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Abstract 

Background:  Practical biosignatures and thorough understanding of regulatory processes of hypertrophic obstruc-
tive cardiomyopathy (HOCM) are still lacking.

Methods:  Firstly, public data from GSE36961 and GSE89714 datasets of Gene Expression Omnibus (GEO), Gene 
database of NCBI (National Center of Biotechnology Information) and Online Mendelian Inheritance in Man (OMIM) 
database were merged into a candidate gene set of HOCM. Secondly, weighted gene co-expression network analysis 
(WGCNA) for the candidate gene set was carried out to determine premier co-expressed genes. Thirdly, significant 
regulators were found out by virtue of a multi-factor regulatory network of long non-coding RNAs (lncRNAs), mes-
senger RNAs (mRNAs), microRNAs (miRNAs) and transcription factors (TFs) with molecule interreactions from starBase 
v2.0 database and TRRUST v2 database. Ultimately, HOCM unsupervised clustering and “tsne” dimensionality reduction 
was employed to gain hub genes, whose classification performance was evaluated by a multinomial model of lasso 
logistic regression analysis binded with receiver operating characteristic (ROC) curve.

Results:  Two HOCM remarkably-interrelated modules were from WGCNA, followed by the recognition of 32 crucial 
co-expressed genes. The multi-factor regulatory network disclosed 7 primary regulatory agents, containing lncRNAs 
(XIST, MALAT1, and H19), TFs (SPI1 and SP1) and miRNAs (hsa-miR-29b-39 and has-miR-29a-3p). Four clusters of HOCM 
and 4 hub genes (COMP, FMOD, AEBP1 and SULF1) significantly expressing in preceding four subtypes were obtained, 
while ROC curve demonstrated satisfactory performance of clustering and 4 genes.

Conclusions:  Our consequences furnish valuable resource which may bring about prospective mechanistic and 
therapeutic anatomization in HOCM.

Keywords:  Hypertrophic obstructive cardiomyopathy, Weighted gene co-expression network analysis, Multi-factor 
regulatory network, Different clusters
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Background
Hypertrophic cardiomyopathy (HCM), defined as left 
ventricular hypertrophy ≥ 15  mm or ≥ 13  mm in first-
degree relatives with unambiguous family history elimi-
nating secondary causes, is the prevailing inheritable 
cardiomyopathy, with an estimated prevalence of 0.2% 
in the general population [1, 2]. Clinical manifesta-
tions of HCM range from asymptomatic to mortiferous, 
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conducing to sudden cardiac death (SCD) in young 
adults to some degree [1, 3]. Noteworthily, hypertrophic 
obstructive cardiomyopathy (HOCM), with which 
approximately 25% to 70% of HCM patients are afflicted, 
is the hazardous category of HCM and equivalently sig-
nifies left ventricular outflow tract obstruction (LVOTO), 
interpreted by left ventricular outflow tract gradient 
(LVOTG) higher than or equivalent to 30 mmHg at rest 
or with load instigations [4–6]. HOCM predisposes 
victims to severe symptoms and encompasses diversi-
fied therapeutic modalities when compared with hyper-
trophic non-obstructive cardiomyopathy [7]. HCM is 
a hereditary myocardial disease in the majority of cases 
where autosomal dominant sarcomere protein mutations 
with regard to myofilament encoding are recognized 
in roughly 35% to 60% of patients and non-sarcomeric 
genetic mutations representing particular phenotypes 
such as Fabry disease (GLA gene) and FHL1-related dis-
eases (FHL1 gene), have been identified in a considerable 
scale of sufferers, together with reported 25% of children 
[6]. Nevertheless, there has been insufficient detailed 
investigation into the fundamental molecular mecha-
nisms of HCM, so has HOCM, which contributes to phe-
notypic heterogeneity [1].

Comprised of more than 200 nucleotides, long non-
coding RNAs (lncRNAs) whose structures somewhat 
resemble those of messenger RNAs (mRNAs) but are 
not translated into proteins, participate in numerous 
biological processes [8, 9]. Precedent researches have 
established that dysregulation of lncRNAs is involved in 
the pathogenesis of HCM [undefined, 11]. MicroRNAs 
(miRNAs), non-coding RNA molecules with about 21 
nucleotides, prevent gene expression through post-tran-
scriptional regulation. It has antecedently been observed 
that miRNAs such as miR-1 [12], miR-451 [13], and miR-
22 [14], play an essential role in cardiac hypertrophy.

