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Abstract: The ESCRT machinery is an evolutionarily conserved membrane remodeling complex that is
used by the cell to perform reverse membrane scission in essential processes like protein degradation,
cell division, and release of enveloped retroviruses. ESCRT-III, together with the AAA ATPase
VPS4, harbors the main remodeling and scission function of the ESCRT machinery, whereas early-
acting ESCRTs mainly contribute to protein sorting and ESCRT-III recruitment through association
with upstream targeting factors. Here, we review recent advances in our understanding of the
molecular mechanisms that underlie membrane constriction and scission by ESCRT-III and describe
the involvement of this machinery in the sealing and repairing of damaged cellular membranes, a
key function to preserve cellular viability and organellar function.

Keywords: ESCRT; membrane scission; reverse topology; nuclear envelope; lysosome; membrane
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1. Introduction

Eukaryotic cellular membranes are highly dynamic entities that undergo continuous
remodeling, fusion, budding, and fission events that are essential to cell and tissue vi-
ability. The endosomal sorting complex required for transport (ESCRT) machinery has
been identified as a key player in an increasing number of these membrane-remodeling
events. ESCRTs have the unique ability to catalyze membrane fission from within mem-
brane necks, in opposition to the well-characterized formation of coated vesicles, where
fission occurs from the vesicle neck exterior [1]. This ‘reverse’-topology membrane scission
constitutes the primary biochemical function of ESCRTs and allows the constriction and
scission of membrane necks and the repair of membrane fenestrations; for example, when
the plasma membrane is punctured or damaged. Over the past recent years, a myriad of
cellular functions for the ESCRT machinery have been described. Functions range from the
formation of multivesicular bodies (MVBs) in the endosomal sorting pathway [2], virus
budding [3], and cytokinetic abscission [4], to nuclear envelope surveillance and reforma-
tion [5–7], autophagosome closure [8], and plasma-membrane [9] and lysosome membrane
repair [10,11]. ESCRT biology and functions are described in detail in comprehensive recent
reviews [12–15]. In the present review we will focus on the molecular mechanisms of this
machinery, highlighting ESCRT roles in membrane remodeling, repair, and sealing.

2. Membrane Remodeling by ESCRTs

Found in Archaea [16–18], ESCRTs are highly conserved through evolution. Here we
will mainly focus on mammalian cells and yeast, where the ESCRT machinery comprises
four multimeric protein core complexes termed ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-
III, plus the AAA ATPase VPS4 and additional accessory proteins (Table 1). Bacteria and
Archaea express ESCRT-III proteins but lack ESCRT-0, -I, and -II components [19,20]; HRS
and STAM (ESCRT-0) are not found in plants, but ESCRT-I to -III are conserved [21–23].
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Table 1. ESCRT complexes and their protein subunits in yeast and humans.

Complex S. cerevisiae H. sapiens

ESCRT-0
Vps27 HGS (HRS)
Hse1 STAM1, STAM2

ESCRT-I Vps23 (Stp22) TSG101
Vps28 VPS28
Vps37 (Srn2) VPS37A/B/C/D

Mvb12 MVB12A/B, UBAP1, UBA1L,
UMAD1

ESCRT-II Vps22 (Snf8) EAP30 (SNF8)
Vps25 EAP20 (VPS25)
Vps36 EAP45 (VPS36)

ESCRT-III Did2 (Vps46, Chm1) CHMP1A/B
Did4 (Vps2, Chm2) CHMP2A/B
Vps24 (did3) CHMP3
Snf7 (Vps32, Did1) CHMP4A/B/C
Vps60 (Chm5) CHMP5
Vps20 (Chm6) CHMP6
Chm7 CHMP7
Ist1 IST1

ESCRT-associated Vps4 VPS4A/B (SKD1)
Vta1 VTA1 (LIP5, DRG-1)

Bro1 (Vps31) ALIX (PDCD6IP), HD-PTP
(PTPN23)

Doa4 UBPY, STAMBP
Alternative protein symbols are shown in parentheses.

Most ESCRT-mediated functions require a topologically equivalent reverse membrane
remodeling for their completion. In addition, ESCRTs can carry out normal topology
scission, from the outside of membrane necks [24–26]. ESCRTs constitute, therefore, a
highly versatile remodeling machinery, and their mechanism of action has attracted a great
deal of research efforts over the past years.

