manual segmentation. The segmenta-
tion was performed the same way as the segmentation of the ground-truth data: Avizo (Thermo Fisher Scientific, 
USA) was used. Both the CNN segmentation and the independent operator segmentation were compared with 
the ground-truth segmentation masks using the Dice coefficient. The results of this experiment are summarised 
in Fig. 4b in the form of a boxplot, where each data point represents one segmented tomographic slice. The 
median accuracy of the automatic CNN segmentation with respect to the ground-truth data was 87.43%, and the 
accuracy of the second operator with respect to the ground-truth data was 88.14%. There was also a moderate 
positive correlation between the values (Spearman coefficient 0.59, p < 0.01). This shows that the CNN operates 
within the scope of the intraoperator variability. As such, the segmentation error might be caused partially by 
the uncertainty of the manual segmentation in some regions of the cartilage.

The performance of the trained segmentation model was also evaluated on samples from different devel-
opmental stages that were not present in the training database (specifically embryos from the 12th to 18th day 
of their development). The accuracy of such segmentation was 86% (DSC) for the sample on the 18th day of 
development (E18.5) and 72% for the scan of embryos on the 16th day of development (E16.5). We performed 
Theiler staging of the embryos in this external dataset.25, 39 Theiler stages objectively evaluate the development of 
the embryos based on their morphology independently on their gestational age. The Theiler stages for both the 
17 day old embryo and 18 day old embryo is the same (Theiler stage 26), with 16 day old embryo being only 1 
stage lower (Theiler stage 25). These samples were not involved in the development of the proposed method and 
these results thus show, that the proposed methodology performs well even on an external test set of embryos 
with comparable developmental stages. When the network is applied to earlier stages, the segmentation accuracy 
decreases rapidly. In the developmental stages from 12 to 13 days, when the cartilage is not fully developed and 
mesenchymal condensations are still present, the trained CNN fails completely (see Fig. 4c). Including other 
developmental stages in the training database might improve the robustness of the method; however, using the 
same segmentation model to segment the images of embryos in earlier developmental stages than 14 days after 
conception, before the cartilage is formed, seems not feasible.

As a further qualitative check of the segmentation accuracy, we performed a wall thickness analysis of the 
segmented structure for both the 3-D model created by manual segmentation and the 3-D model created by 
the proposed CNN (Fig. 6). Wall thickness analysis is a routine follow-up analysis to show additional develop-
mental changes. Figure 6 shows the wall thickness analysis of Sample 8. As the wall thickness histogram (c) in 
Fig. 6 shows, the results of wall thickness analysis performed on both 3-D models are very similar. This is also 
demonstrated by the very high positive correlation of the wall thickness distributions (Spearman coefficient 0.98, 
p < 0.01). Slight differences may be caused by the step artefact produced by the manual segmentation performed 
only in a single plane. Even though the CNN also performs segmentation in a single plane, its predictions are 
much smoother.

We performed an ablation experiment to evaluate the contribution of each proposed modification to the 
CNN architecture and to the training strategy towards the total nasal capsule cartilage segmentation accuracy. 
Here we removed the modifications from the complete architecture and one by one evaluated the segmentation 
accuracy of each model by sevenfold cross-validation. The results of this experiment can be seen in Fig. 7. The 
proposed methodology employing increased depth of the CNN, deep supervision, SELU activations, residual 
blocks and the proposed image augmentation strategy provides the highest median segmentation accuracy: 
74.58% (DSC). Note that this number is significantly lower than the median segmentation accuracy presented 
in Fig. 4a. This lower segmentation accuracy is caused by training the CNNs in the ablation experiment on a 
reduced training set of images to make the ablation experiment less time-demanding. Deep supervision seems 
to provide only minor improvement to the total segmentation accuracy, as the median segmentation accuracy 
is lower only by ~ 2% (DSC) when training without deep supervision. Training models without utilising the 
residual blocks or the proposed augmentation procedure sees a more significant drop in the cross-validation 

Table 3.   Results of the sevenfold cross-validation.

Sample code Dice coefficient [%] Comment

Sample 1 82.8282 Control

Sample 2 78.8173 Control

Sample 3 79.3120 Control

Sample 4 55.6860 Improper staining

Sample 5 91.6862 Control

Sample 6 86.6735 Genetically modified

Sample 7 87.7789 Genetically modified

Sample 8 91.7748 Control

Sample 9 84.3186 Control

Sample 10 71.1617 Genetically modified

Sample 11 92.0235 Control

Sample 12 79.8854 Control

Sample 13 84.4525 Control

Sample 14 90.6867 Control
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accuracy to the median of ~ 67% (DSC). This justifies the use of residual blocks to improve the training of the 
CNN. The segmentation accuracy of the CNN without the increased depth drops even further to the median of 
63.52% (DSC). This decrease in segmentation accuracy is expected as the shallow network has fewer trainable 
parameters and cannot benefit from the abstract features extracted in the deep layers of the proposed CNN. 
Finally, the most significant drop in accuracy is observed when not substituting the ReLU activations for SELU 
activations. This shows that the reported self-normalizing property of the SELU activation function dramatically 
improves the final segmentation accuracy and generalisability of the trained image segmentation model. This 
makes SELU an extremely valuable addition to the CNN architecture.

