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Immunity plays an important role in tumor development. In
this study, we aimed to investigate molecular classification
and its prognostic value in hepatocellular carcinoma (HCC)
based on immune signature. Gene set enrichment analysis
(GSEA) was used to calculate scores of immune pathways for
HCC and hierarchical clustering in two databases (The Cancer
Genome Atlas [TCGA], Liver Cancer-RIKEN, JP [LIRI_JP]).
The scores of the immune microenvironment and the propor-
tions of 22 immune cells were also calculated. Single-sample
GSEA (ssGSEA) was used to screen survival prognosis-related
immune pathways and calculate the hazard radio of differen-
tially expressed immune-related genes (IRGs), which were vali-
dated in clinical samples and multiple datasets. Based on the
immune characteristics, we identified three HCC subtypes,
namely immunity high (Immunity_H), immunity medium
(Immunity_M), and immunity low (Immunity_L), and
confirmed that the classification was reliable and predictable.
Immunity_H with a higher immune and stromal score indi-
cated better survival rate. Cox regression analysis showed
that IL18RAP and IL7R were the protective genes. Immune
risk score was the independent risk factor of overall survival
in HCC patients. These results indicated that immunogenomic
classification could distinguish HCC patients with different
immune status, which could impact the prognosis of the pa-
tients with HCC.

INTRODUCTION
Hepatocellular carcinoma (HCC) is a common cancer worldwide
with a high mortality rate.1,2 The pathogenesis of HCC is a complex
process, which is influenced by multiple factors, such as environ-
mental factors and the individual’s own genes.3 A large number of
previous studies have indicated that the immune microenvironment
of the primary tumor is an important prognostic factor.4 However,
effective diagnostic indicators of the immune microenvironment
are still lacking, resulting in fuzzy prognosis accuracy in HCC. The
conventional treatments of HCC include surgery, chemotherapy,
and radiotherapy,5,6 which have a better curative effect in the early
stages of cancer. Therefore, it is urgent to find biomarkers for early
detection and prognostic evaluation of HCC.2
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The immunogenomic classification will help to guide the differential
and effective treatment of HCC in an early stage and improve the
accuracy of prognosis evaluation. Tumor-associated immune
response plays an important role in cancer pathogenesis.7 Several
cellular phenomena such as alterations in tumor microenvironment,
inflammation, oxidative stress, and hypoxia facilitate tumor initia-
tion, progression, and metastasis.8 T cells and natural killer (NK)
cells play the role of immune surveillance. NK cells have strong
anti-tumor activity and release perforin/granzymes or activate
apoptosis pathways to kill tumor cells.9 In addition, NK cells can
also secrete cytokines, such as interferon (IFN)-g and tumor necro-
sis factor (TNF)-a, to inhibit tumor cell proliferation, tumor angio-
genesis, and multistage canceration.10 Macrophages promote cell
proliferation, infiltration, and tumor neovascularization. In addition,
cancer immunotherapy as an innovative treatment method has
become a hotspot in the field of cancer therapy research. At present,
many cytokines, such as TNF, IFN-g, and interleukin (IL)-2, have
been correlated with the response of HCC immunotherapy.7 How-
ever, there are still many difficulties and problems in immuno-
therapy against HCC, such as the inability to evaluate the immuno-
therapy effect in advance.

In this study, we analyzed immunogenomic profiling of HCC pa-
tients and classified them into three different subtypes: immunity
high (Immunity_H), immunity medium (Immunity_M), and
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Figure 1. Immune-related pathways profiling identified three HCC clusters

(A and B) Based on the different gene expression of 29 pathways, HCC was clustered into three main subtypes: Immunity_H, Immunity_M, and Immunity_L in TCGA. (C and

D) HCC was also clustered as Immunity_H, Immunity_M, and Immunity_L in LIRI_JP.
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immunity low (Immunity_L). We focused on analyzing two inde-
pendent datasets of HCC, proving the reliability and reproducibility
of this classification. Moreover, we identified the subtype-specific
molecular features, including networks, pathways, genes, and gene
ontology, according to the immune subtypes, and risk score was
used to predict survival in patients with HCC. The identification
of HCC subtypes associated with immune related genes would be
advantageous for HCC patients who have responded to
immunotherapy.
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RESULTS
Immune-related pathways profiling identified three HCC

clusters

We used single-sample gene set enrichment analysis (ssGSEA) to
screen and analyze 29 immune-related pathways. The ssGSEA score
obtained represented the activity or infiltration levels of immune cells
and pathways in tumor samples. Based on the ssGSEA scores of 29
immune-related pathways, we performed hierarchical clustering on
both HCC datasets (The Cancer Genome Atlas [TCGA], Liver