Normally localized in the cytoplasm, ESCRT subunits are sequentially recruited by
site-specific adaptor proteins to different membranes. For instance, ESCRT-0 is essential for
consecutive recruitment of other ESCRT components to the endosomal membrane in multi-
vesicular body biogenesis [27,28]; CEP55, SEPT9, and additional pathways recruit ESCRT-I
to intercellular bridges to facilitate cytokinetic abscission [4,29–31]; and viral Gag pro-
teins recruit ESCRT-I in retroviral egression from the plasma membrane [32,33]. Recruited
early-acting ESCRT factors initiate membrane bending and nucleate the assembly of the
downstream ESCRT-III components. ESCRT-III forms a membrane-interacting oligomeric
filament that is thought to mediate the membrane remodeling event, eventually resulting
in scission [1,34]. Not all ESCRT-mediated biological processes require all complexes, but
ESCRT-III and VPS4 appear to be universally required.

2.1. ESCRT-III Structure and Assembly

There are eight ESCRT-III proteins in yeast, and twelve in humans, named charged
multivesicular body proteins (CHMPs) (Table 1). CHMP4/Snf7, CHMP3/Vps24, and
CHMP2/Vps2, together with VPS4/Vps4, were shown to be indispensable components of
the filaments that mediate membrane remodeling [35–38]. CHMP7 performs specialized
functions in nuclear envelope reformation and repair [39], whereas CHMP5 remains poorly
characterized. Structural work revealed that all CHMP proteins share a core structure
that is thought to adopt two different conformations, known as open or closed [40]. In
their closed state, they form a four-helix bundle, with α1 and α2 helices forming a long
hairpin, the shorter helices α3 and α4 packed against the hairpin, and helix 5 folding
back and packing against the closed end of the helical hairpin, as shown by the crystal
structures of CHMP3 [41,42] and IST1 [43,44]. In their open state, helices α2 and α3 merge,
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disrupting the interaction between helix α4 and the hairpin, as shown for CHMP1B [43,44]
and truncated forms of CHMP4 [45,46]. An intermediate, semi-open conformation, has
also been described for yeast Vps24 [47]. Importantly, ESCRT-III proteins in all three
conformations seem to be able to assemble into filaments [40,43,44,47]. However, these
filaments might show different abilities in membrane binding and flexibility [40]. Whereas
the closed conformation does not display membrane binding interfaces [41,48,49] and is
thought to result in more rigid filaments, the more extended open conformation displays
extended membrane-binding interfaces, appears to be in the polymerization-competent
state [12,41,50], and forms highly flexible filaments [46,51], which would potentially allow
the binding to membranes of a wide range of curvatures.

In general, ESCRT-III polymers are curved and flexible, and most possess a membrane-
binding interface [40]. They often form copolymers with other ESCRT-III subunits and
can take a variety of shapes on membranes in vitro and in vivo, including rings, spirals,
helices, and cones [14,44,52,53]. These morphologies have been well characterized in recent
years through structural biology approaches, cryo-electron microscopy, and atomic-force
microscopy [43,45,46]. Interestingly, recent data have shown that the ESCRT-I complex
can also form helical filaments [54], suggesting that early -acting ESCRT factors might
not merely be bridging adaptors, but can also be involved in membrane deformation and
ESCRT polymerization.

2.2. The Role of VPS4

ESCRT-III-mediated processes crucially rely on the activity of the AAA ATPase VPS4,
the only known ATP-consuming factor in the membrane-scission reaction mediated by ES-
CRT [36]. VPS4 is recruited to membranes in order to translocate and unfold ESCRT-III com-
ponents [55]; this process is mediated through the binding of microtubule interacting and
trafficking (MIT) domains to MIT-interacting motifs (MIMs) in ESCRT-III proteins [56,57].
VPS4 function is essential to recycle ESCRT-III filaments and ensure high cytosolic levels
of ESCRT-III monomers. Importantly, it also allows the remodeling of the ESCRT-III fila-
ment during pre-scission stages ([58,59] and Section 2.3 below) and increasing evidence
suggests that VPS4 can additionally play a more active and mechanical role in membrane
constriction and scission [14,34,60].

