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SUMMARY
The SARS-CoV-2 Omicron variant has evolved into four sub-lineages—BA.1, BA.1.1, BA.2, and BA.3—with
BA.2 becoming dominant worldwide. We and others have reported antibody evasion of BA.1 and BA.2,
but side-by-side comparisons of Omicron sub-lineages to vaccine-elicited or monoclonal antibody (mAb)-
mediated neutralization are necessary. Using VSV-based pseudovirus, we report that sera from individuals
vaccinated by two doses of an inactivated whole-virion vaccine shows weak to no neutralization activity,
while homologous or heterologous boosters markedly improve neutralization titers against all Omicron
sub-lineages. We also present neutralization profiles against a 20 mAb panel, including 10 authorized or
approved, against the Omicron sub-lineages, along with mAb mapping against single or combinatorial spike
mutations. Most mAbs lost neutralizing activity, while some demonstrate distinct neutralization patterns
among Omicron sub-lineages, reflecting antigenic differences. Collectively, our results suggest the Omicron
sub-lineages threaten the neutralization efficacy of current vaccines and antibody therapeutics, highlighting
the importance of vaccine boosters.
The World Health Organization has now designated five variants

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) as variants of concern, including Alpha (B.1.1.7), Beta

(B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron

(B.1.1.529). The Omicron variant has recently been divided into

four sub-lineages: BA.1, BA.1.1, BA.2, and BA.3 (Figure 1A).

The original Omicron (BA.1 sub-lineage) was first identified in

Botswana and South Africa in November 2021 (Viana et al.,

2022) and together with its derivative BA.1.1 (containing an extra

spike R346K mutation) became dominant worldwide in replace-

ment of Delta over the span of a few weeks. But subsequently,

we saw a rapid surge in the proportion of BA.2, and this sub-line-

age became the dominant variant globally. Compared with the

BA.1 and BA.2 sub-lineages, the prevalence of BA.3 sub-lineage

is currently very low (Figure 1B).

BA.1, BA.2, and BA.3 have numerousmutations in commonbut

also have distinct sets ofmutations in their spike that can differen-
Cell Host & M
tiate these sub-lineages (Figure 1C). Although the selective advan-

tage of BA.2 could be partially explained by its higher transmissi-

bility than BA.1 (Lyngse et al., 2022), their relative immune evasion

property could also be counted. We (Ai et al., 2021; Wang et al.,

2022) and others (Cameroni et al., 2022; Cao et al., 2022; Carreño

et al., 2022; Cele et al., 2022; Garcia-Beltran et al., 2022; Liu et al.,

2022; Planas et al., 2022; VanBlargan et al., 2022) have reported

that BA.1 demonstrated considerable escape from neutralization

by monoclonal antibodies (mAbs) and sera from vaccinated indi-

viduals.BA.2 has alsobeen reported to severely dampenantibody

neutralization (Bowen et al., 2022; Iketani et al., 2022). However,

evaluation and comparison of susceptibility of all the major Omi-

cron sub-lineages to vaccine-elicited or mAb-mediated neutrali-

zation are urgently needed. In this study, therefore, we con-

structed the Omicron sub-lineage pseudoviruses (PsVs) and

compared side by side their neutralization sensitivity to vaccinee

sera as well as a panel of mAbs.
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The first question we asked for the Omicron sub-lineages is

their extent of immune evasion of polyclonal antibody neutral-

izing activity elicited in humans after vaccination or infection.

To answer this, we first assessed the neutralizing activity of

sera from individuals vaccinated by two doses of inactivated

whole-virion vaccines (BBIBP-CorV) (Table S1). Similar to what

we reported before (Wang et al., 2022), although all the sera

showed neutralization activity against wild-type (WT) virus, the

activity was relatively weak, with geometric mean neutralizing ti-

ters (GMTs) about 55, and when it turned to BA.1, only two of 10

vaccinees showed marginal neutralization. When we tested

these sera on the three other sub-lineages, most of them showed

no detectable activity, except a few had very weak neutralization

against BA.2 and BA.3 (Figures 1D and S1A). These results indi-

cate that two-dose inactivated vaccine is inadequate to provide

full protection against these newly emerging Omicron variants.

