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Abstract 

Background:  The number of clinical cases of malaria is often recorded in resource constrained or conflict settings as 
a proxy for disease burden. Interpreting case count data in areas of humanitarian need is challenging due to uncer-
tainties in population size caused by security concerns, resource constraints and population movement. Malaria 
prevalence in women visiting ante-natal care (ANC) clinics has the potential to be an easier and more accurate metric 
for malaria surveillance that is unbiased by population size if malaria testing is routinely conducted irrespective of 
symptoms.

Methods:  A suite of distributed lag non-linear models was fitted to clinical incidence time-series data in children 
under 5 years and ANC prevalence data from health centres run by Médecins Sans Frontières in the Democratic 
Republic of Congo, which implement routine intermittent screening and treatment alongside intermittent preventa-
tive treatment in pregnancy. These statistical models enable the temporal relationship between the two metrics to be 
disentangled.

Results:  There was a strong relationship between the ANC prevalence and clinical incidence suggesting that both 
can be used to describe current malaria endemicity. There was no evidence that ANC prevalence could predict future 
clinical incidence, though a change in clinical incidence was shown to influence ANC prevalence up to 3 months into 
the future.

Conclusions:  The results indicate that ANC prevalence may be a suitable metric for retrospective evaluations of the 
impact of malaria interventions and is a useful method for evaluating long-term malaria trends in resource con-
strained settings.
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Background
Malaria remains endemic across large portions of the 
world, with an estimated 216 million clinical cases and 
445,000 deaths globally during 2016 [1]. This burden falls 
disproportionately on young children in countries where 
the climate is amenable to endemic malaria transmission 

[2], predominantly sub-Saharan Africa. The increased 
investment in malaria treatment and prevention, along 
with the diverse methods available for malaria control, 
makes the effective measuring of temporal trends in 
malaria burden critically important [3]. The effective-
ness of control interventions varies from site to site due 
to the epidemiology of infection and factors, such as the 
susceptibility of the local mosquito population to insecti-
cides [4]. Local control programmes need to monitor the 
impact of interventions to identify the optimum package, 
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justify future financial investment, and identify changes 
in transmission in a timely manner [5].

Africa-wide estimates of burden reduction have pri-
marily utilized cross-sectional survey data conducted by 
the Demographic and Health Surveys Programme [6, 7]. 
These surveys are undertaken at the province level, usu-
ally every 2–3 years, where children are tested for malaria 
in randomly selected clusters. Province-wide estimates 
can hide substantial spatial heterogeneity generated by 
local healthcare provision or local geographical, demo-
graphic or climatic differences, therefore, populations in 
some areas face higher malaria burdens than the prov-
ince-wide average [8, 9]. Finer scale estimates of burden 
can be collated passively using the number of malaria 
cases reported from local health centres. To gener-
ate meaningful incidence rates requires good estimates 
of the size of the health catchment population, which 
is unlikely to be available in many parts of sub-Saharan 
Africa. The problems are exaggerated in humanitar-
ian settings where populations may be highly transient, 
or size estimates hard to generate due to security con-
cerns or resource constrains. This is especially the case in 
‘open’ chronic conflict settings where displaced popula-
tions often live amongst the local population and not in 
a defined enclosed area or are frequently on the move 
due to insecurity. The prevalence of the malaria parasite 
in refugee and internally displaced populations is often 
higher than in local more stable populations due to ine-
qualities in resources and health provision [10].

A novel method for routine malaria surveillance could 
be the use of ante-natal care (ANC) data [11]. Such 
data are used in sentinel surveillance surveys for HIV, 
as it corresponds well with national HIV survey data of 
the same catchment areas [12]. For malaria, the preva-
lence of infection in pregnant women is strongly corre-
lated with the prevalence of infection in children under 
5 in cross-sectional survey data from across Africa [13]. 
During standard intermittent preventative treatment 
during pregnancy (IPTp) programmes, any woman 
that is symptomatic is tested by RDT and given arte-
misinin-based combination therapy (ACT), if they test 
positive. Any women who are not symptomatic or are 
test-negative are given chemoprevention in the form of 
sulfadoxine-pyrimethamine (SP). Since 2011, Médecins 
Sans Frontières (MSF) has rolled out a model of routine 
intermittent screening and treatment (IST) of all preg-
nant women combined with the IPTp-SP programme 
described above. This entails testing all pregnant women 
at every ANC appointment, women who are test-positive 
are given ACT and women who are test-negative are 
given SP (Fig. 1).