As in many supervised machine learning application tasks, the performance and generalisability of the trained 
model are closely tied to the distribution of the training database. In our work, the proposed CNN was trained 
exclusively on data originating from a single μCT scanner with the samples measured under a unified method-
ology (sample staining, scanning parameters, resolution, image size). The methodology described here should 
be followed as closely as possible to achieve segmentation performance comparable to the results shown in this 
work. We artificially enlarged the training database by applying selected data augmentation techniques; however, 
despite this fact, a decrease in performance should be expected when deviating from the outlined data acquisi-
tion methodology. This decrease in segmentation accuracy was demonstrated in the case of Sample 4, where the 
staining of the sample is significantly different from the rest of the database. Expanding the training database 

Figure 4.   Evaluation of the segmentation accuracy of the proposed image segmentation model. (a) 
Segmentation accuracy boxplot. The box extends from the first quartile Q1 to the third quartile Q3, and its 
length represents the interquartile range (IQR = Q3 − Q1). The length of whiskers is the largest and smallest 
data point lying within the range defined by 1.5·IQR subtracted from Q1 and added to Q3. The line inside 
the box represents the median. (b) Time requirements comparison of the CNN and manual segmentation 
for segmentation of one mouse embryo scan. (c) The accuracy of segmentation with the CNN trained on 
the available database of 17-day-old embryos applied for segmentation of the nasal capsule in images of 
mouse embryos in other developmental stages. (d) Time requirements comparison of the CNN and manual 
segmentation for the segmentation of one mouse embryo scan.
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by adding a more significant number of samples coming from different CT systems and obtained under differ-
ent conditions concerning sample preparation and measurement parameters could dramatically improve the 
generalizability of the segmentation model. Such a database is unfortunately not yet available for this particular 
segmentation problem. It would, however, be highly beneficial to utilise the weights of the trained CNN as a 
starting point for training a nasal capsule cartilage segmentation model on new data obtained with significantly 
different parameters, as the basic extracted features used to predict the cartilaginous nasal capsule will always 
be similar. This type of transfer learning could significantly improve the convergence of the segmentation model 
to an optimum with a lower training time.

Conclusion
In this work, we have demonstrated a highly efficient and time-saving application of a custom U-Net-based 
CNN for the segmentation of cartilaginous tissue in μCT images of mouse embryos. We employed this archi-
tecture and trained it on a database of 14 3-D manually segmented μCT scans. It has been proven that a highly 
accurate, fully automatic segmentation (84.44% overlap with ground truth according to the Dice coefficient) 
of the complex cartilaginous structures in a developing mouse head is achievable via deep learning and will be 
vital for accelerating research on mammalian chondrocranium. One of the primary motivations for this work 
was to reduce the time required to process new data by employing a fully automatic segmentation procedure 

Figure 5.   Visualisation of the proposed segmentation model’s output together with the ground-truth data. (a) 
Comparison of the nasal capsule 3-D renders created by manual segmentation (red) and the CNN (green). Note 
the decrease in the segmentation accuracy in samples with significantly changed morphology due to genetic 
modfications. Scale bar 1 mm. (b) Visualisation of the proposed segmentation (green contour) in a selected 
tomographic cross-section of Sample 8 compared to manual segmentation (red contour). Scale bar 1 mm.
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instead of the time-demanding manual segmentation. Training of the model on 12 samples for 50 epochs took 
approximately 27 h. The model is then able to segment a new sample in approximately 130 s (Fig. 4d), depending 
on the number of tomographic cross-sections present and on available hardware. This segmentation model will 
be further used to segment new samples, including models of major congenital craniofacial and skeletal diseases. 
It is possible to obtain an even larger training database by manual corrections of the initial segmentation results 
and make the final model even more robust.

Data availability
Due to the training data coming from multiple sources and studies, it is currently not feasible to share the 
complete training and testing database; however, a subset of the whole database was published as an X-ray 
microtomography-based atlas of mouse embryo cranial development and can be accessed at26. The trained 
models and accompanying code can be found in a public GitHub repository: https://​github.​com/​janma​tula/​
deep-​mouse-​carti​lage.
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