Our previous study showed that a booster shot, either homol-

ogous or heterologous, can reduce Omicron BA.1 escape from

neutralizing antibodies (Wang et al., 2022). To see if this is the

case for the other Omicron sub-lineages, we then collected

and tested 20 samples from healthy adults who had a third

boosting vaccination shot with the same BBIBP-CorV vaccine

(homologous booster group, Table S1). As shown in Figures 1E

and S1B, the sera had a neutralizing GMT against WT of 225

with 5- to 6-fold reduction against BA.1, BA.1.1, BA.2, and

BA.3 but at least 15 of 20 samples exhibiting detectable neutral-

izing activity against all four sub-lineages. We also collected 18

sera from individuals that received two doses of BBIBP-CorV fol-

lowed by a protein subunit vaccine (ZF2001) 4–8 months later

(heterologous booster group, Table S1). This cohort had higher

neutralizing titers with GMTs of 537, 108, 81, 42, and 69 against

WT, BA.1, BA.1.1, BA.2, and BA.3, respectively. Although these

numbers amount to 7- to 23-fold reductions of potency

comparing Omicron sub-lineages to WT, almost all samples

maintained detectable neutralizing activity against the Omicron

variants (Figures 1F and S1C). The marked improvement in

serum neutralization from individuals who received a booster

dose over those who did not highlights the value of vaccine

boosters for eliciting neutralizing antibody responses against

Omicron sub-lineages.

The emergence of the SARS-CoV-2 Delta variant led to an

increasing number of breakthrough infection cases. To gain

insight into their chance of re-infection by Omicron, we recruited

10 participants who were immunized with two-dose inactivated

vaccines before being infected by the Delta variant (Table S1).

Serum samples were obtained from them after 3–4 months of

breakthrough infection and evaluated on WT and the four Omi-

cron sub-lineage PsVs (Figures 1G and S1D). We found that
Figure 1. Characteristics and sera neutralization of the Omicron sub-l

(A) Phylogenetic tree of the BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Fifty rand

GISAID were used as query sequences.

(B) Prevalence of the Omicron sub-lineages and Delta variant based on all the se

(C) Spike mutations within the Omicron sub-lineages.

(D–G) Neutralization of pseudotypedWT (D614G) andOmicron sub-lineage viruse

(D), with a BBIBP-CorV homologous booster (E), or with a ZF001 heterologous bo

by Delta virus after vaccination (G). For all panels, values above the symbols deno

of positive sera with ID50 above the LOQ (dotted lines, >1:10). p values were det

See also Figures S1 and S2.
breakthrough infection by Delta boosted the neutralizing anti-

body titers significantly to very high levels against WT virus

(GMT = 1,740). However, the neutralization titers for Omicron

sub-lineages were significantly reduced, more than 100-fold in

comparison to WT. The reduction level was much higher than

that of the homologous and heterologous vaccine booster

groups, which may be associated with the antigenic difference

between Delta and Omicron variants.

Taking into account of all the serum samples, we also carried

out a comparison between the original Omicron BA.1 and the

newly emerging sub-lineages to see if there are inherent differ-

ence regarding their immune evasion properties. BA.1.1, with

an additional R346K mutation on top of BA.1, showed slightly

but statistically significant lower titers than BA.1. For BA.2 and

BA.3, the neutralization titers were also lower than BA.1, which

was mostly contributed by the heterologous booster group, indi-

cating the receptor binding domain (RBD) subunit vaccine

booster may induce some RBD-directed antibodies which could

be evaded by the BA.2/BA.3 unique mutations (Figure S2).