2.3. Mechanism of ESCRT-III Membrane Remodeling

In the last few years, a great deal of research work has been performed in order to un-
derstand how membrane constriction and scission is mediated by the ESCRT-III machinery
(reviewed in [40,61,62]). Important advances in the field were achieved by using in vitro
reconstitution studies using purified ESCRT subunits [44,47,59,63–65]. These allowed inves-
tigation of the structures, molecular properties, and interplay of various ESCRT-III filaments.
Models for ESCRT-III-mediated membrane scission have been divided into three main
categories [1,62]: in the classic ‘dome’ models ESCRT-III polymerizes forming a spiraling
membrane-bound filament with consecutively narrower rings, and opposing membranes
are brought together by fusion on top of a constricted cone or dome, with the narrow end
of the cone either pointing towards the vesicle or towards the cytoplasm [66,67]; in the
‘buckling/unbuckling’ models mechanical forces provided by tension-driven transitions
between planar and helical ESCRT-III filament configurations allow tubule extrusion [52]
or vesicle release [34]; finally, in the ‘protomer conversion’ models, filament constriction oc-
curs in response to Vps4-mediated subunit turnover [53] or incorporation into the filament
of additional ESCRT-III subunits with different properties [44]; this can change filament’s
curvature and rigidity, leading to a rapid structural change and subsequent membrane
neck constriction. The proposed models are not mutually exclusive and, in fact, recent
studies have culminated in a unifying model that combines all these mechanisms to explain
constriction and scission of membrane necks by ESCRTs [59].

Pfitzner et al. reconstituted ESCRT-III-Vps4 assembly on supported bilayers, lipo-
somes, and within membrane tubules, and analyzed ESCRT-III subunit binding and release,
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membrane deformation, changes in ESCRT-III filament orientation, and ESCRT-induced
membrane fission [59]. As a result, they proposed a mechanism of stepwise changes in
ESCRT-III filament structure and mechanical properties via exchange of the filament sub-
units to catalyze ESCRT-III activity (Figure 1). In this model, the upstream ESCRT machinery
nucleates Snf7, which polymerizes forming a single-stranded filament. This filament is
thought to form first because it binds well to flat membranes and can be nucleated by
early-acting ESCRT complexes in vivo [54,59,63]. The Snf7 filament then recruits a second
filament containing the Vps2-Vps24 pair, which together recruit a third filament comprising
Vps2 and Did2; Vps2-Did2 in turn recruits and is finally replaced by the Did2-Ist1 pair.
The different biophysical properties of each ESCRT-III subunit results in heteropolymers
that differ in their assembly, disassembly, recruiting, and membrane deformation prop-
erties. Vps2-Vps4 filaments have higher affinity for Snf7 filaments, whereas Vps2-Did2
filaments bind best when Snf7 and Vps2–Vps24 filaments are already present, explaining
the recruitment order. Conversely, Vps2–Did2 filaments recruit Vps4 depolymerization
activity better, which favors ESCRT-III disassembly. As mentioned above, Vps4 binds most
ESCRT-III subunits and mediates their extraction and exchange, which is necessary for
successful narrowing of the neck [36,60]. Moreover, Vps4 disassembles ESCRT-III filaments
with different efficiencies, in the order Vps2-Vps24 > Snf7 > Vps2-Did2 > Did2-Ist1. This
results in a unidirectional reaction pathway (Figure 1). Interestingly, the different filaments
also show distinct membrane deformation activities. The exchange of Vps24 for Did2 bends
the polymer-membrane interface, triggering the transition from flat spiral polymers to
helical filaments and driving the formation of membrane protrusions. This ends with the
formation of a tight Did2-Ist1 helix that constricts the tubule and is shown to be able to
promote fission when bound on the inside of membrane necks. Vps4 activity is required
not only for constriction but also to complete scission, probably playing a role in fission
beyond the establishment of the Did2/Ist1 polymer.
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Figure 1. Model for membrane constriction and fission driven by ESCRT-III filament assembly and
disassembly. The figure illustrates the sequential recruitment of ESCRT-III components, polymeriza-
tion, and replacement of different filament subunits driven by Vps4, resulting in constriction and
final scission of the membrane (adapted from [59]).