Figure 2. Survival analysis shows that there were 7 immune pathways associated with OS

Survival rates and times are shown for the immune-related pathways. (A) T helper cells. (B) Type I IFN Reponse. (C) CD8+ T cells. (D) B cells. (E) Cytolytic activity. (F) Type II IFN

reponse. (G) Macrophages.
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Cancer-RIKEN, JP [LIRI_JP]). Interestingly, the clustering results of
the analysis in the two datasets were similar, and the patients were
divided into three unique immune features (Immunity_H, Immuni-
ty_M, and Immunity_L) (Figure 1).

We screened out 7 significant immune-related pathways (T helper
cells, Type I IFN Reponse, CD8+ T cells, B cells, cytolytic activity,
type II IFN reponse, macrophages) related to overall survival (OS) of
HCC in TCGA and plotted the survival curves. Importantly, we found
that patients with high expression levels of these immune-related path-
ways had better survival prognosis except macrophages (Figure 2).

Recent studies showed that tumor-infiltrating immune cells played
specific roles during cancer development,11,12 interacting with stromal
cells in the tumor microenvironment (TME).13 Additionally, different
cancer types have different immune cells and cytokines.14 Numerous
factors have been identified as predictors of prognosis and recurrence
in patients with HCC, including the size and number of tumors, the
type and density of immune cells in tumors, cell differentiation, and
the degree of inflammation.15 Therefore, we investigated the tumor
microenvironment of the three HCC subtypes. According to the violin
plots, we found that the immune scores were significantly higher in
Immunity_H than those in Immunity_M or Immunity_L in the two
datasets (Kruskal-Wallis test, p < 0.001), while the immune scores
were lowest in Immunity_L (Figures 3A and 3D). This indicated
that the degree of lymphocyte infiltration was significantly higher in
Immunity_H (median, 1,598.95 in TCGA; median, 2,314.70 in LIR-
I_JP) than that in Immunity_L (median, -92.66 in TCGA; median,
5.23 in LIRI_JP). Moreover, when comparing the stromal scores of
the three HCC subtypes, the stromal scores increased from Immuni-
ty_L to Immunity_H (Immunity_L < Immunity_M < Immunity_H)
(Kruskal-Wallis test, p < 0.001) (Figures 3B and 3E). In contrast, tumor
purity increased from Immunity_H to Immunity_L (Immunity_H <
Immunity_M < Immunity_L) (Kruskal-Wallis test, p < 0.001) (Figures
3C and 3F). Overall, these results indicated that the largest number of
immune cells and stromal cells was found in Immunity_H, and Immu-
nity_L contained the largest number of tumor cells.

At the same time, we found that whether in TCGA or LIRI_JP data-
sets, most human leukocyte antigen (HLA) genes were expressed at
higher levels in Immunity_H and significantly lower in Immunity_L
(Figures 3G and 3H).

Kaplan-Meier survival analyses showed that different HCC subtypes
had different survival probability and survival prognosis. Then, we
performed survival analyses of Immunity_H and Immunity_M
against Immunity_L in TCGA and LIRI_JP datasets (Figures 3I and
3J). The results showed that Immunity_H and Immunity_M had a
better survival probability than Immunity_L. HCC subtypes with
high immune activity had better survival prognosis.