Further non-coding RNAs (ncRNAs) perform as cru-
cial biomarkers and function as therapeutic targets in 
cardiovascular diseases. However, signaling pathways 
and regulatory networks underlying the pathogenesis of 
HOCM demand further elucidation, indicating an imper-
ative need for the discovery of new indicators and regula-
tory targets of HOCM in future therapeutic progression.

Our research integrated public data from Gene Expres-
sion Omnibus (GEO), Gene database of NCBI (National 
Center of Biotechnology Information) and Online Men-
delian Inheritance in Man (OMIM) database, and sub-
sequently implemented weighted gene co-expression 
network analysis (WGCNA). A multi-factor regulatory 
network was constructed with the utilization of starBase 
v2.0 database as well as TRRUST v2 database and then 
accomplish HOCM clustering in order to explore signifi-
cant regulators and genes. Our investigation intends to 

facilitate biological perspectives and distinguish potential 
biomarkers for diagnosis and treatment of HOCM.

Materials and methods
Materials
The datasets of GSE36961 contributed by Hebl VB et al. 
and GSE89714 contributed by Li Y et  al. were down-
loaded from GEO database (https://​www.​ncbi.​nlm.​nih.​
gov/​geo/), and the expression profiling was generated 
using GPL15389 (Illumina HumanHT-12 V3.0 expres-
sion beadchip) and GPL11154 (IlluminaHiSeq 2000). 
GSE36961 dataset contains 106 case samples and 39 
normal ones and meantime, GSE89714 dataset involves 
5 disease specimens and 4 healthy ones, where the case 
samples originate from HOCM sufferers who underwent 
surgical myectomy on account of LVOTO, and the con-
trol ones are donor myocardial tissues. Statistical analysis 
was executed using R software (version 3.6.0).

Simultaneously, genes associated with HCM were 
acquired from Gene database of NCBI (https://​www.​
ncbi.​nlm.​nih.​gov/​gene/) and OMIM database (https://​
omim.​org/).

Data preprocessing and differential expression analysis
In GSE36961 and GSE89714 datasets respectively, probes 
were matched with corresponding genes with normal-
ized expression values provided by GEO database, fol-
lowing the removal of invalid probes, in which median 
value was selected as expression level of the gene when 
multiple probes were applied to the same gene. After-
wards, differentially expressed genes (DEGs) were calcu-
lated from “limma” algorithm in two respective datasets. 
|log2FC| (fold change) > 0.58 and adjusted P-value (adj. P. 
Val.) < 0.05 were considered statistically significant [15, 
16].

Identification of candidate gene set and function analysis
The DEGs from the above two datasets, in company with 
the HCM-associated genes from GENE and OMIM data-
bases were merged, whose redundancy was removed to 
establish candidate gene set. The expression profile data 
of candidate gene set in GSE36961 were extracted for the 
supervenient execution of WGCNA.

The “ClusterProfiler” software package from R lan-
guage was employed to implement enrichment analysis 
of candidate gene set including Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology (GO) 
enrichment analysis.

WGCNA
WGCNA is a systematic biological approach to build up a 
scale-free network through gene expression data. Initially, 
a gene co-expression similarity matrix is constructed by 

https://www.ncbi.nlm.nih.gov/geo/
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https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/gene/
https://omim.org/
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computing Pearson correlation coefficients between pairs 
of genes. Secondly, the similarity matrix is converted into 
a weighted adjacency matrix via introducing an accepta-
ble soft-thresholding (β) meaning β power Pearson corre-
lation coefficient to generate a scale-free network. What 
is more, topological overlap measure (TOM), describing 
relationship within genes, leads to the adjacency matrix 
transforming into topological matrix, while 1-TOM sug-
gests dissimilarity of genes. Fourthly, TOM-based dissim-
ilarity promotes average linkage hierarchical clustering 
of genes, and module identifying will be achieved relying 
on dynamic shear tree. Lastly, trait-correlated modules 
will be acquired, figuring module eigengenes (ME) refer-
ring to the most representative gene in modules, module 
membership (MM) implying membership of genes in 
respective modules, and gene significance (GS) measur-
ing relation degree between genes and external informa-
tion, where GS and MM show a high correlation [17].

