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Abstract: Di (2-ethylhexyl) phthalate (DEHP) is widely used as a plasticizer, and human exposure to
DEHP is widespread and frequent. However, information about the combined effect of DEHP and
ultraviolet (UV)-B on the skin are still limited. We investigated the cytotoxic effects of DEHP and UV-B
on HaCaT keratinocytes and evaluated the related underlying mechanisms involving endoplasmic
reticulum (ER) stress signals and the disruption of junction complexes as an effective target for skin
inflammation. Our results revealed that co-treatment with DEHP and UV-B irradiation alleviated the
cell cytotoxicity and markedly decreased X-box binding protein 1 (XBP1), endoplasmic reticulum
oxidoreductase 1 alpha (Ero1α), and C/EBP homologous protein (CHOP) whereas a single dose of
40 mJ/cm2 UV-B generated mild ER stress to slightly less or similar levels as that seen with DEHP.
DEHP was also shown to inhibit tight junctions (TJs) after UV-B irradiation, increased apoptosis
by altering apoptotic gene Bax and stress kinases, JNK, and p38 MAPK. Furthermore, exposure of
HaCaT cells to DEHP and UV-B irradiation resulted in the marked suppression of the nuclear factor
kappa B (NF-κB)/p65 signaling pathway. Taken together, our data suggest that nontoxic DEHP and
UV-B irradiation regulated ER stress and epidermal TJ disruption with the induction of apoptosis
activation and the secretion of proinflammatory cytokines such as interleukin 1 beta (IL-1β) and IL-6
in human keratinocytes. Further investigation is needed to confirm the mechanisms implicated in its
toxicity and determine the effects of exposure to DEHP and UV-B irradiation on markers involved in
this study.
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1. Introduction

Health hazards posed by phthalates have been brought to the public’s attention due
to their potential toxic effects. The annual global production of phthalates is estimated at
around 18 billion pounds and above 2 million tons of DEHP alone, the most abundant
phthalate, as they are widely used in plastic products to improve the flexibility and durabil-
ity [1]. Although the toxicity of phthalates remains under debate, a large variety of studies
have revealed high exposure of DEHP in urine and blood, as well as semen, cord blood, and
breast milk [2–6], and the apparent toxicity of DEHP affecting human health [7,8]. Several
studies indicate that the daily intake of phthalates or phthalic acid esters may reach values
as high as 70 µg/kg/day, based on various mechanisms including dermal exposure [9–13].

The skin functions as an immune organ against outside chemicals and pathogens [14,15].
Several reports have indicated that UV irradiation can activate components of the cuta-
neous immune system and precipitate immune-mediated diseases by a variety of mecha-
nisms [16–18]. The midrange ultraviolet radiation (UV-B) is the most relevant with respect
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to physical injury to human skin and causes severe damage including cutaneous inflam-
mation. Studies on UV exposure have been conducted worldwide, but few studies have
provided definitive UV doses [19–21]. In a study that directly measured individual UV
exposure, students were exposed to 1 MED (minimum erythema dosage) and 2 MED of
solar UV per day, respectively [22]. They considered the maximum daily UVB dose to be
7 KJ/m2 and used 22 MED as the maximum daily UVB dose. In addition, since 1 MED
was distributed at 20–60 mJ/cm2, 200 MED was determined as the annual average dose.
Importantly, 99% of UV-B radiation is absorbed within the outermost 0.03 mm of the epi-
dermis when searching for physiological targets. Accordingly, UV-B-induced keratinocytes
probably constitute a major cellular target [23,24]. The major risk factor for skin disorders is
exposure to UV radiation from sunlight, but other environmental exposures may also play
a role in combination with UV. Previous studies showed that the combined exposure of
human keratinocytes to an environmental pollutant benzo[a] pyrene and UV caused a more
than additive increase in DNA damage compared with each agent alone [25–27]. However,
the synergistic or additive phototoxic effect of phthalates on the skin remains unclear.

Alterations in endoplasmic reticulum (ER) homeostasis can cause a cellular stress
response known as the unfolded protein response (UPR) in response to the accumulation
of misfolded or unfolded proteins. When the ER stress is extensive or sustained and the
function of ER cannot be restored, the UPR can eventually prompt cell death. Many studies
have indicated the role of ER stress and the activation of the UPR in the development of
pathologic conditions such as apoptosis and inflammation [28–30]. One study showed a
causal relationship between ER stress and DEHP exposure [31], but no sufficient data are
available in this respect concerning both DEHP and UV-B irradiation.