Since all women are tested regardless of symptoms, 
this reduces under-reporting bias due to the presence of 

asymptomatic infections. ANC programmes run by MSF 
in malaria endemic countries record the number of RDTs 
administered and the number of positive test results dur-
ing ANC appointments at each health facility or hospital 
every month.

Here, methods are developed to predict the relation-
ship between the prevalence of infection in pregnant 
women and the clinical incidence in children under 
5  years old, using field data collected at five MSF field 
sites in the Democratic Republic of Congo (DRC). There 
is population denominator data available at these five 
field sites, which is uncommon for many of the sites 
where MSF works and more widely across sub-Saharan 
Africa. Nested statistical models are used to investigate 
the relationship between ANC prevalence and clini-
cal incidence and determine whether this association is 
immediate or spread out over time. The utility of rou-
tinely collected ANC data for malaria surveillance and 
the evaluation of control interventions is then discussed, 
with special regard for settings where such denominator 
data are not available.

Methods
The data comprises time series from 5 different MSF 
health centres across the DRC for varying amounts of 
time between 2010 and 2016. These MSF missions vary 
in size and represent a mixture of hospitals, health cen-
tres and community clinics in the Great Lakes region; 
from North and South Kivu, close to the eastern bor-
der with Rwanda and Burundi (Baraka, Kimbi-Lulimba, 
Mweso and Walikale) and from the South-East province 
of Katanga, bordering Tanzania and Zambia (Sham-
wana, closed by the end of 2016). All sites are considered 
‘open’ humanitarian settings, i.e. areas of chronic conflict 
mainly from the ongoing Congolese civil war, including 
internally displaced peoples (IDPs) and with frequent 
population movement due to fighting.

The ANC prevalence time series is the number of 
pregnant women tested for malaria using RDTs and the 
proportion of these that tested positive. Data is collated 
each month and all women that attend ANC appoint-
ments are tested for malaria regardless of whether they 
are symptomatic. The second time series is the monthly 
clinical incidence in children under 5 confirmed by RDT 
(i.e. symptomatic cases arriving as outpatients that tested 
positive by RDT). The size of the under 5 population at 
Mweso, Walikale and Shamwana is estimated by MSF 
each month using population surveys. The size of the 
under 5 population at Baraka and Kimbi-Lulimba, which 
cover larger areas, is taken from national census data 
conducted during the period of investigation by the DRC 
Department of Health.
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An illustration of how the change in one metric may 
continue to influence another metric in the future (a 
lagged effect) is shown in Fig. 2. If one metric can affect 
another second metric for a long period of time, then the 
value of the second metric will depend on the current 
and historical values of the first metric.

A causal framework was utilized to characterize the 
relationship between ANC prevalence and clinical inci-
dence, as well as to determine the direction of the asso-
ciation between the two metrics. A variable X “Granger 
causes” Y if including past values of X in a predictive 
model of Y produces better predictions of Y than just 
using past values of Y alone [14]. The analysis follows a 
two-step process. Firstly, a Granger causality test is used 
to determine the direction of the association (whether 
changes in ANC prevalence can predict future changes in 
clinical incidence, or vice versa) as well as the duration of 
any lagged effect. Secondly, this relationship is then fully 
characterized using more complex statistical models to 
determine the magnitude of the lagged effects and how 
the association might change with disease endemicity.