Our experiment operated the “WGCNA” package of R 
software to constitute the weighted co-expression net-
work for the candidate gene set. After screening HOCM 
strongly-correlated modules, the “ClusterProfiler” soft-
ware package was engaged for function enrichment 
analysis of genes from those modules. Based on biologi-
cal process (BP) and pathway enrichment analysis, sig-
nificant GO terms and pathways were identified (adj. P. 
Val. < 0.05). Meanwhile, co-expressed gene sets within 

strongly-correlated modules were constructed into an 
interaction subnetwork, with a succeeding detection 
of core genes of modules according to network node 
degrees by means of Cytoscape3.7.2 program to visualize 
the network [18, 19].

Construction of the multi‑factor regulatory network
Aiming to uncover miRNAs, lncRNAs and transcription 
factors (TFs) regulating the core genes, interaction pairs 
between ncRNAs and their target genes from starBase 
v2.0 (http://​starb​ase.​sysu.​edu.​cn/) database involving 
miRNA-lncRNA and miRNA-mRNA couples, and inter-
action ones between TFs and corresponding target genes 
(TF-mRNA) from TRRUST v2 database (https://​www.​
grnpe​dia.​org/​trrust/) were downloaded [20, 21].

MiRNA-lncRNA and miRNA-mRNA pairs which 
conform to number of supporting experiments greater 
or equal to high stringency (≥ 3), would be chosen for 
further analysis. In addition, miRNA-mRNA matches 
should be identified by at least one of the following soft-
wares that consisted of targetScan, picTar, RNA22, PITA 
and miHCMnda/mirSVR.

MiRNAs and TFs connected with the above cru-
cial genes would be filtrated, accompanied by the 
recognition of lncRNAs interacted with the preced-
ing miRNAs. Interplay pairs of core genes containing 
miRNA-lncRNA, miRNA-mRNA and TF-mRNA, were 
organized to create a multi-factor regulatory network. 
By calculating the degree of each regulator (miRNA, 
lncRNA, and TF), the regulators with degree > 5 were 
regarded as critical.

For the purpose of detecting functions and signal chan-
nels of critical regulators, key genes interrelated with the 
regulators from former miRNA-lncRNA, miRNA-mRNA 
and TF-mRNA couples would be figured out to execute 
enrichment analysis.

Clusters of HOCM and identification of hub genes
The essential co-expressed genes derived from WGCNA 
modules were mapped to GSE36961 to apply K-means 
unsupervised clustering method combined with “tsne” 
dimensionality reduction to divide all HOCM sam-
ples (N = 106) into several clusters. The optimal K value 
(number of categories) was determined on the basis of 
searching the ideal inflection point of SSE (sum of the 
squared error, i.e. quadratic sum of distances of all points 
to the center of clusters to which they belong or quad-
ratic sum of error). After that, expression patterns of 
these vital genes in different subtypes were examined and 
genes with significant difference in distinct clusters were 
analyzed, which might act as promising marker genes in 
HOCM clusters. A multinomial model of lasso logistic 

Fig. 1  Data preprocessing and differential expression analysis a 
workflow used for bioinformatics analyses; b DEGs in two datasets

http://starbase.sysu.edu.cn/
https://www.grnpedia.org/trrust/
https://www.grnpedia.org/trrust/


Page 4 of 11Qin et al. BMC Med Genomics          (2021) 14:199 

regression analysis would be established with the “glm-
net” package in R, adopting expression profiles of hub 
genes as independent variables and clusters of HOCM 
as dependent variables. Whereafter, receiver operating 
characteristic (ROC) curve of the model and genes would 
be plotted, where area under the curve (AUC) of ROC 
curve evaluated their performance [22].

Results
Data preprocessing and differential expression analysis
The steps conducted in our study were exhibited in 
Fig. 1a. Probes with zero expression inside 80% of speci-
mens were excluded in GSE110226 and GSE89714 data-
sets respectively, and remaining probes matched with 
genes were embraced for differential expression analysis. 
DEGs of the two datasets were presented in Additional  
file 1: Table  S1, where a total of 628 DEGs were identi-
fied from GSE36961 (|log2FC|> 0.58, adj. P. Val. < 0.05) 
between HOCM samples and normal tissues, which 
included 244 upregulated and 384 downregulated genes, 

and besides, 1483 DEGs were extracted from GSE89714 
(|log2FC|> 0.58, adj. P. Val. < 0.05), encompassing 903 
upregulated and 580 downregulated genes (Fig. 1b). The 
volcano plots (Additional  file 2: Fig.  S1) displayed the 
DEGs.