The epidermal tight junction (TJ) barrier is an important structure to maintain the
integrity of the skin barrier with the stratum corneum (SC) [32]. Recent studies have dis-
cussed the interaction of TJs with several skin diseases or skin barrier alterations [33,34].
A more recent study suggested that the epidermal barrier becomes more permeable in
response to UV, and the mechanisms may include a reduction in the TJ function in the
skin [35]. Another study reported that UV-B and oxidative stress could induce the eleva-
tion of permeability mediated by claudin-1 in HaCaT cells [36]. Moreover, both barrier
perturbation and UV-B irradiation induce ER stress and UPR in keratinocytes [37,38].
Similarly, the most recent study showed that ER calcium depletion disrupted TJ barrier
integrity, and the IRE1α-XBP1 pathway of the UPR is essential to enhance or maintain
the TJ barrier in response to ER stress induced by UV-B irradiation in keratinocytes [39].
However, until now, no study had directly investigated the differential regulation of ER
stress and the epidermal TJ barrier in the skin by the combined exposure to DEHP and
UV-B irradiation.

The aim of the present study was to clarify new mechanistic insights into the cyto-
toxic activity of the combined exposure to both DEHP and UV-B irradiation in HaCaT
keratinocytes. We tested whether (1) DEHP could induce a synergistic effect on ER stress
and TJ disruption with UV-B irradiation; (2) this synergic effect could be sufficient to alter
the activation of apoptosis and stress kinases; and (3) the combination treatment could sup-
press the nuclear factor kappa B (NF-κB)/p65 and NF-E2-related factor 2 (Nrf2) antioxidant
signaling with the secretion of proinflammatory cytokines.

2. Results
2.1. Effect of DEHP, UVB, and Co-Treatment with DEHP and UV-B on Cell Viability of
Human Keratinocytes

To examine the cytotoxic effects of DEHP, UVB, and the co-treatment with DEHP and
UV-B, we performed an MTT assay. After 4 h of 100 µM DEHP treatment, HaCaT cells
produced mild toxicity, and the co-treatment with 20 to 40 mJ/cm2 UV-B alleviated the
cell cytotoxicity up to 60% (Figure 1B). Based on these data, the highest intensity of DEHP
(100 µM) and UV-B (40 mJ/cm2) was selected for subsequent studies, respectively.
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Figure 1. Chemical structure of DEHP (A), cell viability in DEHP-treated HaCaT cells challenged with
UV-B irradiation at the indicated intensities (B). Confluent HaCaT cells were pre-treated with 100 µM
DEHP prior to incubation for 4 h with 40 mJ/cm2 UV-B. Cell viability was measured using MTT
assay and presented as means ± SEM from three independent experiments with multiple estimations.
** p < 0.01; *** p < 0.001 vs. control group.

2.2. Combined Effects of DEHP and UV-B in Acute ER Stress Responses and Tight
Junction Disruption

We next investigated the potential involvement of ER stress signals and tight junction
alterations in the DEHP and UV-B co-treated HaCaT cells. As shown in Figure 2A, the levels
of the major ER stress markers XBP1, IRE1α, calnexin, Ero1α, and CHOP were assessed by
Western blot analysis. UV-B (40 mJ/cm2) induced slight decreases of XBP1, IRE1α, calnexin,
and Ero1α compared with control groups. Co-treatment with 100 µM DEHP and UV-B
markedly decreased XBP1, Ero1α, and CHOP, whereas IRE1α and Calnexin levels were
slightly up, as seen with DEHP. Then, we investigated the potential involvement of ER
stress responses in the UV-B-induced TJ alteration in HaCaT. Co-treatment with DEHP
and UV-B led to significant decreases in the expression of ZO-1, Occludin, E-cadherin, and
Claudin-1 in HaCaT cells, whereas the TJs examined in this study were not significantly
disrupted by DEHP alone (Figure 2B).

2.3. Combined Effect of DEHP and UV-B on Induction of Apoptosis-Related Proteins and
MAPK Signaling

To determine whether the MAPK signaling pathway was activated by the co-treatment
of DEHP and UV-B, the levels of p-ERK, p-p38, and p-JNK were detected by Western
blot analysis. As shown in Figure 3A, UV-B (40 mJ/cm2) induced significant increases
of pro-apoptotic Bax, p-ERK, p-p38, and p-JNK, whereas the pathways examined in this
study were not activated by DEHP itself. The co-treatment of DEHP and UV-B partially
maintained the induction of the expression of Bax and p-JNK.