A vector auto-regression (VAR) model is used to test 
for Granger causality between the two metrics, determin-
ing the direction and length of potential lagged effects 
between two or more time series [15]. Granger causal-
ity was tested for using a Wald test suitable for station-
ary time series [16]. The number of past observations 

that should be used in the VAR model (known as the lag 
order) is determined by finding the lag order that opti-
mizes some information criterion, usually the Akaike 
information criterion [17]. The VAR model with the 
optimum lag order was assessed for goodness of fit by 
examining the model residuals, performing a multivariate 
Portmanteau test to confirm that they are not correlated 
with each other and an autoregressive conditional het-
eroscedasticity test that looks for changing variance over 
time. The VAR models were fit using the package ‘vars’ in 
the R statistical software [16].

Distributed lag non-linear models (DLNMs) are used 
to fully characterize the relationship between the two 
metrics, these flexible models allow a “lagged effect” as 
well as an “endemicity effect” of one metric upon the 
other. The “lagged effect” means that the effect of the 
explanatory metric upon the response metric happens 
over time (with the effect size changing with respect to 
time), whereas the “endemicity effect” enables the rela-
tionship between the two metrics to change according to 
the level of disease (the effect size varies with the value 
of the explanatory metric) [18]. DLNMs are specified 
by choosing two “basis” functions, the first basis func-
tion describes the shape of the association between the 
two metrics at each point in time (the transmission effect 
basis), the second basis function controls the shape of 
the lagged effects in the model (the temporal lag basis, 

Fig. 1  Flowchart illustrating the difference between the standard intermittent preventative treatment during pregnancy using 
sulfadoxine-pyrimethamine (IPTp-SP) regimen and the expanded intermittent screen and treat plus IPTp-SP (IST+IPTp-SP) regime used by MSF in 
their ANC programmes in malaria endemic countries
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an example being Fig. 2b). These two functions are com-
bined into a “crossbasis” function that describes the rela-
tionship between the value of an observation, how long 
ago it was observed and what its current effect will be 
on the response variable [19]. The crossbasis function 
can vary in shape depending on the two individual func-
tions used to construct it. A crossbasis function can be 
written as s(xt−l, t − l; η), where xt−l is the observation of 
the explanatory variable l  months ago, t−l is the num-
ber of months since the observation, and η are the so-
called “basis parameters” which are the parameters that 
describe the shape of the two functions combined in the 
crossbasis. The crossbasis function can be included as a 
predictor in a generalized additive model with the follow-
ing form:

(1)
logit(E(Yt)) = α + hi +

∑L

l=0
s
(

xt−l , t − l; η
)

,

where E(Yt) is the expected value of the response vari-
able at time t (as determined by the Granger causality 
test outlined above), xt−l is the value of the explanatory 
variable at time t − l, α is a parameter determining mean 
difference between the two metrics, hi is the location-
specific modifier of the mean difference between the 
metrics for location i, and L is the optimal lag order 
found when fitting the VAR model (and takes a value of 
0 in models with no lagged effects). Different crossbasis 
functions (s(xt−l,  t − l; η)) made up of the two different 
basis functions are fit to the observed data and compared 
to determine the most parsimonious model. Two differ-
ent functions are used to investigate how the relationship 
between metrics changes with endemicity, i.e. the trans-
mission effect basis:

• • Linear basis: The simplest model assumes that the 
endemicity effect varies linearly with the explanatory 
metric.
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Fig. 2  a–c The concept of a crossbasis function in this context, in a the explanatory metric has corresponding effect on the response metric, 
the function that explains this relationship is the transmission effect basis. In b for a given value of the explanatory metric, this may have delayed 
effects on the response metric—in this plot for 3 months afterwards. This relationship is characterized by the temporal lag basis. In c, these two 
basis functions are combined into a bi-dimensional plot, the shape of the crossbasis function is restricted by the choice of functions in a and b. 
The precise shape of the crossbasis is determined during the fitting of the DLNM model. d–f How subsequent changes in one metric (Metric 1) 
can cause unpredictable patterns in another metric (Metric 2). d The different changes in Metric 1 differentiated by colour (yellow for the change in 
month 4, green for the change in month 5 and brown for month 6). e Each of these changes in Metric 1 have lagged effect that may differ with the 
size of the observation in Metric 1 and start at different times. These lagged effects are then observed as changes in Metric (2) over multiple months 
(f) with the lagged effects of three different changes in Metric 1 stacking up to create complex patterns in Metric 2. This is illustrated in this example 
where month 4 saw the greatest increase in Metric 1 whilst Metric 2 peaked in month 6
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• • Hill function: A function flexible enough to fit the 
relationship between the incidence and prevalence 
typically observed in non-temporal data [20].