Identification and verification of differential genes related to

HCC subtype-specific immunity, pathways, and networks

We analyzed the differential genes of TCGA and LIRI_JP in HCC im-
mune subtypes (Figures 4A and 4B). There were 139 differentially ex-
pressed immune genes (DEIGs) in TCGA and 300 DEIGs in LIRI_JP,
and 134 common DEIGs among the two datasets in the Venn diagram
(Figure 4C). Based on the univariate Cox regression analysis, we found
11 DEIGs mainly associated with cell adhesion, cell recognition, and
signal transduction, of which the hazard ratio (HR) of IL7R and IL18-
RAP was less than 1 (IL18RAP = 0.298, p = 0.004, 95% confidence
interval [CI] = 0.130–0.687; IL7R = 0.893, p = 0.038, 95% CI =
0.803–0.994), while the HR of the remaining 9 differential genes was
more than 1 (CSF3R = 1.112, p < 0.001, 95% CI = 1.052–1.175;
FABP5 = 1.035, p = 0.003, 95% CI = 1.011–1.059; FCER1G = 1.005,
p < 0.001, 95% CI = 1.002–1.007; ICAM1 = 1.007, p = 0.040, 95%
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CI = 1.001–1.015; MMP9 = 1.004, p = 0.052, 95% CI = 1.000–1.008;
S100A6 = 1.000, p = 0.112, 95% CI = 1.000–1.001; S100A8 = 1.004,
p = 0.002, 95% CI = 1.001–1.007; S100A9 = 1.001, p < 0.001, 95%
CI = 1.001–1.001; TMSB10 = 1.000, p = 0.447, 95% CI = 1.000–
1.000) (Figure 4D), which indicated that IL7R and IL18RAP were pro-
tective genes, and those remaining were harmful genes. In addition, the
GSE 14520 dataset and Kaplan-Meier Plotter16,17 were used to cross-
validate the two genes, IL7R and IL18RAP. The results also showed
that patients with higher expression of IL7R and IL18RAP had higher
survival (Figure S1). Furthermore, the associations between expression
levels of IL7R and IL18RAP and prognosis were further clarified in 44
randomly selected HCC tissues as investigated by quantitative PCR
(qPCR). The expression levels of IL7R and IL18RAP in surviving indi-
viduals were higher than those in dead individuals (Figure S2). These
results evidently demonstrated that IL7R and IL18RAP were downre-
gulated in HCC patients on mRNA, implying the importance of IL7R
and IL18RAP in HCC pathogens. The above results all indicated that
IL7R and IL18RAP might have protective activities.

Many studies have shown that transcription factors are involved in
intracellular signal transduction and promoted tumor metastasis
and development by releasing a large number of cell growth-promot-
ing factors. We identified the differentially expressed transcription
factor genes (TFGs) by plotting volcanic maps in HCC immune sub-
types. At the same time, we screened differentially expressed im-
mune-related genes (IRGs) in TCGA by univariate Cox regression
analysis. In order to assess the relationship between IRGs and TFGs
in HCC, an IRGs-TFGs network was conducted including 9 IRGs
and 36 TFGs. The results showed that IL7R was regulated by 11
TFGs, including EGR1, EGR2, FOS, JUNB, KLF4, MYH11, NR4A1,
RARG, SOX17, SPIB, and VDR. However, the upregulated
gene, IL18RAP, was regulated by two TFGs, including EGR2 and
JUNB (Figure 4F). This phenomenon suggested that IL7R and IL18-
RAP might have different mechanisms for regulating immune
protection.

Quantitative analysis of HCC infiltrating immune cells

CIBERSORT was used to calculate immune cell expression of HCC
subtypes in TCGA and LIRI_JP datasets. We found that some im-
mune cells were obviously higher in Immunity_H and Immunity_M,
such as CD8 T cells, activatived mermory CD4 T cells. In contrast,
naive CD4 T cells, monocytes, and resting ast cells were higher in Im-
munity_L (Wilcoxon test, p < 0.001) (Figure 5)

Impact of risk score and other factors on survival prognosis of

patients with HCC

To build a multiple risk scores model, we used multivariate Cox
regression analysis and selected 1.4 as the risk score cutoff point based
on a risk scores model that divided HCC patients into two groups:
Figure 3. Three HCC subtypes show differential phenotypes

(A–C) Comparison of the immune cell infiltration levels, stromal score, and tumor puri

Comparison of the expression levels of HLA genes between HCC clusters in TCGA

significantly different survival rates both in (I) TCGA (log-rank test p = 6.742e�03) and
high risk and low risk in TCGA and LIRI_JP datasets (Figures 6A–
6C). By LASSO regression analysis, five differentially expressed
rhythm genes (DERGs) (S100A9, CSF3R, IL18RAP, FCER1G and
ICAM1) were screened out. Moreover, we quantified the enrichment
levels of the five DERGs in two groups by ssGSEA, and the results
showed totally different levels of those DERGs in the heatmap (Fig-
ures 6D and 6E). Also, Kaplan-Meier analysis indicated that patients
with high risk had shorter survival times and lower survival rates in
TCGA (log-rank test p = 1.792e�09) and LIRI_JP (log-rank test
p = 1.344e�04) (Figures 6F and 6G).