With this model Pfitzner et al. established the common principles of a general mech-
anism by which ESCRT-III remodels membranes: a sequence of subunit exchanges that
switches the architecture and mechanical properties of ESCRT-III filaments. The ESCRT
field seems now to be converging on this consensus mechanistic model. Additional recent
work has provided for the first time direct evidence of spontaneous Snf7 spiral buckling
using HS-AFM approaches [68]. However, further investigations will be necessary to
answer some of the key questions that still remain open. For instance, cryo-EM of scission-
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capable complexes in the reverse topology process is needed to fully understand the ESCRT
mechanism. It is also essential to clarify how the same complex (Did-Ist1) can induce fission
in different orientations, assembling around or inside membrane necks [24,43]. Studies
using high spatial resolution to address the directionality of filament growth will also be of
interest. It is also worth considering that, like in dynamin-mediated membrane fission [69],
additional external forces, including cargo crowding, might also be required to finalize the
progression from highly constricted membrane structures towards fission.

3. ESCRTs in Membrane Sealing

In addition to its classic role in membrane remodeling and budding vesicles away
from the cytoplasm, ESCRTs are also now understood to carry out additional important
functions in membrane sealing and integrity maintenance.

The plasma membrane, which separates the cell from its surroundings, and the en-
domembranes enclosing the various cellular organelles, ensure the compartmentalization
of eukaryotic cells. This is essential for their viability and functions. It is thus crucial
for these membranes to remain intact so only gated transport of molecules and ions can
occur through them. Therefore, mechanisms that mediate sealing of membrane holes are
necessary, both during organelle biogenesis and as a response to membrane damage. The
ESCRT machinery has been shown to play an essential role in sealing small membrane
holes during the biogenesis of two organelles, the nucleus and the autophagosome [70,71].

3.1. Sealing of the Reforming Nuclear Envelope

The nuclear envelope (NE) is a double-layered membrane that encloses the nuclear
genome and transcriptional machinery. In eukaryotic dividing cells, the NE completely
disassembles during mitosis, so the nuclear compartment needs to be re-established at the
end of each cell division [72]. During late anaphase, a new NE starts to reassemble around
each of the two separated chromosome clusters to form daughter nuclei. This reassembly re-
quires recruiting membranes from the endoplasmic reticulum, reconstituting nuclear pores,
and severing microtubule connections between chromosomes and the spindle organizing
centers [73]. At telophase, and in coordination with the removal of spindle microtubules,
the reformed NE must seal remaining small holes to reestablish proper separation of the
genome from the cytoplasm. Over the last few years, key studies have implicated the
ESCRT machinery in this process [6,7,39,74,75].

ESCRT-III and VPS4 were shown to be transiently recruited to gaps in the reforming
NE, where assembly of core subunits occurs in a canonical fashion, with CHMP4, CHMP3,
and CHMP2 proteins recruited sequentially [76]. In the absence of successful ESCRT
assembly, postmitotic nuclear envelopes have unsealed holes and are functionally ‘leaky’,
leading to DNA damage at the nuclear periphery [6,7]. ESCRT-III thus plays an essential
role in both generating and maintaining nucleocytoplasmic compartmentalization and
protecting the genome from cytoplasmic insults.

The specific adaptor that recruits ESCRT-III to the reforming nuclear envelope is
CHMP7 (Chm7 in yeast) [11], a hybrid ESCRT-II/ESCRT-III-like protein with an ER-
localizing and membrane-binding motif in its N-terminal domain [39]. CHMP7 is engaged
by the inner nuclear membrane protein LEM2 (ortholog of yeast Heh1/Heh2) and is es-
sential for recruiting downstream ESCRT-III components to this organelle to effect nuclear
membrane sealing [39,75,77] (Figure 2). Additionally, the ESCRT-III subunit IST1 is able
to recruit the microtubule-severing enzyme Spastin to depolymerize microtubules and
coordinate spindle disassembly with sealing of the NE [7] (Figure 2).
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LEM2 bridges the NE with the underlying chromatin through an N-terminal LAP-2-
emerin-MAN1 (LEM)-domain. LEM2 also contains a C-terminal winged helix domain that
is thought to be responsible for the interaction and activation of CHMP7. At the sites where
the membrane is intersected by microtubule bundles, LEM2 accumulates and undergoes
liquid-phase separation, thereby triggering CHMP7 activation and ESCRT-III assembly [78].
Interestingly, the LEM2-CHMP7 system has been proposed to play a role as a sensor of
local perturbations in the nuclear envelope barrier (see Section 4.2). ESCRT-III activity
and recruitment at the NE are probably regulated by additional factors, like the CHMP4-
binding protein CC2D1B, which prevents premature ESCRT-III and Spastin recruitment at
the reforming NE. CC2D1B is thus believed to ensure timely polymerization of ESCRT-III
at this organelle, necessary for proper NE regeneration [74].