Identification of candidate gene set and function analysis
Totally, 171 HCM-related genes were attained from Gene 
database of NCBI and 124 genes from OMIM database 
(Additional  file 3: Table  S2). These HCM-associated 
genes were combined with the DEGs of two datasets 
and the redundancy were removed to get 2239 candi-
date genes, considering as a candidate gene set (Fig. 2a). 
Furthermore, KEGG function enrichment analysis of 
candidate genes suggested that they showed significant 
enrichment in HCM and dilated cardiomyopathy path-
ways, and BP of GO analysis involved in muscle system 
process and heart process (Fig. 2b and Additional  file 4: 
Table S3).

Fig. 2  Identification of candidate gene set and function analysis a identification of candidate gene set; b KEGG pathway and BP analyses of 
candidate gene set, KEGG: Kyoto Encyclopedia of Genes and Genomes; BP: biological process
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Fig. 3  Overview of WGCNA network construction of the candidate gene set a identification of soft threthold; b the candidate gene set divided into 
5 modules; c the module−trait relationships of HOCM in 5 modules; d Gene significance (GS) in the modules, and the larger the GS score is, the 
larger the difference is; e BP function analysis of the two modules, and the larger the logFC (fold change) score is, the larger the difference is
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WGCNA
1977 genes of gene expression profile data which 
expressed in GSE36961 based on 2239 candidate genes, 
were applied to form WGCNA network (Additional  file 
5: Table S4). The results of clustering revealed no outlier 
sample, leading to subsequent analysis for all 145 samples 
in GSE36961. In a scale-free co-expressed network, there 
is a negative correlation between logarithm of nodes 
with k connectivity [log(k)] and logarithm of probability 
of those nodes presence [log(P(k))], with the correlation 
coefficient > 0.8 required. A soft threshold (β) value of 8 
was set to produce such a network and appropriate net-
work connectivity (Fig.  3a). Depending on TOM-based 
average-linkage hierarchical clustering method and 
dynamic shear tree, once setting a minimum number of 
genes for each gene network module to be 30, along with 
determining gene modules by dynamic shear method, 
eigengenes of each module were computed at one time, 
and module clustering analysis came behind. A height of 
0.25 was configured, which means dissimilarity of genes 
and is consistent with similarity threshold being 0.75, 
and modules with relatively close distance were merged 
into new modules. To sum up, 5 modules were attained 
(Fig. 3b and Additional  file 6: Table S5).

Pearson correlation coefficients of expression pro-
files in every module between ME and genes in HOCM 
specimens were calculated. The bigger absolute value of 
Pearson correlation coefficient is, the more important 
module is supposed as in HOCM. Subsequently, GS value 
of every module was counted, where a higher value of GS 
represented the module is more relative with HOCM. 
Finally, the turquoise module (cor = 0.82, p < 1e−200) and 
blue module (cor = 0.72, p < 4.3e−25) were thought as the 
most relative modules with HOCM (Fig. 3c, d and Addi-
tional  file 2: Fig. S2). The BP of GO enrichment analysis 
of genes from the two modules revealed that genes in the 
turquoise module engaged into muscle system process 
and muscle tissue development, and genes from the blue 
module participated with muscle system process and 
heart process (Fig. 3e and Additional  file 6: Table S5).

Construction of the multi‑factor regulatory network
Genes from the two modules were anatomized with 
the intention of identifying hub genes interrelated with 
HOCM. In accordance with gene expression relationship 

in the turquoise module, co-expression pairs with a con-
nection threshold value of no less than 0.2 were chosen 
as edges of co-expression network to construct a tur-
quoise module network diagram, and genes with a node 
degree greater or equal to 3 (N = 15) were picked out as 
core genes of the turquoise module. Similarly, a connec-
tion threshold value of no less than 0.07 was fixed and 
genes with a node degree of greater or equal to 3 (N = 17) 
were found out as key genes of the blue module. These 
32 core genes were served as vital co-expression genes 
for comprehensive anatomization (Fig. 4a and Additional  
file 7: Table S6).

376 miRNA-lncRNA interactions and 160,774 miRNA-
mRNA interactions were completely caught from 
starBase v2.0 database, and human 9396 TF-mRNA 
interaction pairs were gathered from TRRUST v2 data-
base (Additional  file 8: Table S7). MiRNAs and TFs that 
interact with the co-expressed key genes (N = 32) were 
screened, followed by selecting lncRNAs that communi-
cate with these miRNAs, and a multi-factor regulatory 
network with 175 interaction pairs was finally generated 
(Fig. 4b and Additional  file 9: Table S8).