A choice of three different basis functions are used as 
the temporal lag basis:

• • No lagged effect.
• • Linear basis: The effect of a change in the explanatory 

metric increases or decreases linearly with respect to 
time.

• • Non-linear basis: A non-linear spline function that 
is penalized to produce a smooth curve, using penal-
ized splines has been shown in simulations to be an 
effective method of reconstructing a variety of lag-
exposure relationships when fitting DLNMs [21].

All combinations of endemicity effect and lagged 
effect basis functions are tested, giving a total of six dif-
ferent models. For clarity, each model is named with an 
acronym that represents its structure. The first two let-
ters of the acronym represent the function used for the 
transmission effect basis, this can be either LE for a linear 
function or NE for a Hill function. The second two let-
ters indicate the function used for the temporal lag basis, 
this can be LL for linear lagged effects or NL for non-lin-
ear basis spline lagged effects. If there is only one pair of 
letters then the model does not have lagged effects. The 
names of all six models are listed in Table 2.

Models were fit using the ‘dlnm’ package [22] for the 
R statistical software and the most parsimonious model 
was identified using AIC value. The predictive power of 
each model (its ability to correctly predict into the future) 
was compared use a rolling origin cross-validation 
method. This predicted a year of unseen data at a time, 
with the model being fit using all previous years of data at 
the given location and all the data from every other loca-
tion. The models can then be compared using the root 
mean squared error of their predictions.

Results
ANC prevalence and clinical incidence in children under 
5 across the five locations are shown in Fig.  3. Visually, 
it is clear that the temporal trends in the metrics are 
broadly the same, though the association has substan-
tial variability over time and between different locations. 
Baraka and Shamwana show pronounced seasonal pat-
terns in both transmission metrics, whereas the other 
sites do not show obvious seasonal variation in transmis-
sion. In Fig.  3 the sites are ordered from the northern-
most site to the southernmost site when moving from left 
to right along the top row and then the bottom row, there 

is a steep gradient in the degree of seasonality of malaria 
transmission when moving from north to south [23].

Different sites also have differing levels of ANC 
prevalence despite similar incidence rates in children 
under 5. For example, Shamwana and Kimbi-Lulimba 
have median observed clinical incidence rates in chil-
dren under 5 of 1.714 and 1.711 respectively, but their 
median observed ANC prevalence is 34.6% in Shamwana 
and 18.5% in Kimbi-Lulimba (Table  1). A direct cross-
sectional comparison of the two metrics each month is 
shown in Fig. 4.

The Granger causality test indicated that past clini-
cal incidence can significantly improve predictions of 
future ANC prevalence compared to past values of ANC 
prevalence alone (p = 0.002). Conversely, ANC preva-
lence was unable to predict future clinical incidence 
with significantly more accuracy compared to using past 
values of clinical incidence alone (p = 0.42). The subse-
quent analysis therefore uses clinical incidence in chil-
dren under 5 years as the explanatory variable and ANC 
prevalence as the response variable. The VAR model used 
for Granger causality testing also determined the length 
of the lagged effect (how many previous months of clini-
cal incidence in under 5  s are predictive of the current 
ANC prevalence), the VAR model with the optimum AIC 
value had a maximum lag value of 3  months (1  month 
AIC = − 6.544, 2  months AIC = − 6.556, 3  months 
AIC = − 6.581, 4  months AIC = − 6.574). Since the dif-
ference in AIC values between the models with different 
lag values was not large enough to decisively prefer one 
model, the later DLNM model NENL was also fit using 
maximum lag values of 1, 2 and 4 months (see Additional 
file 1).