ESCRT’s role in the sealing of the post-mitotic NE is evolutionarily conserved and
has also been reported in lower eukaryotes. A similar mechanism mediating the re-
establishment of nucleocytoplasmic compartmentalization during mitotic exit has been
described during semi-open mitosis in Schizosaccharomyces japonicus, where orthologues of
LEM2, CHMP7, CHMP4B, and VPS4 seem to play similar roles as those described in higher
eukaryotes [79].

3.2. Sealing of the Nascent Autophagosome

Autophagy is a critical cellular process by which cytosolic components, from macro-
molecules to cellular organelles, are degraded in a controlled manner inside lysosomes [80].
This is essential for maintaining cell homeostasis and ensuring cell survival, allowing the
removal of potentially harmful protein aggregates or damaged organelles. The best studied
form of autophagy is macroautophagy (referred to as “autophagy” from now on), which
delivers cytoplasmic material to lysosomes via a double-membrane organelle called the
autophagosome [81]. The process starts with a double-membrane structure termed the
phagophore that encloses bulk cytoplasm or specific cargo. The phagophore membrane,
which is thought to come from different sources like the endoplasmic reticulum or the
plasma membrane, eventually closes to form a complete autophagosome, resulting in
engulfment of the cargo [80]. Then, the autophagosome fuses with a lysosome and the
sequestered cargo is degraded by lysosomal hydrolases.

When the phagophore membrane has grown around cytoplasmic content and shaped,
it needs to be closed to form a complete autophagosome [82]. Recently, several elegant
imaging studies using advanced fluorescent probes have established a direct role for the
ESCRT machinery in phagophore closure, during both starvation-induced autophagy
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and mitophagy [8,83–85]. Targeting of ESCRT-I components (VPS37A and VPS28) to
the phagophore promotes the transient recruitment of ESCRT-III components, including
CHMP2A and CHMP4B, bringing the two membranes of the phagophore leading edge
in close proximity to allow membrane abscission. This is followed by VPS4-mediated
depolymerization of ESCRT-III [83]. How ESCRT-I is recruited to the phagophore still
remains to be fully understood, but studies in budding yeast mutants have suggested
the involvement of the small endosomal GTPase Rab5 and Atg17, a subunit of the Atg1
autophagic kinase complex, as upstream regulators [85–87]. The essential role of ESCRTs in
autophagosome sealing is evidenced by the fact that ESCRT depletion causes accumulation
of autophagosomes that are incapable of fusing with lysosomes [88–90]. This is probably
due to the failure of unsealed autophagosomes to recruit Syntaxin 17, a SNARE protein
required for autophagosome-lysosome fusion [91].

4. ESCRTs in Membrane Repair

Most cellular membranes are exposed to damage, and different repair mechanisms
are in place to promote cell survival by closing membrane holes or ruptures. Thanks to
recent key work, the ESCRT machinery is now understood to repair damage in the plasma
membrane, nuclear envelope, and throughout the endolysosomal network, carrying out
important functions in membrane integrity maintenance.

4.1. Repair of the Damaged Plasma Membrane

Plasma membrane lesions can occur frequently as a consequence of numerous phe-
nomena, including shear mechanical stress, pathogen assault, and chemicals. An efficient
and rapid repair of plasma membrane damage is essential for cell survival. Repair is
thought to be mediated by a variety of mechanisms, including patching by intracellular
membranes or removal of the damaged area by outward budding and endocytosis [92].
These mechanisms are activated by common early signaling events, like influx of Ca2+

through the damaged plasma membrane, whereas downstream repair events seem to be
dependent on the characteristics of the wounds.

