
Abstract
Drug repurposing is the idea of using an already approved drug

for another disease or disorder away from its initial use. This new
approach ensures the reduction in high cost required for develop-
ing a new drug in addition to the time consumed, especially in the
tumor disorders that show an unceasing rising rate with an unmet
success rate of new anticancer drugs. In our review, we will
review the anti-cancer effect of some CNS drugs, including both
therapeutic and preventive, by searching the literature for preclin-
ical or clinical evidence for anticancer potential of central nervous
system drugs over the last 8 years period (2010-2018) and includ-
ing only evidence from Q1 journals as indicated by Scimago web-
site (www.scimagojr.com). We concluded that Some Central
Nervous system drugs show a great potential as anti-cancer in
vitro, in vivo and clinical trials through different mechanisms and
pathways in different types of cancer that reveal a promising evi-
dence for the repurposing of CNS drugs for new indications.

Introduction
World Health Organization (WHO) reported that an estimated

number of 10 million people will die of cancer in 2018, with the
availability of treatment services for more than 90% of high-
income countries compared to less than 30% of low-income
countries.1 To keep pace with this rapidly increasing rate, the
development of combating strategies against cancer is of an
utmost importance. The discovery of a new drug against cancer is
a tedious process in terms of cost and duration, with a low

probability to enter Phase I clinical trials.2 Moreover, most of the
new chemotherapeutics have a negative impact on the quality of
life due to their toxicity issues.3

Drug repurposing (also called Drug repositioning) is the idea
of using a previously approved FDA (Food and Drug
Administration) drug in a different disorder or disease away from
its initial use. These repurposed drugs have been extensively
studied for their efficacy, toxicity, and safety. This consequently
leads to saving time and money and accelerate their entry to
experimental clinical trials.4 Thalidomide is a clear example that
has been initially used for the treatment of motion sickness and
then was withdrawn for its teratogenic effect.5 Following further
experimental studies, Thalidomide has been repositioned and
approved by the FDA for the treatment of leprosy and multiple
myeloma.5 This emphasizes the importance and practicality of
applying the idea of drug repurposing. The Repurposing Drugs in
Oncology (ReDO) project is one of the schemes that has been
initiated in 2014 to highlight promising drug candidates with good
toxicity profile and experimental evidence, to be subjected to
clinical trials to validate their off-label usage.4 The project has
provided a list of candidate drugs, including Losartan,
Omeprazole, Statins, Nitroglycerin, Chloroquine/
Hydroxychloroquine, Propranolol, Mebendazole, Cimetidine,
Clarithromycin, Diclofenac, Itraconazole, in addition to other
drugs that have already been introduced into clinical trials, as
Ketorolac and Fluvabrex.4,6-14 To catch up with the growing inter-
ests and efforts in drug repositioning, the Drug Repurposing Hub
has emerged as a platform that integrates close collaboration
between the Broad Institute Cancer Program, Center for the
Development of Therapeutics, and the Connectivity Map group
(https://clue.io/repurposing). The hub collected detailed data for
more than 8000 compounds, and their relevant mechanism of
action, protein targets, and approved indications.

In the current review article, we are focusing on Central
Nervous system (CNS) drugs repurposing for cancer. Studies
emphasizing the emerging role of CNS therapies for usage against
cancer is a verdict for our decision.15-19 This review provides a
foundation upon which further research can be implemented on
the use of CNS drugs in cancer.

The History of CNS drugs
CNS drugs mainly include Antipsychotic drugs (e.g.,

Chlorpromazine, Phenothiazine), Antidepressants (e.g., Tricyclic
antidepressant, Selective Serotonin Reuptake Inhibitor), and
Anticonvulsant (e.g., Potassium bromide, Valproate). We will
focus on the next paragraphs on the history of the main CNS
classes and their original usage (Figure 1).
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Antipsychotics and antidepressants
Usage of antidepressants started in the late 1930s after many

failed attempts to develop an effective treatment for depression. In
the 1950s, structure-activity relationship studies on antihistamines
emphasized their potential efficacy as anti-depressants, and lead to
the discovery of nearly all antidepressant and antipsychotics.17-19

In 1952, Chlorpromazine’s antipsychotic properties were
discovered and marked a new era for the treatment of psychiatric
disorders. Chlorpromazine was the spike from which other
antidepressants developed.20 There are six main classes of
antidepressants including Tricyclic Antidepressants (TCA),
Monoamine Oxidase Inhibitors (MAOI), Selective Serotonin
Reuptake Inhibitors (SSRI), Serotonin and Norepinephrine
Reuptake Inhibitors (SNRI), Norepinephrine and Dopamine
Reuptake Inhibitors (NDRI), and atypical antidepressants.
Imipramine, a TCA, was the first reported drug for the treatment of
depression in 1957.21 It is also used in Attention Deficit
Hyperactive Disorder (ADHD) in children, by inhibiting
Norepinephrine and Serotonin reuptake.22

Anticonvulsants and anti-epileptics
The history of anticonvulsants goes back to 1857 when

Edward Sieveking discovered the potential of using Potassium
Bromide in treating Catamenial epilepsy.23 On the other hand, the
antiepileptic efficacy of Barbiturates was discovered accidentally
in 1912 by Albert Hauptmann, who observed its effect on reducing
the frequency of seizures in epileptic patients.24 The discovery of
the anticonvulsant properties of Phenytoin in 1938 was a great leap
forward in the treatment of epilepsy due to the fact that Phenytoin
has shown efficacy in patients who did not respond to barbiturates
and bromides. Moreover, usage of Phenytoin was not associated
with the common sedative side effect of the other agents.25,26 In
1953, Carbamazepine, which was developed concurrently with the
anti-depressant drug Imipramine, represented a new advance in the
development of anticonvulsants.27 Lastly, Valproate, which is
prescribed nearly for all types of seizures nowadays, was first
synthesized in 1881, but its anticonvulsant properties were
identified in 1962 by Pierre Emyard.28