The “NENL” model provides the best fit (in terms of 
both AIC value and out-of-sample predictive power) 
indicating that changes in clinical incidence impact 
ANC prevalence non-linearly according to the level of 
endemicity, and that these effects manifest themselves 
(again non-linearly) immediately and over the subse-
quent months (Table  2). The 3D relationship (crossba-
sis function) is shown in Fig.  5a whilst a representation 
of the temporal lag basis function is depicted for various 
endemicity levels in Fig. 5b. The lagged effects are signifi-
cant for 3 months, with the effect size being greatest in 
the month that the change in incidence is observed and 
then decreasing over time. The best fitting model that 
uses non-linear splines to model lagged effects (NENL) 
is an improvement, albeit a smaller one, upon the similar 
model that uses a linear function to model lagged effects 
(NELL). The non-linear lagged effects (NENL) estimate 
that incidence has a bigger effect on ANC prevalence 
with 1 and 2  months lag than the linear model (NELL) 
predicts (Fig. 5b).
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Allowing the relationship between clinical incidence 
and ANC prevalence to be non-linear substantially 
improves model fit (Table 2). A graphical representation 
of the out-of-sample predictive power of the best “NENL” 
model is shown in Fig.  6. Though the best-fit model is 

unable to predict small changes in prevalence the over-
all trends are well captured. How well the model cap-
tures trends in prevalence is demonstrated both when the 
model is fit to all available data and when using the roll-
ing origin cross validation technique, where predictions 

Fig. 3  Time series data from the five different settings used in the analyses. The solid black line shows the recorded clinical incidence rate in 
children under 5 years old each month (cases per child per year). The dotted black line shows the recorded anti-natal clinic prevalence recorded 
each month with the red shaded area indicating the 95% confidence intervals using the normal approximation method. Data are available for 
different durations in the different settings

Table 1  Summary of the time series data collected during the same month from the different DRC settings

The population size of the catchment area (used to convert case numbers into clinical incidence rates are and the number of women attending anti-natal clinics (ANC 
visits) are summarized using the median value. The longitudinal time series is shown graphically in Fig. 3

Location Number of data points 
in time-series

Median 
population size

Median monthly 
ANC visits

Median monthly ANC 
prevalence (%)

Median incidence in children 
under 5 years (minimum, 
maximum)

Baraka 69 71,238 636 17.3 0.929 (0.199, 5.24)

Mweso 60 65,867 1074 5.7 0.277 (0.059, 1.854)

Walikale 23 31,536 437 11.3 2.072 (1.112, 4.986)

Shamwana 72 36,000 455 34.6 1.714 (0.129, 9.397)

Kimbi-Lulimba 24 15,812 582 18.5 1.711 (0.451, 4.028)
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Fig. 4  Cross-sectional relationship between prevalence of infection in pregnant women attending anti-natal clinics (ANC) and clinical incidence 
in children under 5 years reported at the same site. The small circular points show the raw monthly values, coloured by location. The large square 
points show the same data aggregated by calendar year. The coloured curves show a simple non-linear relationship between the two metrics with 
no lagged effects (equivalent to model NE) and corresponding 95% confidence interval

Table 2  Summary of  the  different distributed lag non-linear models (DLNMs) characterizing the  relationship 
between clinical incidence and ante natal clinic (ANC) parasite prevalence

The second and third columns indicate the shape of the basis function used to characterize how the relationship is influenced by endemicity and the lagged effect. 
Models are compared using Akaike information criterion (AIC, lowest value in italic indicating most parsimonious model) and root mean squared error (RMSE, lowest 
value in italic indicating most predictive model)

Acronym Endemicity effect Lagged effect Number of parameters AIC RMSE (rolling 
cross-
validation)

LE Linear No lagged effects 6 3859.2 0.0667

LELL Linear Linear 7 3116.6 0.0563

LENL Linear Non-linear 13 3116.0 0.0564

NE Hill function No lagged effects 8 3499.8 0.1126

NELL Hill function Linear 9 2982.0 0.05434

NENL Hill function Non-linear 15 2978.9 0.05431
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are made using the history of infection from the last year 
or more.