To better understand these differences and examine which

types of antibodies in serum lose their activity against these Om-

icron sub-lineages, we further evaluated the neutralization profile

of a panel of 20 mAbs targeting SARS-CoV-2 spike. These

included 10 authorized or approved mAbs with sequences avail-

able: REGN10987 (imdevimab) (Hansen et al., 2020),

REGN10933 (casirivimab) (Hansen et al., 2020), LY-CoV555

(bamlanivimab) (Jones et al., 2021), CB6/LY-CoV016 (etesevi-

mab) (Shi et al., 2020), S309 (sotrovimab) (Pinto et al., 2020),

COV2-2130 (cilgavimab) (Zost et al., 2020), COV2-2196 (tixage-

vimab) (Zost et al., 2020), CT-P59 (regdanvimab) (Kim et al.,

2021), Brii-196 (amubarvimab) (Ju et al., 2020), and LY-

CoV1404 (bebtelovimab) (Westendorf et al., 2022), all of which

are directed to RBD.We also included some other RBD-directed

mAbs of interest, including 1–20, 2–15, 1–57, 2–7 (Liu et al.,

2020); 2–36 (Liu et al., 2020; Wang et al., 2021) from our own

collection and ADG-2 (Rappazzo et al., 2021) from Adagio Ther-

apeutics; and four more NTD-directed mAbs, including 5–24, 4–

18, 4–19 (Cerutti et al., 2021b; Liu et al., 2020), and 5–7 (Cerutti

et al., 2021a; Liu et al., 2020). Overall, all four Omicron sub-line-

ages had severe impact on most of the antibodies, but they also

showed important differences in neutralization patterns. Among

the authorized or approved mAbs, seven were either totally inac-

tive or severely impaired in neutralizing all four sub-lineages.

S309, the only approved antibody found to retain its neutralizing

activity against the original form of Omicron in our previous study

(Wang et al., 2022), lost more neutralizing activity against BA.2

and BA.3. COV2-2130 completely lost its neutralizing activity

against BA.1 and BA.1.1 while remaining largely active against
ineages

omly selected sequences belonging to each of the Omicron sub-lineages from

quences available on GISAID over the past 6 months.

s by sera collected from individuals vaccinatedwith two-dose BBIBP-CorV only

oster dose (F) following two doses of BBIBP-CorV, or from individuals infected

te geometric mean titer, and the numbers in parentheses denote the proportion

ermined by using a Wilcoxon matched-pairs signed-rank test (two-tailed).
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BA.2 and BA.3. Luckily, LY-CoV1404, which has been granted

emergency use authorization very recently, remained potent in

neutralizing all Omicron sub-lineages, continuing to broaden its

coverage of SARS-CoV-2 variants (Zhou et al., 2022). For the

other RBD- or NTD-directed mAbs, none of them retained full

neutralizing activity against all of the Omicron sub-lineages.

Two class 4 antibodies, ADG-2 and 2–36, retained decent activ-

ity against BA.1 and BA.1.1 but lost their neutralizing activity

completely against BA.2 and BA.3. Interestingly, 2-7, one of

our class 3 antibodies, completely lost its neutralizing activity

against BA.1, BA.1.1, and BA.3 while remaining largely active

against BA.2. A similar pattern was seen for another approved

class 3 antibody, REGN10987. On the contrary, we found that

the activity of 5-7, the non-supersite-directed NTD antibody,

was partially retained against BA.1, BA.1.1, and BA.3 but totally

abolished against BA.2 (Figures 2A and S3).

To dissect the key mutations conferring antibody resistance

and the specific mutations leading to the different neutralization

patterns of Omicron sub-lineages, we constructed PsVs with

each of the single-spike mutations alone or in combination, if

they are spatially close, and tested them using the same panel

of 20 mAbs. In total, 40 specific mutation viruses were tested,

and their comprehensive neutralization profiles by these 20

mAbs are summarized in Figure 2B as fold change in 50% inhib-

itory concentration (IC50) relative to WT virus. For mutations

affecting antibody activity, the first ones that caught our attention

were S371L and S371F. Both broadly affected most of the RBD-

directed mAbs, with S371F having a greater negative impact.