Employing the Mcode plugin of Cytoscape to calculate 
degrees of every regulatory factor (miRNA, lncRNA, and 
TF), the first 7 regulatory factors (degree > 5) were distin-
guished as the predominant ones, comprising 3 lncRNAs 
(XIST, MALAT1, and H19), 2 TFs (SPI1 and SP1) and 2 
miRNAs (hsa-miR-29b-3p and has-miR-29a-3p) (Fig.  4c 
and Additional  file 9: Table S8).

8397 target genes that interlinked with 7 predomi-
nant regulators from miRNA-lncRNA, miRNA-mRNA 
and TF-mRNA interaction pairs were selected. Enrich-
ment analysis for these target genes presented that they 
are connected to biological processes such as positive 
regulation of catabolic process, histone modification and 
proteasomal protein catabolic process (Additional  file 2: 
Fig. S3 and Additional  file 9: Table S8).

Clusters of HOCM and identification of hub genes
The 32 co-expressed principal genes were mapped to 
GSE36961 for K-means unsupervised clustering, and an 
optimal K value of 4 was settled since SSE presented a 
slow tendency of decline after K = 4 (Fig.  5a and Addi-
tional  file 10: Table  S9). The “tsne” R software package 
was held to administer dimensionality reduction for gene 

(See figure on next page.)
Fig. 4  Construction of multi-factor regulatory network a Core genes in the blue module were 17 (left), and core genes in the turquoise module 
were 15 (right), where core genes were labeled in the red color. b The construction of multi-factor regulatory network was done by Cytoscape 
software, where the green rhombuses represent transcription factors (TFs), the red circles represent genes (mRNAs), the orange triangles represent 
miRNAs, and the purple arrows represent lncRNAs. c Seven key regulatory factors were found in the network, where the higher the degree is, the 
more important the regulatory function in the network is
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Fig. 4  (See legend on previous page.)
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expression data, where all HOCM samples were also 
evidently divided into 4 clusters. Expression of 32 genes 
in the whole HOCM collections was shown in the heat-
map, emerging high uniformity with previous clustering 
(Fig. 5b, c and Additional  file 10: Table S9). It was ration-
ally speculated that these 32 genes were of great signifi-
cance for HOCM clustering.

Furthermore, difference of 32 co-expressed hub genes 
in different clusters was investigated, and the aver-
age value of each gene in each class was taken as the 
gene expression value in that class. What stands out in 
the procedure is that 4 genes including COMP, FMOD, 
AEBP1 and SULF1 manifested significant expression 
(p < 0.01) in different groups (Fig.  5d). The four genes 
were extracted for expression distribution in all HOCM 
collections with the aim of exploring how they expressed 
in distinct classifications. It was apparent that there was a 
significant difference (p < 0.01) of their expression in four 
clusters (Fig.  5e). The AUCs of the model and 4 genes 
(COMP, FMOD, AEBP1 and SULF1) are 0.9606, 0.7742, 
0.7957, 0.7975 and 0.8961, respectively (Fig. 5f ).

Discussion
HOCM is almost inherited with sarcomeric and non-
sarcomeric causes participated, and has been one nota-
ble risk factor of SCD in young individuals [6]. However, 
few previous studies dig out underneath precise molecu-
lar indicators and regulatory mechanisms. Our project 
was undertaken to scrutinize potential biosignatures 
and fuel further study endeavours to uncover underly-
ing pathophysiological mechanisms of HOCM with high 
heterogeneity.

In our entire study, two datasets were integrated from 
GEO database on HOCM with associated genes of HCM 
in GENE and OMIM databases to obtain the candidate 
gene set. Then, WGCNA method was used to identify 
related modules of HOCM. The integration of high-
throughput data, online databases and bioinformatic 
method for scale-free network have widened the disease 
spectrum and strengthened the evidence. BP analysis 
indicated that the candidate gene set and genes in most 
of the relevant modules were concentrated on muscle 
system process, muscle contraction and heart process. 
Pathway analysis demonstrated that the candidate gene 
set was mostly enriched in HCM, focal adhesion and 

dilated cardiomyopathy. These results exhibited corre-
lation with HOCM, and consequently, 32 co-expressed 
genes with the highest degree in two highly-connected 
modules were designated as core genes.