Discussion
Clinical incidence in children under 5  years old could 
predict ANC prevalence but not vice versa. This matches 
our current understanding of the epidemiology of 
malaria. Clinical incidence in children under 5  years, 
who have low levels of malaria immunity, is likely to 
closely reflect the incidence of new infections and thus 
be a good proxy for the current intensity of transmis-
sion. Conversely, in pregnant women an infection, and 
associated HRP-2 antigenaemia, can persist asympto-
matically for a prolonged period of time. Since pregnant 
women are being tested routinely, regardless of symp-
toms, ANC-based prevalence is likely to be a measure 
of exposure accumulated in preceding months [24, 25]. 
This is consistent with the findings of this analysis where 
high clinical incidence rates in under 5  s were associ-
ated with an increased risk of a positive RDT in preg-
nant women for the next 3  months, as well as a recent 
study demonstrating that in areas of sustained, seasonal 
transmission a substantial proportion of women attend-
ing ANC appointments remain infected throughout the 
dry season [26]. The models that assumed a non-linear 
relationship between clinical incidence in under 5 s and 
ANC prevalence were superior in terms of AIC value and 

out-of-sample predictive power. The best-fit function 
produces a curve whereby increasing clinical incidence 
in children under 5 is approximately linearly associated 
with larger effects upon ANC prevalence up until around 
3 cases per child per year, where it begins to plateau. 
This shape has been observed in multiple cross-sectional 
surveys comparing malaria prevalence with clinical inci-
dence [20]. This is likely a product of heterogeneity in 
mosquito biting (some people are bitten substantially 
more than others) leading to repeatedly infected people 
developing asymptomatic infections (so new infections 
occur in people already infected meaning that there is no 
change in prevalence).

Due to the changes in the model fit between sites (sig-
nificantly different h parameter values), the model cannot 
currently be used to predict ANC prevalence from inci-
dence alone. For example, the best fitting model system-
atically under-predicted the level of ANC prevalence in 
Walikale, which has similar rates of incidence in children 
under 5  s as seen in Shamwana but much lower ANC 
prevalence (Fig. 3). Some of the differences between sites 
may be accounted for if there was more precise ANC 
data on factors known to affect the epidemiology of 
malaria in pregnancy such as timing of gestation [27] and 
parity. The sensitivity of malaria RDTs are known to vary 
depending on the number of children that a woman has 
already had, with more children meaning a likely history 
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of exposure to the parasite during pregnancy and a devel-
oped placental immunity [28]. Alternatively, the varia-
tion between sites could be attributable to poor incidence 
estimates at some locations due to sparse health systems, 
insecurity, inaccurate estimates of population size, or 
short-term population movement into areas of higher 
risk (e.g. forested areas). Analysis of mobile phone data 
in malaria endemic countries shows large-scale popula-
tion movement within and between countries [29, 30]. 
The infrequency of national census surveys may there-
fore limit the accuracy of incidence estimates derived 
from these surveys. However, census data was only used 
for two of the sites in the MSF dataset and the incidence 
recorded at those two sites (Baraka and Kimbi-Lulimba) 
was not unusual when compared to the other locations. 
To redress some of the uncertainty in the data, the NENL 
model was fit using several different maximum lag values 
(see Additional file  1), with the general results remain-
ing the same for maximum lag values of 2 or 4. How-
ever there is still uncertainty in the data that the current 
model is unable to capture (Fig.  6). The analysis should 
be repeated as more data become available in order to 
reduce uncertainty in the model and refine predictions 
(Additional file 2).