Meanwhile, we performed univariate and multivariate Cox analyses of
some variables (age, sex, grade, stage, and risk score) in TCGA. In uni-
variate Cox analysis, tumor stage (HR = 2.540, p < 0.001, 95% CI =
1.744–3.699) and risk score (HR = 1.167, p < 0.001, 95% CI =
1.107–1.230) were associated with the survival rates (Figure 6H).
Furthermore, the multivariate Cox analysis indicated that tumor stage
(HR = 2.540, p < 0.001, 95% CI = 1.744–3.699) and risk score (HR =
1.099, p < 0.001, 95% CI = 1.057–1.143) were correlated with OS (Fig-
ure 6I). According to comparison of the AUC (area under curve) of the
receiver operating characteristic (ROC) curve, we also identified that
risk score (AUC = 0.704) predicted mortality more accurately than
did the other HCC prognostic factors: age (AUC = 0.572), sex
(AUC = 0.450), grade (AUC = 0.507), stage (AUC = 0.624) (Figure 6J).

DISCUSSION
As the biggest immune organ, the liver plays an important role in
immune responses.18 C-reactive protein (CRP) is an acute phase
reactant protein considered as a diagnostic indicator of early inflam-
mation, which is synthesized by the liver.19 Furthermore, the liver is
engaged in inflammation, and elevated inflammation will cause liver
damage.20 Immune system disorders are associated with lymphocyte
infiltration of the liver.21,22 Therefore, the liver is essential to the
regulation of immune defense.23 Thus, immune pathways in the
liver may provide more refined prognostic prediction for liver
diseases.

In this study, HCC was divided into three major subtypes, Immuni-
ty_H, Immunity_M, and Immunity_L, according to immune path-
ways. The three groups showed significant differences in anti-tumor
immune activity, immune cell infiltration, and immune pathways,
such as ESTIMATE score, immune score, stromal score, innate im-
munity, and adaptive immunity. The immune system of the liver re-
sponds to diverse pathogens mainly in two fundamental pathways:
recognizing and destroying pathogens or remembering specific path-
ogens and efficient targeted killing.24,25 The theory is consistent with
the results of our study, indicating that the Immunity_H subtype with
a higher expression level of innate immunity and adaptive immunity
likely had a better survival prognosis (Figures 3I and 3J). Moreover,
ty between HCC subtypes in TCGA; (D–F) Comparison also in LIRI_JP. (G and H)

and LIRI_JP; Kaplan-Meier Survival analysis indicates that the two clusters had

(J) LIRI_JP (log-rank test p = 5.745e�03). ****p < 0.001.
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Figure 4. Identification of HCC subtype-specific pathways, gene ontology, and networks

(A and B) Volcano plot shows the IRGs that were upregulated or downregulated in TCGA and LIRI_JP. (C) Venn diagram shows that 134 DEIGs were overlapped among

TCGA and LIRI_JP. (D) In TCGA, univariate Cox analysis shows there were 11 significant IRGs contributing to OS in HCC. (E) Volcano plot shows differentially expressed

TFGs. (F) Correlation analysis of IRGs and TFGs.
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Figure 5. Distribution of immune cells in the immunity_L and immunity_M+H.

(A) Clusters in TCGA. (B) Clusters in LIRI_JP.
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the three subtypes showed a significant difference on the composition
and proportion of immune cells. Additionally, cytokines also corre-
late with the diagnosis and prognosis for HCC as biomarkers and reg-
ulators of tumor proliferation, invasion, migration, and apoptosis,26,
which were induced by immune cells, including IFN and TNF-a.27,28

Traditional Chinese medicine (TCM) serves an antitumor role by
regulating the expression of cytokines, such as b-elemene, to improve
the OS rate.29 In conclusion, the immune pathways discussed above
were associated with the development and prognosis of HCC.