2.4. Combined Effect of DEHP and UV-B on NF-κB/p65 Activation, Nrf2 Antioxidant Signaling,
and Proinflammatory Cytokine Production

To investigate changes in signal transduction pathways possibly induced by DEHP,
UV-B, and co-treatment with DEHP and UV-B, we performed Western blot analysis and
ELISA assay. As shown in Figure 3B, UV-B alone and co-treatment with DEHP and
UV-B significantly induced the suppression of NF-κB/p65 activation compared to the
control group that was not irradiated with UV-B and DEHP itself, respectively. However,
DEHP itself did not show a significant difference from the control group. In addition,
the Nrf2 expression was obviously induced by the exposure to both DEHP and UV-B.
Subsequently, DEHP alone and co-treatment with DEHP and UV-B also induced the
activation of proinflammatory cytokines IL-1β and IL-6 compared to the control group
after 24 h (Figure 3C).
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Figure 2. Effect of DEHP on expression of acute ER stress responses and tight junction disruption in
UV-B-irradiated HaCaT cells. Cells were treated with 100 µM DEHP and stimulated with 40 mJ/cm2

UV-B. Cell lysates were prepared for Western blot analysis with a primary antibody against XBP-
1, IRE1α, calnexin, Ero1α, and CHOP (A) and ZO-1, Occludin, E-cadherin, and Claudin-1 (B).
Representative blot data were obtained from three experiments, and β-actin protein was used as an
internal control. The bar graphs (means ± SEM) in the bottom panels represent quantitative results
of upper blots. * p < 0.05; ** p < 0.01; *** p < 0.001 vs. control group.
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Figure 3. Effect of DEHP on apoptosis-related proteins, phosphorylation of ERK, p38 and JNK,
suppression of NF-κB/p65 and Nrf2, and signaling and induction of proinflammatory cytokines
in 40 mJ/cm2 UV-B-irradiated HaCaT cells. Western blot analysis was carried out with a primary
antibody against Bax, Bcl-2, p-ERK, ERK, p-p38, p38, p-JNK, JNK, or β-actin (A) and NF-κB/p65 and
Nrf2 (B). Bands are representative of three independent experiments. The bar graphs (means ± SEM)
in the bottom panels represent quantitative results of upper blots. The production of IL-1β and IL-6
(C) was measured by ELISA (n = 6 for each group). The results are expressed as the means ± SEM.
* p < 0.05; ** p < 0.01; *** p < 0.001 vs. control group.
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3. Discussion

Seven major findings were extracted from this study. (1) Nontoxic 100 µM DEHP
induced a synergistic cytotoxic effect with UV-B irradiation at the highest intensity of
40 mJ/cm2 after 4 h. (2) DEHP treatment induced the regulation of the ER stress re-
sponses (XBP1, Ero1α, and CHOP) with UV-B irradiation. (3) DEHP disrupted TJ proteins
(ZO-1, Occludin, E-cadherin, and Claudin-1) with UV-B irradiation. (4) Co-treatment
with DEHP and UV-B altered pro-apoptotic Bax and anti-apoptotic Bcl-2 expression.
(5) Co-treatment with DEHP and UV-B induced the MAPKs signaling pathways in p-
p38 and p-JNK but not in p-ERK. (6) Co-treatment with DEHP and UV-B suppressed
NF-κB/p65 activation but increased the Nrf2 antioxidant response. (7) Co-treatment
with DEHP and UV-B increased proinflammatory cytokine, IL-1β and IL-6, production
after 24 h. Therefore, DEHP and UV-B irradiation resulted in the ER stress-mediated
development of pathologic conditions through pathways involving the activation of the
ER IRE1α and Nrf2 by interfering NF-κB/p65, which in turn contributed to TJ disruption
in keratinocytes (Figure 4). It is difficult to evaluate the effects of phthalates on public
health, because several parameters should be taken into consideration. Previous studies
tried to establish a systemic approach to the cutaneous toxicity of phthalates [40,41].
We used human keratinocytes to evaluate the phototoxicity of DEHP to the skin, and
the experimental results presented in this study possess clinical relevance for finding
effective biomarkers for DEHP and UV-B toxicity. Further investigation is needed to
confirm the mechanisms implicated in its toxicity and determine the effects of exposure
to DEHP and UV-B irradiation on markers involved in this study.