Exocytosis of membrane-proxymal lysosomes and subsequent removal of wounded
membrane is known to be a major repair mechanism for large lesions (200–500 nm) [93].
Membrane remodeling by the ESCRT complex has been shown to participate in the repair of
small (<100 nm) but not large plasma membrane wounds [9,94]. Plasma membrane damage
induced by mechanical force, detergents, pore-forming toxins, or laser wounding causes a
rapid recruitment of ESCRT-III proteins to the site of damage, where they accumulate until
wound closure [9]. This recruitment is followed by ESCRT-positive membrane budding
and shedding, suggesting that ESCRTs may play a role in the detection and removal
of small plasma membrane domains containing the site of damage. Damage-induced
ESCRT recruitment is dependent on calcium and requires PDCD6, ALIX, and Annexin A7,
indicating that these proteins could function as Ca2+ sensors that trigger recruitment [94,95]
(Figure 3).
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Figure 3. Membrane repair processes mediated by ESCRT. Left panel: plasma membrane repair. Entry
of calcium through the damaged membrane triggers rapid ESCRT recruitment, mediated by PDCD6
and ALIX. ESCRTs are thought to promote membrane budding and shedding of small domains
containing the site of damage; middle panel: nuclear envelope (NE) repair. Upon NE rupture,
cytosolic BAF coats the exposed chromatin and interacts with LEM2, facilitating the recruitment of
nuclear membrane and the interaction with CHMP7. CHMP7 subsequently promotes the nucleation
and polymerization of ESCRT-III, which together with VPS4 constricts the rupture and promotes
sealing; right panel: lysosome repair. After damage, calcium efflux from the lysosome promotes
ESCRT-I and -III recruitment through PDCD6, ALIX, and probably other factors like GAL3 and
LRRK2, which phosphorylate the small GTPase Rab8A. It is thought that the membrane-remodeling
performed by ESCRT-III filament spirals acts to shed damaged membranes into the lumen of the
lysosome for recycling.

ESCRT-dependent membrane repair has been implicated in the resealing of endoge-
nous pore-mediated plasma membrane damage during necroptosis [96], pyroptosis [97],
and ferroptosis [98,99]. Moreover, recent work from the Mellman lab [100] has shown
that the ESCRT machinery is involved in the repair of pores formed by perforin, a toxin
released by cytotoxic T lymphocytes (CTLs) and natural killer cells to kill virus-infected
and tumor cells. Ritter et al. visualized how ESCRT is recruited to sites of CTL engagement
in cancer-derived cells immediately after perforin release. They also observed membrane
protrusions containing ESCRT proteins within the cytolytic synapse, consistent with the
previously proposed mechanism of membrane repair by vesicle shedding [9,94]. Inhibition
of ESCRT machinery in cancer cells enhanced their susceptibility to CTL-mediated killing.
Thus, repair of perforin pores by ESCRTs limits CTL-secreted granzyme entry into the
cytosol, and potentially enables cancer cells to resist cytolitic T cell attack [100].

ESCRT-mediated PM repair has also been reported during interaction with fungal
cells [101]. In response to candidalysin, a pore-forming peptide toxin secreted by Candida al-
bicans, epithelial cells activate Ca2+-dependent repair mechanisms and dispose of damaged
membrane regions by way of an Alg-2/Alix/ESCRT-III-dependent blebbing process.

It remains to be established if ESCRTs act in concert with other plasma repair mecha-
nisms, and to define the spatiotemporal relationship of membrane wounding with Ca2+-
regulated lysosomal exocytosis, up-regulation of endocytosis, and ESCRT recruitment.
This will help to clarify how each of these pathways contributes to lesion removal and
plasma membrane resealing, potentially revealing steps susceptible to therapeutic interven-
tion [102].

4.2. Repair of Nuclear Envelope Ruptures

The location of the plasma membrane clearly makes it vulnerable to disruption, but
internal membranes are also prone to damage. This is the case for the nuclear membrane,
which due to the rigidity and large size of the nucleus, is particularly sensitive to damage
when the cell moves through a confined space. In addition, reversible NE ruptures are
frequently detected in laminopathies [103,104] or in cancer cells [77,105]. Loss of NE
integrity is associated with the uncontrolled exchange of nucleo-cytoplasmic content,
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herniation of chromatin across the NE, and DNA damage, and may compromise cellular
function and viability [77,103–106].

It has been shown that ESCRT helps to seal NE ruptures caused by mechanical forces
imposed as cells migrate through constrictions [77,107] or other mechanical perturba-
tions [108,109]. ESCRTs counteract Nesprin-2G-mediated cytoskeletal mechanical forces
facilitating NE repair [110] and they also contribute to protecting the integrity of the mi-
cronuclei NE [111]. Whether the mechanisms mediating this ESCRT protective role are
similar to those mediating ESCRT function at the NE in a physiological context still remains
to be fully understood. However, important advances have been made in understanding
how disruptions in the NE barrier are sensed, and new key players have been identified
that help to seal the barrier [112].