The miRNAs, lncRNAs and TFs that interact with the 
co-expressed key genes were then screened to obtain a 
multi-factor regulatory network. To date, several stud-
ies have reported features of ncRNAs in HOCM [23, 
24]. Nevertheless, details of RNA crosstalk in HOCM 
have not been thoroughly elucidated. In this exploration, 
a comprehensive lncRNA-miRNA-mRNA-TF regula-
tory network was founded, expounding views on gene 
regulation at pre-transcriptional and post-transcrip-
tional levels. Moreover, bioinformatics technology was 
applied to explore vitally important molecules that are 
involved in the development of HOCM, which might be 
served as felicitous candidate markers for future ther-
apy. The primary 7 regulatory factors were found as the 
ones of essential significance, which covered lncRNAs 
(XIST, MALAT1, and H19), TFs (SPI1 and SP1) and 
miRNAs (hsa-miR-29b-39 and has-miR-29a-3p). XIST, 
called  lncRNA X-inactive specific transcript, has been 
described as a necessary regulator of cardiac hypertro-
phy by modulating miR-101 [25] and miR-330 [26]. XIST 
also exposed certain association with heart failure in 
females [27]. In  vivo experiments unveiled that knock-
down of XIST can inhibit myocardial cell apoptosis in 
acute myocardial infarction rat model by adjusting miR-
449 [28]. Besides, H19 has been identified as a regulator 
that targets PPARα of cardiac hypertrophy [29, 30]. The 
results disclosed that XIST, MALAT1 and H19 possibly 
regulated other miRNAs involved in cardiac hypertrophy, 
such as miR-15b [31], miR-19b [32] and miR-29b [33] in 
our research.

The miRNAs and TFs consistent with other researches 
were identified. MiR-29 is a regulatory agent of cardio-
myocyte hypertrophy via Wnt and mTOR signaling path-
ways [34, 35]. Moreover, SP1 is capable of influencing 
cardiomyocyte hypertrophy by inducing lncRNA CTBP-
AS2 [undefined] and SP1/GATA4 signaling pathways 
[37]. Interestingly, SPI1 has not been reported in cardiac 
hypertrophy so far.

HOCM clustering unveiled consistent classifica-
tion effect with "tsne" dimensionality reduction, which 
may be interpreted by heterogeneity of HOCM. The 

Fig. 5  Clusters of HOCM and identification of hub genes a K = 4 was selected as the optimal number of clusters since the K value is decreased 
by a negligible amount. b The tSNE algorithm provided each sample with a unique x- and y-coordinate (tSNE1 and tSNE2) according to each 
sample’s gene expression of 32 core genes. All HOCM samples were clearly divided into 4 clusters. c The expression of core genes in all HOCMs 
was shown in the heatmap. d The expression of core genes in 4 clusters was shown in the heatmap. e COMP, FMOD, AEBP1 and SULF1 showed 
significant expression in different clusters. f Receiver operating characteristic (ROC) curves of the model and 4 hub genes validated the classification 
performance of 4 genes

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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classification performance of 4 genes (COMP, FMOD, 
AEBP1 and SULF1) expressing with significant difference 
in four clusters was verified by the multinomial model 
of lasso logistic regression analysis and ROC curve. It’s 
worth noting that there is no relevant report about the 
roles of COMP, FMOD, AEBP1 and SULF1 in HOCM 
or even myocardial hypertrophy, implying the need for 
further exploration. Although no classifying difference 
was observed from the expression of a single gene, the 
HOCM samples were separated into 4 clusters obvi-
ously by combining the 32 co-expressed key genes. From 
this point, we speculated that these 32 co-expressed key 
genes are of great significance for HOCM typing and the 
4 genes are considered as important biomarkers due to 
different progressive stages or prognosis of HOCM.

Nonetheless, the generalisability of these results 
is subject to certain limitations. Firstly, our enquiry 
emphasized data mining and analyzation without experi-
mentalconfirmation. Secondly, due to lack of relevant 
prognostic information, clinical classification of HOCM 
and survival analysis associated with key genes were not 
conducted.

Conclusions
The most obvious finding to emerge from our current 
study is to seek out 32 premier genes and 7 regulatory 
factors that might be developed into biological indicators 
in HOCM. Categorization of HOCM samples acquired 
from co-expression of hub genes demonstrated a satisfac-
tory classifying effect. Four genes manifested significant 
difference in different subclasses and could be converted 
into novel biosignatures for varying hypertrophic cardio-
myopathy subtypes. The present study lays the ground-
work for prospective research into detecting promising 
biomarkers, therapeutic targets and prognostic indicators 
to enhance competences to diagnose, counsel and treat 
HOCM patients.
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