Here, we found that a single dose of 40 mJ/cm2 UV-B generated mild ER stress
to slightly lower levels than or similar levels to those seen with DEHP. However, co-
treatment with DEHP and UV-B markedly decreased the expression of XBP1 and CHOP
in this study. Furthermore, our results showed that the co-treatment of DEHP and UV-
B disrupted specific TJ proteins including ZO-1, Occludin, E-cadherin, and Claudin-1
whereas the treatment of HaCaT with DEHP or UV-B itself at the concentration used in
these experiments did not affect the TJ molecules. The present study did not determine
the inhibitory effect on IRE1α phosphorylation in the presence of DEHP and/or UV-B
irradiation; however, a recent study indicated that the UV-B-induced activation of the
IRE1α-XBP1 arm of UPR can maintain TJ integrity and IRE1α-XBP1 activation plays a
protective role in the maintenance of TJ integrity in response to mild ER stress [39].

We then investigated the potential involvement of the direct apoptotic signaling,
including Bax and Bcl-2, in this study. Our results show that UV-B irradiation at 40 mJ/cm2

induced pro-apoptotic Bax and MAPK signaling pathway in HaCaT at 4 h post irradiation.
In addition to the co-treatment of DEHP and UV-B apparently decreased the induction
of the expression of Bcl-2. There is emerging evidence revealing that the activated UPR
facilitates cell survival in an attempt to relieve ER stress and restore homeostasis; however,
prolonged ER stress also induces apoptosis [42,43]. One investigation shows that Bcl-2
knockout increased UV-B-induced apoptosis suggesting the antioxidant activity of Bcl-2 [44].
Moreover, studies have demonstrated that CHOP induces the expression of pro-apoptotic
genes, such as DR5, TRB3, BIM, and PUMA, and represses the expression of bcl-2, which
triggers apoptosis during ER stress.

In this study, DEHP alone did not induce significant p-p38, but combined exposure
significantly induced p-p38 and p-JNK compared with the control cells. It has been reported
that the stress kinases JNKs and p38 are functionally linked to the regulation of pro-
apoptotic and pro-inflammatory pathways in response to UV-B irradiation. A dominant role
of p38 MAPK in the signal leading to Bax activation is also supported in the spontaneously
transformed keratinocytes. Consequently, the exact mechanism underlying p38 MAPK-
mediated Bax activation may be indirectly involving the regulation of the anti-apoptotic
activity of Bcl-2 members through a p38 MAPK-directed phosphorylation. On the other
hand, studies of human skin have suggested that low-dose UV-B irradiation induces the
rapid activation of stress kinases, JNK and p38 MAPK, which may act to prevent the onset
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of skin photocarcinogenesis, as they contribute to the elimination of potentially cancerous
cells [45].
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Figure 4. Schematic diagram showing the combined effects of DEHP and UV-B irradiation in
HaCaT keratinocytes. As depicted, DEHP and UV-B induced ER stress results in IRE1-mediated
development of pathologic conditions such as apoptosis and inflammation, which in turn contributed
to TJ disruption. The→ indicates activation or induction, and a indicates inhibition or blockade.

Another key effector of UV-B generated ROS is the transcription factor NF-κB, which
is a well-documented downstream target of the MAPK signal transduction pathway
and is, together with the p38 MAPK pathway, a major regulator of inflammation in
irradiated skin. Recent studies suggested that UV-B irradiation activates NF-κB, which
functions as a survival signal and is distinct from the transcriptional profile induced
by cytokine stimulation [46]. Moreover, previous in vitro studies reported that UV-B
doses not exceeding 10 mJ/cm2 cause several cytoprotective mechanisms, including the
activation of the transcription factor NF-E2-related factor 2 (Nrf2) and the induction
of anti-apoptotic factors in keratinocytes [47,48]. Consistent with previous studies,
co-treatment with DEHP and UV-B suppressed NF-κB/p65 activation and increased
Nrf2 antioxidant response. This study also showed that DEHP and UV-B-induced UPR
and NF-κB pathways are involved, which in turn induces the secretion of a variety
of inflammatory mediators including IL-1β and IL-6. A current study showed that
UV-B induces inflammasome activation and IL-1β secretion, providing insight towards
potential targets against UV-B-induced inflammation [49]. Further studies are needed to
confirm that IRE1α-mediated NF-κB and JNK activation, which leads to the increased
expression of pro-inflammatory genes.