Cells have the ability to monitor the integrity of the NE barrier and proper assembly
of the nuclear pore complexes (NPCs). This surveillance mechanism is mainly formed
by the ESCRT protein Chm7/CHMP7 and its inner nuclear membrane binding partner,
Heh1/LEM2 [112]. At steady-state, these proteins are physically separated on either side
of the NE, with CHMP7 localizing to the ER [113,114]. Any disruption in the nuclear-
cytoplasmic organization will induce the physical association of LEM2 and CHMP7, which
is thought to activate a repair mechanism to seal the NE. The details of how this happens
still need to be fully defined. As mentioned above, in vitro studies show that the LEM2
winged helix domain directly binds to CHMP7 [78], inducing conformational changes on
it and the formation of a CHMP7-LEM2 copolymer [78]. As in other ESCRT-mediated
membrane fusion processes, probably additional ESCRTs such as CHMP4 and CHMP2A,
alongside the ATPase Vps4, are also recruited to the NE (Figure 3). In support of this, Chm7
is known to directly bind Snf7/CHMP4 [5] and to be required for Snf7 and additional
downstream ESCRTs (including Vps4) to be recruited to the nuclear envelope [7,39,75,113].

Recent work shows that over-stimulation of the CHMP7/LEM2 surveillance system
may be deleterious to cell viability and directly contribute to DNA damage [111,113,115].
Thus, the CHMP7-LEM2 interaction must be tightly regulated, and mechanisms might exist
to prevent these two proteins from aberrantly interacting. CC2D1B is one of the proposed
regulators of CHMP7 function at the NE at the end of mitosis [74] (Figure 3). More recently,
the mitotic kinase CDK1 has been shown to phosphorylate CHMP7 upon mitotic entry,
rendering CHMP7 unable to interact with LEM2 [114]. This suggests a possible mechanism
that prevents CHMP7-LEM2 association when the nuclear envelope is disassembled in
prophase. Local CHMP7 dephosphorylation at the nascent nuclear envelope might license
the LEM2-CHMP7 interaction that triggers ESCRT-III recruitment to reseal the NE [114].
The Chm7-LEM2 interaction can also be regulated by Chm7´s binding to phosphatidic
acid-rich membranes [116] and Hub1-mediated alternative splicing of LEM2 [117].

The CHMP7/LEM2 system most probably mediates the sealing of small NE holes
(<100 nm). Several studies support this hypothesis, such as the observation of membrane
necks of ~50 nm diameter upon Chm7 hyperactivation [113], the formation of in vitro
CHMP7-LEM2 polymers of around that diameter [115], and the fact that ESCRTs are found
in ~30–50 nm holes at the reforming NE [6]. Regarding the repair of larger ruptures, recent
work has uncovered a key role for barrier-to-autointegration factor (BAF) in repairing
mechanically induced ruptures in mammalian cells [109]. Upon exposure of genomic
DNA to the cytosol, a non-phosphorylated cytoplasmic pool of BAF is recruited and binds
nuclear DNA to localize to sites of nuclear rupture rapidly and transiently. BAF is required
to repair the NE via subsequent recruitment of LEM-domain proteins at rupture sites
(Figure 3). CHMP7 is also recruited, but it is in fact dispensable for the efficient repair of
these mechanically induced ruptures [109]. Although the ESCRT-III complex may facilitate
the repair process, likely by sealing small holes in terminal steps, there must be other
yet-to-be-characterized mechanisms necessary to repair this kind of NE rupture.
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4.3. Repair of Damage in the Endolysosomal Membrane

Cells take in extracellular material through the endolysosomal network to generate
nutrients, clear debris, and sample their environment. Wounds in the membranes of the en-
dosomes, phagosomes, and lysosomes that comprise this network are caused by pathogens,
particulates, and other chemical or metabolic stresses [118]. Consequences for cell health
vary depending on the location and extent of the damage. Lysosomes are one the organelles
more exposed to membrane damage and extensive lysosomal membrane permeabilization
is known to trigger death after release of enzymes into the cytosol [119,120].