Immune cells in the tumormicroenvironment are complex anddiverse,
including T lymphocytes (70%�80%), B lymphocytes (10%�20%),
macrophages (5%�10%), and NK cells (<5%), and dendritic cells
(1%–2%).30 Additionally, regulatory T lymphocytes (Tregs) and tu-
mor-associated macrophages (TAMs) contribute to tumor escape
with immune suppressive activity and inhibit anti-tumor responses.
Immune cells infiltrating tumorsmediate the tumor immunemicroen-
vironment.31 These immune cells are all associated with the prognosis
of HCC. A large number of studies have shown that the density of tu-
mor-infiltrating lymphocytes (TILs) was positively correlated with sur-
vival prognosis in various cancers.32 Moreover, HCC immunotherapy
works on these immune cells. Based on the different expression levels
of immune cells, we classified HCC subtypes and filtered out HCC pa-
tients who could benefit from immunotherapy.33
Molecular Therapy: Nucleic Acids Vol. 25 September 2021 111
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Previous studies have shown that the expression levels of different
IRGs also had a certain effect on the survival prognosis of patients
with HCC.34,35 Among the five DEIGs, S100A9 is involved in cell
growth, differentiation, and apoptosis and promotes tumor metas-
tasis.36 IL18RAP effectively inhibits the growth of HCC cells by inhib-
iting angiogenesis and apoptosis signal transduction involving caspase-
3, which fully demonstrates the antitumor effect of IL18RAP.37 In our
study, we divided HCC patients into two groups based on the five
DEIC-based classification in TCGA and LIRI_JP, and verified the ac-
curacy and reliability of the classification. Then, we found that the two
groups showed different survival rates in TCGA and LIRI_JP. Further-
more, the risk score was the best predictor when compared with the
other risk factors, which was the focus of our research. The combina-
tion of these risk factors may lead to a more accurate prediction of
HCC prognosis. Moreover, we found that the expression levels of
IL7R and IL18RAP in HCC were higher in surviving individuals
than in individuals who died through the verification of clinical sam-
ples andmultiple datasets, indicating that IL7R and IL18RAPwere pro-
tective genes in HCC. Therefore, the DEIG-based survival predictor
model has shown a favorable influence on survival prediction, which
might contribute to treatment decision making.

However, the studyhas some limitations. First, previous studies showed
that tumor immunity was closely associated with tumor metabolism.38

However, our study mainly focused on the relationship between the
IRGs and the OS of HCC. The conjoint analysis of IRGs and meta-
bolism-related genes (MRGs) would be more propitious to investigate
the prognosis of HCC. Second, only two databases (TCGA, LIRI_LP)
were available for immunogenomic classification of HCC at present,
so we need more databases in the future to improve the accuracy of
the classification. Third, in our study, accessible clinical samples were
limited. It would be evenmore clinically valuable if we couldfind tumor
biomarkers detected in blood samples that are more readily available.

In summary, our study identified three immune-based classifiers
closely related with prognosis in HCC. Furthermore, the DEIG-based
survival predictor model could accurately predict the OS of HCC pa-
tients, which may facilitate individual immunotherapy in HCC.

MATERIALS AND METHODS
Patient datasets

The gene expression data and clinical information of HCC patients
were extracted from TCGA (https://portal.gdc.cancer.gov/) and Liver
Cancer-RIKEN, JP (LIRI_JP) from the International Cancer Genome
Consortium (ICGC) (https://dcc.icgc.org/). Kaplan-Meier Plotter
(http://kmplot.com/analysis/) and the GEO: GSE14520 dataset con-
sisting of 228 HCC samples downloaded from Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo/) were used to validate
the two most important protective genes, IL18RAP and IL7R, for
prognosis of HCC patients.

Clustering

First, data from TCGA and LIRI_JP were subjected to GSEA based on
29 immune-related pathways. For each HCC-independent dataset, a
112 Molecular Therapy: Nucleic Acids Vol. 25 September 2021
ssGSEA score was used to calculate the enrichment levels of the 29
immune pathways in each HCC sample. According to the ssGSEA
score calculated, hierarchical clustering was conducted for HCC.
Correlation between immune pathways and prognosis

A single sample of ssGSEA was used to analyze 29 immune pathways,
and the “survival” package of R software was used to screen prog-
nostic immune pathways.
Evaluation of immune cell infiltration level, tumor purity, and

stromal content in the clusters

ESTIMATE39 was used to calculate the score of the immune microen-
vironment, such as the infiltration level of immune cells (immune
score), tumor purity, and stromal content (stromal score). The violin
plot was present based on the score in Immunity_H, Immunity_M,
and Immunity_L.
Comparison of the proportions of infiltrating immune cells

between immunity subtypes

We used CIBERSORT (https://cibersort.stanford.edu/) to estimate
the proportions of 22 infiltrating human immune cells in TCGA
and LIRI_JP of each sample. The violin plot was presented based
on the different proportion of immune cells.
GSEA