Intriguingly, when we tested S371L, S373P, and S375F in com-

bination, as they form a loop adjacent to a lipid-binding pocket

(Dejnirattisai et al., 2022), we indeed observed synergistic effect

of the triple serinemutations in the reduction of neutralization po-

tency of somemAbs. Q493R appears to be another keymutation

responsible for the loss in potency of many RBD antibodies, and

again, when it was tested in combination with G496S and

Q498R, apparent synergistic effect was seen for some mAbs

(Table S2). G446S, which is lacking in BA.2 but presented in

the other sub-lineages, may explain why COV2-2130 and 2-7

are not much affected by BA.2. Other mutations, such as

D405N, K417N, N440K, E484A, and N501Y, distinctly affected

the activity of different RBD-directed mAbs, most of which could

be explained by the mutations falling into the antibody epitopes.

For LY-CoV1404, as we saw for the Omicron sub-lineages, none

of the singlemutations significantly affected its neutralization po-

tency, indicating that despite the constellation of spike muta-

tions present in these viruses, there is still a patch within

LY-CoV1404’s binding region that is not affected. For the NTD-

directed mAbs, it was mostly the mutations falling into the

NTD of the spike, including T19I, del24-26+A27S, and

G142D+del142-145, that are responsible for the neutralization

activity loss, as expected.

The SARS-CoV-2 Omicron variant immediately raised alarms

after its identification, and the scenario seems to getting worse,
Figure 2. Neutralization of pseudotyped WT (D614G) and Omicron sub

(A) Changes in neutralization IC50 of select RBD and NTD mAbs against Omicron

(B) Fold increase or decrease in neutralization IC50 of mAbs against Omicron su

relative to WT, presented as a heatmap with darker colors implying greater chan

See also Figure S3.
with the emerging Omicron sub-lineages, like BA.2, which has

been reported to be inherently substantially more transmissible

than BA.1 (Lyngse et al., 2022). Many research articles have

been published studying the original Omicron BA.1 virus, but

less is known about the BA.2 and other sub-lineages. Here in

this study, we constructed all the major Omicron sub-lineage vi-

ruses to date—BA.1, BA.1.1, BA.2, and BA.3—and investigated

their antibody evasion property in parallel.

We previously reported the markedly reduced neutralizing ac-

tivity against BA.1 of convalescent or BBIBP-CorV vaccination

sera (Ai et al., 2021; Wang et al., 2022). Here, we showed that

all polyclonal sera also had a substantial loss in neutralizing ac-

tivity against the other Omicron sub-lineages, with drops compa-

rable to or even greater than that of BA.1, indicating that all these

sub-lineages have a very far antigenic distance from the WT vi-

rus. Our results are quite comparable to studies on the mRNA

vaccines (Iketani et al., 2022; Yu et al., 2022), showing that

neutralizing antibody titer against BA.2 was similar to or lower

than that against BA.1. Based on these, we suggest that the se-

lective advantage of BA.2 over BA.1 should be mainly contrib-

uted by its higher transmissibility rather than by immune evasion.

On the other hand, we showed that a third homologous inacti-

vated vaccine booster or a heterologous protein subunit vaccine

booster could significantly elevate neutralization titer against

BA.1 (Wang et al., 2022). This is also true for the other Omicron

sub-lineages. Most recently, three recombinant lineages (XD,

XE, and XF) have been reported (UK_Health_Security_Agency,

2022), but their antibody evasion should not be significantly

different from the Omicron sub-lineages studied here, since their

spikes are identical to either BA.1 or BA.2. Therefore, promotion

and popularization of vaccine booster injection is still an effective

means to prevent SARS-CoV-2 transmission.

We also investigated the immune evasion capacity of Omicron

sub-lineages with mAbs. Similar to what we reported for BA.1

(Wang et al., 2022), most mAbs lost their neutralizing activity

against BA.1.1, BA.2, and BA.3 completely or substantially.