4. Materials and Methods
4.1. Cell Culture

HaCaT cells, spontaneously immortalized human keratinocytes, were purchased
from Cell Line Service (DKFZ, Eppelheim, Germany) and were grown in a Roswell Park
Memorial Institute 1640 medium (RPMI 1640) supplemented with 10% fetal bovine serum
(FBS), penicillin (100 units/mL), and streptomycin (100 µg/mL) at 37 ◦C in a humidified
atmosphere of 5% CO2 air. RPMI 1640, penicillin, streptomycin, and FBS were purchased
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from Gibco Life Technologies (Grand Island, NY, USA). Cells were regularly screened for
mycoplasma contamination using Plasmo TestTM (InvivoGen, San Diego, CA, USA).

4.2. Treatment with DEHP

DEHP (CAS number: 117-81-7) was purchased from Tokyo Chemical Industry (Tokyo,
Japan) and dissolved in DMSO. Cells were seeded 24 h prior treatment. For the experiments,
DEHP was treated to give the final concentration of 100 µM for 2 h. The doses of DEHP were
selected according to our preliminary dose-finding study, which conducted a cytotoxicity
assay and indicated that treatment of DEHP at the concentrations (1–100 µM) and times
tested did not largely affect the viability of control or UV-B-irradiated HaCaT cells (data
not shown). Equal amounts of DMSO were added to the control groups.

4.3. Exposure of HaCaT Cells to UV-B Radiation

The HaCaT cells were exposed to UV-B radiation using a Vilber Lourmat (VL-215 with
2 × 15 W UVB bulbs). The UV-B radiation intensity was measured with a UV light meter
(UV-340; Lutron, Taiwan, Taipei). The cells were washed in phosphate-buffered saline
(PBS) prior to exposure to UV-B irradiation (20–40 mJ/cm2) without lids on the plates.
Non-exposed control samples were maintained in the dark under the same conditions.
Following exposure to UV-B irradiation, fresh media was added to the cells, and the cells
were incubated for 4 h.

4.4. Cell Viability

The cell-viability assay was performed as described previously [50]. HaCaT cells were
incubated with the indicated concentrations of DEHP for 2 h. The DEHP pre-treated HaCaT
cells were then exposed to 20–40 mJ/cm2 of UV-B irradiation followed by incubation for 4 h.
Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) solution (5 mg/mL).

4.5. Western Blotting

The Western blot analysis was performed as described previously [50]. The membranes
were incubated with the following primary antibodies: XBP1, IRE1α, Calnexin, Ero1α,
CHOP, ZO-1, Occludin, E-cadherin, Claudin-1, p-ERK, ERK, p-JNK, JNK, p-p38, and
p38 (1:1000 dilutions; Cell Signaling, Beverly, MA, USA); NF-κB/p65 (1:1000 dilutions;
Abcam, Cambridge, MA, USA); Nrf2, Bax, Bcl-2, and β-actin (1:1000 dilutions; Santa Cruz
Biotechnology, CA, USA). The blots were analyzed using West-Zol Plus and a molecular
imager Fusion FX VilberLourmat (Vilber, Marne-la-Vallée, France).

4.6. ELISA

The levels of human recombinant IL-1β, IL-6, IL-8, and TNF-α released from the
DEHP-treated cell cultures were measured 4 or 24 h post irradiation. Immediately after
UV exposure, fresh media was added to the cells. The levels of cytokines in these media
samples were determined using an Ezway Cytokine ELISA Kit (KOMA Biotechnology,
Seoul, Republic of Korea).

4.7. Statistical Analysis

The results obtained in this study were expressed as the mean ± SEM from at least
three independent experiments. The statistical significance was assessed using an unpaired
one-way analysis of variance (ANOVA) followed by a Bonferroni post hoc test. The statisti-
cal analysis was performed using GraphPad Prism 5.0 software (GraphPad Software Inc.,
San Diego, CA, USA). p < 0.05 was considered statistically significant.

5. Conclusions

These findings suggest that there are multiple potential targets of DEHP- and UV-B-
induced toxicity through the differential regulation of ER stress and epidermal TJ barrier
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by altering pro-apoptotic Bax and stress kinases, JNK, and p38 MAPK with NF-κB/p65
activation and the Nrf2 antioxidant response in HaCaT keratinocytes. Further studies are
needed to clarify these possibilities.
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