We performed GSEA of TCGA and LIRI_JP datasets by GSEA (R
GSVA package).40 This analysis respectively identified the immune
related genes that were upregulated or downregulated in HCC. We
created a Venn diagram to select the common immune genes in
both datasets.
Identification of differential genes related to HCC subtype-

specific immunity and networks

The IRGs that were upregulated or downregulated in HCC patients
were shown in a volcano plot. A Venn diagram was plotted based
on the difference in genes of the TCGA and LIRI_JP datasets, and
we identified the common IRGs in the two datasets. In addition,
differentially expressed genes were identified in the database by uni-
variate regression analysis. Through the correlation analysis of the
differential IRGs and differential TFGs, we established gene-gene
interaction networks, and the hub genes were defined as TFGs.
Risk scores for HCC patients

Multivariate Cox regression analysis was conducted to establish a risk
score of each patient. The optimal cutoff value was screened out by X-
tile, which classified the patients into a high-risk group and a low-risk
group. Based on the risk score, we drew a risk score scatterplot. The
LASSO regression method was used to screen DEIGs,41 and the
enrichment levels were quantified by ssGESA. At the same time, we
used the survminer package to draw a Kaplan-Meier curves analysis
diagram. Survival curves were used to show the differences in survival
time and survival probability between high-risk and low-risk patients.

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
http://kmplot.com/analysis/
https://www.ncbi.nlm.nih.gov/geo/
https://cibersort.stanford.edu/


(legend on next page)

www.moleculartherapy.org

Molecular Therapy: Nucleic Acids Vol. 25 September 2021 113

http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
RNA extraction and qPCR

A total of 44 HCC tissues samples (stored at �80�C) were obtained
from 44 HCC patients undergoing liver cancer surgery at The First
Affiliated Hospital ofWenzhouMedical University after having given
their informed consent. In addition, the clinical data of HCC patients
(n = 44), including age, sex, stage, HBV infection, tumor range, dia-
betes, and relapse, were collected (Table S1). The research protocol
of the study was approved by the Ethics Committee of The First Affil-
iated Hospital of Wenzhou Medical University (2019-070). Samples
of 50 mg of tissue were washed with PBS and transferred into a
1.5-mL tube containing 0.5 mL of RNAiso Plus (Takara, Japan) as
well as two grinding beads, homogenizing completely with tissue
grinders. The mixture was centrifuged at 12,000 � g for 5 min at
4�C. The supernatant was transferred to a new tube, then total
RNA was extracted according to the manufacturer’s protocol. We
used NanoDrop and an Agilent 2100 bioanalyzer (Thermo Fisher Sci-
entific, MA, USA) to determine the concentration of extracted total
RNA. cDNA was obtained by reverse transcription using a reverse
transcription kit (Hiscrip II Q RT SuperMix for qPCR) according
to the manufacturer’s protocol. Quantitative real-time polymerase
chain reaction amplification was performed with SYBR Green PCR
master mix (Takara, Japan) according to the manufacturer’s protocol.
Expression of transcripts was assessed by the following primers: IL7R,
forward, 50-TAATGCACGATGTAGCTTACCG-30, reverse, 50-CTT
TCTCTGCAGGAGTGTCAG-30; IL18RAP, forward, 50-C GTATCC
TATGCAAAATGGAGC-30, reverse, 50-CAAGCAAACACAGGCT
ATAT CC-30; FCER1G, forward, 50-CAGTGGTCTTGCTCTTAC
TCC-30, reverse, 50-ATG GCAT CCAGGATATAGCAG-30.

Survival analysis

We compared survival probabilities of HCC patients based on HCC
subtypes and the expression levels of the identified genes. We used
the “survival” package for survival analysis with the available survival
data in TCGA and LIRI_JP datasets and plotted Kaplan-Meier curves
to represent the difference in survival time. We performed univariate
and multivariate Cox analysis to identify significant prognostic pre-
dictors associated with OS, such as age, sex, grade, stage, risk score,
and other variables of HCC patients, and plotted forest maps. The
AUC of ROC curves represented the predictive accuracy. In addition,
p values <0.05 were considered significant.
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