But we did observe some distinct neutralization patterns for

certainmAbs among these sub-lineages, reflecting their different

mutations. For example, S309 and 5-7, targeting some unique

sites in RBD (Pinto et al., 2020) or NTD (Cerutti et al., 2021a),

were the two mAbs reported to retain largely activity against

BA.1 (Liu et al., 2020; Wang et al., 2022), but their activity was

further abolished by BA.2. On the contrary, some mAbs such

as COV2-2130 and 2-7 totally lost activity against BA.1 but re-

gained activity against BA.2. The good news is that LY-

CoV1404 or bebtelovimab kept its potent neutralization activity

against all Omicron sub-lineages and other major SARS-CoV-2

variants (Westendorf et al., 2022; Zhou et al., 2022). Our data

are in good consistency with others (Iketani et al., 2022; Liu

et al., 2022) regarding the mAb neutralization profile of the Om-

icron sub-lineages and single mutations, but we had more sub-

lineage—BA.3—and combined some mutations in proximity to

investigate their synergistic actions.
-lineage viruses by mAbs targeting different epitopes

sub-lineage pseudoviruses.

b-lineage as well as single- and combinatorial-spike mutation pseudoviruses,

ge.
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Although LY-CoV1404 currently remains as our hope for

SARS-CoV-2 therapeutic antibodies, resistance may arise

sometime if it is administered as mono-therapy for a prolonged

period, given the error-prone property of RNA virus. Therefore,

it is advisable to develop more potent and broad neutralizing

antibodies to be administered as a cocktail to contain this

ever-evolving pathogen. Meanwhile, vaccine boosters, either

homologous or heterologous, could elicit neutralizing anti-

bodies that help reduce the viral escape and should be pushed

forward.

Limitations of the study
Limitations of the study included inaccessibility to mRNA or

adenovirus-based vaccines, which have been widely used in

the world, and we have not tested the effect of interval between

the first two doses on vaccine-elicited humoral responses (Chat-

terjee et al., 2022; Tauzin et al., 2022). We only focused on

neutralization activities without touching any other aspects of

vaccine efficacy, like Fc-effector functions and cellular re-

sponses, which have been reported to play a role in protection

from severe outcome (Carazo et al., 2021; Tauzin et al., 2021).
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Pengfei

Wang (pengfei_wang@fudan.edu.cn).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact with a completed materials transfer agreement.

Data and code availability
All the data are provided in the paper or the supplemental information. Lineage submission statistics is available at GISAID. The

sequence of virus is available in the GISAID data base with the sample id listed at https://github.com/wenrurumon/GISAID/blob/

main/2022.04.07.487489/map.csv, visualization code are available at plot.R in the same location.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Serum samples
Peripheral blood samples were collected from individuals who received two or three doses of BBIBP-CorV or ZF2001 vaccine were

collected at HuashanHospital, FudanUniversity 14 days after the final dose. Blood samples were also obtained from patients after 3–

4 months of SARS-CoV-2 breakthrough infection caused by Delta variant after immunizing with two-dose inactivated vaccines

(CoronaVac). Sera were isolated from centrifuged blood samples and then stored at �80�C. All collections were conducted accord-

ing to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of the Ethics Committee of Hua-

shan Hospital (2020-688, 2021-041 and 2021-749). All the participants provided written informed consents.

Cell lines
Expi293F cells (Thermo Fisher Cat# A14527) were cultured in the serum free SMM 293-TI medium (Sino Biological Inc.) at 37�C with

8%CO2 on an orbital shaker platform. Vero E6 cells (cat# CRL-1586) were from ATCC and cultured in 10%Fetal Bovine Serum (FBS,

GIBCO cat# 16140071) supplemented Dulbecco’s Modified Eagle Medium (DMEM, ATCC cat# 30-2002) at 37�C, 5%CO2. I1 mouse

hybridoma cells (ATCC, cat# CRL-2700) were cultured in Eagle’s Minimum Essential Medium (EMEM, ATCC cat# 30-2003)) with

20% FBS.