These results have practical implications for the pro-
posed use of ANC prevalence as a tool to monitor 
malaria. This method has established, at these 5 sites 
at least, that ANC prevalence seems to be a promising, 
simple, and cost-effective measure of recent malaria inci-
dence. This has important applications in humanitar-
ian settings and beyond. Good quality population size 
estimates are difficult, expensive to obtain, and are only 
available in a small number of sites where MSF operate. 
ANC data is much more widely available, and this work 
suggests it should be used to monitor recent trends in 
malaria endemicity over simple case count data alone. 
As an illustration of its importance it was unclear from 
hospital case counts data whether malaria transmission 
was increasing in sites in Eastern DRC around Baraka or 
not. Case counts had risen dramatically, though this may 
have been because of increased investment by MSF (for 
example the use of mobile malaria teams to diagnose and 
treat the wider population) or a true increase in disease 
transmission. The spectrum of mosquitoes resistant to 
pyrethroid insecticide and the possibility of the spread 
of drug resistant parasites means that local control inter-
ventions need to monitor secular trends in transmission 
regularly and tailor their programmes to maintain good 
levels of control. Examination of ANC data in these sites 

a b

Fig. 6  The results of the out-of-sample prediction for the best fitting “NENL” model. This uses at least one previous year of data as a training dataset 
before trying to make out-of-sample predictions for the subsequent years. a The coloured lines show the observed ANC prevalence each month at 
each location and their corresponding 95% confidence interval. The black line shows the model predictions of the ANC prevalence when the model 
was fit using all data. The grey band shows a 95% confidence interval for the rolling origin cross validation technique. b Points show a comparison 
of observed ANC prevalence and the corresponding out-of-sample predictions, coloured by site. Lines around the points show the 95% confidence 
interval for the observations and out-of-sample prediction. The black line shows a perfect correspondence between observation and prediction
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during this period would have provided a simple, unbi-
ased method of raising concerns over recent increases in 
transmission. This method also provides a way of singling 
out changes in incidence that should be matched by a 
corresponding change in ANC prevalence, but this does 
not happen. For example, a change in reporting capacity 
or surveillance may induce an increase in incidence, but 
this would then not be followed by an increase in ANC 
prevalence so those responsible for monitoring malaria 
can be confident that the increase in incidence was not 
due to increase in overall transmission.

Humanitarian organizations and other bodies are 
regularly trialling new methods of malaria control in 
specific areas to try and meet local needs. For example, 
MSF have used mobile malaria teams, community-based 
malaria management and different models of health cen-
tre support in different areas of the DRC. The evidence-
base to support these interventions is lacking due to the 
huge expense and infeasibility of conducting large RCTs 
in some areas. The full effect of a sustained decrease in 
transmission due to an intervention may not be observ-
able in ANC prevalence measurements until several 
months after it begins, therefore availability of routine 
ANC data from a strategy of IST alongside IPTp in area 
where the intervention is introduced, combined with the 
model outlined here, could provide a low-cost measure of 
triaging new interventions to see which should go on for 
more thorough investigation.

ANC prevalence was found not to be useful for pre-
dicting future incidence in children under 5  years old, 
so there is no evidence to support its use in predicting 
future malaria trends from this work. However, it may 
be that combining ANC prevalence with other data such 
as the amount of rainfall may allow for models with bet-
ter predictive power, though this analysis is beyond the 
scope of this work. In the future, it would be beneficial 
to invert the relationship used in this work to use ANC 
prevalence to predict past trends in incidence, useful in 
many of humanitarian contexts discussed where cases or 
denominator populations cannot be reliably recorded.

Conclusions
This work found that time-series data of clinical inci-
dence in children under 5  years predicts future preva-
lence of infection in pregnant women, but not the other 
way around. Increases in clinical incidence were associ-
ated with increased risk of a positive RDT in a pregnant 
woman for the next 3  months, with the opposite being 
true for decreases in incidence. This helps us to under-
stand the role that ANC prevalence can play as a tool for 
retrospectively examining how malaria transmission has 
changed in a location over time. Though ANC prevalence 
derived from routinely collected clinical data may not 

directly reflect clinical incidence rates calculated from 
accurate population data, this analysis establishes that 
it does correspond to recent trends in malaria transmis-
sion and provides a simple to collect metric in situations 
where good malaria data is sparse, such as chaotic, rap-
idly changing humanitarian crises.
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using the NELL model described in the analysis rather than the NENL 
model.
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MSF locations, including ANC visits, ANC prevalence, and clinical incidence 
in children under 5 years old.
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