Severely damaged lysosomes are removed by a selective autophagy process termed
lysophagy [121–123]. This process, although crucial for maintaining cellular homeostasis, is
inherently slow and accompanied by leakage of cytotoxic material into the cytoplasm [118].
Several studies over the past five years support the hypothesis that limited damaged to
the lysosome membrane can be rapidly repaired by the ESCRT machinery to restore com-
partmental integrity [10,11,124,125]. L-leucyl-L-leucine methyl ester (LLOME) and glycyl-
L-phenylalanine 2-naphthylamide (GPN)—the compounds used to study lysophagy—
damage lysosomes within a minute after addition to cells. This triggers rapid recruitment
of ESCRT-I, ALIX, and most ESCRT-III proteins together with various partners, including
VPS4, to damaged organelles [10,11,126]. Damage by LLOME or GPN is reversible within
minutes after washout of the drug [10,127]. Depletion of TSG101 and ALIX slows or com-
pletely blocks this rapid recovery, implicating ESCRT function in lysosomal repair [10].
However, recent studies showed a sustained presence of ALIX and associated ESCRT
proteins on organelles damaged by prolonged exposure to LLOME [125]. This suggests that
ESCRTs may contribute not only to immediate but also to delayed responses to lysosomal
damage. Consistent with a role for the ESCRT pathway in endolysosomal membrane repair,
knocking down of ESCRT components leads to membrane damage and leakiness of the
endolysosomal compartment and has been reported to enhance prion-like propagation of
tau aggregation, a critical step in the progression of neurodegenerative diseases [124].

Similarly to damage to the plasma membrane, Ca2+ efflux from damaged lysosomes
and the Ca2+ sensor PDCD6 have been reported to trigger ESCRT recruitment to ruptured
lysosomes [10,125]. However, the mechanism of ESCRT-III recruitment seems to be more
complex than that to the damaged plasma membrane, and involves not only the Ca2+ and
sensor PDCD6-binding protein ALIX [10,11], but also additional factors [128] (Figure 3).
One of them is GAL3, which interacts with ALIX and is required for efficient recruitment of
ALIX and ESCRT-III to damaged lysosomes. It is thought that GAL3 could provide a later
and more sustained signal than Ca2+ efflux, and it has the additional function of promoting
lysophagy in the case of more severe lysosome damage [125]. An additional factor could be
the Parkinson´s-disease-related leucine-rich repeat kinase 2 (LRRK2), which upon lysosome
damage triggers the recruitment of the small GTPase Rab8A and subsequently the ESCRT-
III protein CHMP4B to damaged organelles in macrophages [129]. Interestingly, Ca2+ efflux
can also trigger additional ESCRT-independent lysosomal repair mechanisms mediated by
annexins A1 and A2 [130] and sphingomyelin scrambling and turnover [131].

Once at the site of damage, it is still unknown how ESCRTs function to repair wounds
in the lysosome membrane. Given the known topology of other ESCRT-regulated processes,
it is possible that the membrane-remodeling performed by ESCRT-III filament spirals acts
to shed damaged membranes into the lumen of the lysosome for recycling (Figure 3).
Alternatively, it is believed that injuries in membranes can spontaneously reseal if the
wound is small enough [132,133], so ESCRT-III spirals could also act to prevent nanoscale
damage from expanding, allowing the membrane to spontaneously reseal. Further research
in both model systems and live cells will be crucial to learn more about the specific damage
signals that trigger ESCRT recruitment to damaged endolysosomal membranes and fully
elucidate the mechanistic role of ESCRT in membrane repair.

Recent work suggests that ESCRT can play a role not only in restoring lysosomal
integrity after damage, but also in the physiological regulation of lysosomal morphology,
mediating the degradation of lysosomal membrane proteins [134,135].
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5. Perspectives

Since their discovery, investigation into ESCRT proteins has been a very active and
continuously expanding field of research. The ESCRT machinery is now appreciated as
a highly versatile membrane remodeling complex that is used by the cell in a number of
essential processes to effect a topologically unique membrane scission. However, for many
ESCRT-dependent processes we still do not have a complete picture of how ESCRTs are
recruited or how they cut membranes. In recent years, extensive efforts have been made to
elucidate the structure and behavior of ESCRT filament assemblies and understand exactly
how ESCRT proteins catalyze membrane separation. Although important questions remain
open, key advances have been made and the field seems finally to be converging into a
unifying molecular mechanism to explain this membrane remodeling activity.

In recent years, an additional role of ESCRTs in controlling membrane integrity has
emerged. The molecular mechanisms mediating ESCRT sealing and repair of damaged
membranes need to be fully defined. A better understanding of this process, which is key
for cell viability and even exploited by certain pathogens, will be relevant to potential
manipulations of membrane sealing for therapeutic applications.
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