METHOD DETAILS

Monoclonal antibodies
Monoclonal antibodies tested in this study were constructed and produced at Fudan University. For each antibody, variable genes

were codon optimized for human cell expression and synthesized by HuaGeneTM (Shanghai, China) into plasmids (gWiz or

pcDNA3.4) that encode the constant region of human IgG1 heavy or light chain. Antibodies were expressed in Expi293F

(ThermoFisher, A14527) by co-transfection of heavy and light chain expressing plasmids using polyethylenimine and cells were

cultured at 37 �C with shaking at 125 rpm and 8% CO2. On day 5, antibodies were purified using MabSelectTM PrismA (Cytiva,

17549801) affinity chromatography.

Construction and production of variant pseudoviruses
Plasmids encoding the WT (D614G) SARS-CoV-2 spike and Omicron sub-lineage spikes, as well as the spikes with single or com-

bined mutations were synthesized. Expi293F cells were grown to 33106/mL before transfection with the indicated spike gene using

Polyethylenimine (Polyscience). Cells were cultured overnight at 37�Cwith 8% CO2 and VSV-G pseudo-typed DG-luciferase (G*DG-

luciferase, Kerafast) was used to infect the cells in DMEM at a multiplicity of infection of 5 for 4 h before washing the cells with

13DPBS three times. The next day, the transfection supernatant was collected and clarified by centrifugation at 300g for 10 min.

Each viral stock was then incubated with 20% I1 hybridoma (anti-VSV-G; ATCC, CRL-2700) supernatant for 1 h at 37�C to neutralize

the contaminating VSV-G pseudotyped DG-luciferase virus before measuring titers and making aliquots to be stored at �80�C.

Pseudovirus neutralization assays
Neutralization assays were performed by incubating pseudoviruses with serial dilutions of monoclonal antibodies or sera, and scored

by the reduction in luciferase gene expression. In brief, Vero E6 cells were seeded in a 96-well plate at a concentration of 23104 cells

per well. Pseudoviruses were incubated the next day with serial dilutions of the test samples in triplicate for 30 min at 37�C. The
mixture was added to cultured cells and incubated for an additional 24 h. The luminescence wasmeasured by Luciferase Assay Sys-

tem (Beyotime). IC50 was defined as the dilution at which the relative light units were reduced by 50%compared with the virus control

wells (virus + cells) after subtraction of the background in the control groups with cells only. The IC50 values were calculated using

nonlinear regression in GraphPad Prism.
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Sequence alignment and phylogenetic tree
This analysis involved 200 nucleotide sequences, including 50 samples for each lineage randomly selected from the GISAID data-

base. Sequence alignment was carried out using ClustalW progress (Thompson et al., 1994) and corrected manually. The evolu-

tionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The optimal tree is shown. The tree is drawn

to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolu-

tionary distances were computed using the p-distance method (Nei and Kumar, 2001) and are in the units of the number of base dif-

ferences per site. All positions with less than 50% site coverage were eliminated. There was a total of 29743 positions in the final

dataset. Evolutionary analyses were conducted in MEGA11 (Tamura et al., 2021) and visualized with the package ’ggtree’ in R.

The current snapshot of COVID-19 data was taken fromGISAID between Oct 2021 andMar 2022 in weekly basis. Lineage level prev-

alence rate was summarized using cubic spline interpolation.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analyses for the pseudovirus virus neutralization assessmentswere performed usingGraphPad Prism for calculation of

mean value and SEM for each data point. Each specimen was tested in triplicate. Antibody neutralization IC50 values were calculated

using a five-parameter dose-response curve in GraphPad Prism. For comparing the serum neutralization titers, statistical analysis

was performed using a Wilcoxon matched-pairs signed rank test. Two-tailed p values are reported. No statistical methods were

used to determine whether the data met assumptions of the statistical approach.
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