List of drugs with potential repurposing capabilities
In the current part, we will introduce a list of drugs that are being

used for CNS disorders, and showing a pre-clinical and clinical
evidence for use in different types of cancer, as documented by research
publications over the last 8 years (i.e., 2010-2018). To maximize the
reliability of those proposed drugs, we included only data extracted from
Q1 journals as indicated by Scimago (www.scimagojr.com). The list of
potential drugs includes Imipramine, Phenothiazines, Trifluoperazine,
Pimozide, and Valproate.

Imipramine 
Has shown efficacy against cancer as shown in several studies.

Glioma
A study was conducted both in vitro and in vivo to show the

efficacy of Imipramine on glioma. The drug inhibited NADPH
oxidase-mediated ROS in vitro. In vivo, a combination of
Imipramine and Doxorubicin showed enhanced anti-invasive
effect.29 Whereas a combination of Imipramine and Ticlopidine
exhibited a suppressing effect on the ATG7, a member of the
autophagy survival signaling, resulting in cell death.30

Breast Cancer
Another reported use for Imipramine is in breast cancer where

it demonstrated demonstrated an inhibitory effect on the proto-
oncogene FoxM1 and its associated DNA repair signals.31

Head and Neck squamous cell carcinoma (HNSCC)
The mechanism of HNSCC invasion depends on epithelial-

mesenchymal transition (EMT) induction with Twist1 to initiate a
sequenced cascade that ends up with the induction of
mesenchymal-mode movement, which plays a great role in local
invasion of HNSCC. Imipramine showed potential to inhibit the
invasion through suppressing Twist1- and NF-κB-mediated
pathways.32

Burkett’s lymphoma
Imipramine decreased cancer cells viability in Burkett’s

lymphoma without affecting disseminated cells or angiogenesis
both in vivo and in vitro.33
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Figure 1. The History of CNS drugs.



Acute/chronic myeloid leukemia
The efficacy of Imipramine against acute myeloid leukemia

cells is demonstrated through its pro-apoptotic ability by the re-
activation of the tumor suppressor protein phosphatase 2A (PP2A)
and blocking the NF-κB pathway.34 The same mechanism of action
was demonstrated when combined with the tyrosine kinase
inhibitor, Nilotinib, in chronic myeloid leukemia. Imipramine
decreased the levels of ROS which in combination with Nilotinib
caused a decrease in cancer cells’ viability and proliferation.35

Phenothiazines 
Are conventional antipsychotic drug family that work mainly

as D2 antagonists. Several studies revealed its possible use in
cancer.

Breast cancer
Phenothiazines caused a drastic elevation in the level of the

pro-apoptotic Bax, and decreased the level of the pro-survival
Bcl2, thus inducing apoptosis.36

Small cell lung carcinoma (SCLC)
Phenothiazines reduced cancer cell viability, and induced

apoptosis via lysosomal dysfunction.37

Oral cancer
Phenothiazine elicited its effect on caspase-3, caspase-9 and

procaspase-8 activity in oral cancer. Moreover, it inhibited Akt and
mTOR phosphorylation leading to cancer cell apoptosis and
elevated levels of ROS and associated DNA damage (38).38

Trifluoperazine (TFP) 
Is an FDA-approved phenothiazine. Its mechanism of action,

similarly, involves D2 receptor antagonism. It is mainly used for
the treatment of Schizophrenia and other psychotic disorders.39

TFP was repurposed in many studies for cancer.

Glioblastoma
TFP was proved to inhibit the growth of cancer cells in

glioblastoma by releasing a massive irreversible amount of Ca+2
from IP3R channels through its binding to calmodulin subtype 2
(CaM2). Additionally, it showed an anti-proliferative effect both in
vitro and in vivo xenograft models.40 Conversely, a recent study
has highlighted the effect of low-dose TFP on the attenuation of
cellular apoptosis and enhancement of proliferation in glioma
cells.41

Lung cancer
The ability of TFP to suppress Wnt/β-catenin signaling in

gefitinib-resistant lung cancer led to overcome the cancer
resistance to gefitinib.42

Metastasis
The anti-cancer effect of TFP extended to cancer metastatic

cells where the migration of these cells was inhibited by impeding
the angiogenesis via decreasing VEGF. This anti-angiogenic
activity was due to the suppression of AKT phosphorylation and β-
catenin pathway.43

Pimozide 
Is another old D2 blocking agent used for Tourette’s

Disorder.44 Reviews from 2002 found a synergistic effect for both
Pimozide and Mibefradil on T-type Ca+2 channels inhibition in
which proliferation is reduced in breast cancer. They also
suggested other mechanisms by which Pimozide can fight cancer

cells including the apoptotic effects in cancer cells and the
decreased expression of Bcl-2.45

Breast cancer
In 2018, new studies demonstrated the effect of Pimozide on

breast cancer cells through the reduction of the level of STAT5
phosphorylation.46

Hepatocellular carcinoma (HCC)
In HCC, Pimozide reduced cancer cell proliferation by cell

cycle arrest at the G0/G1 phase and decreased STAT3 levels which
lead to decreasing cancer cells maintenance.47

Acute/chronic myeloid leukemia
Pimozide was combined with Sunitinib, a tyrosine kinase

inhibitor, in acute myeloid leukemia leading to enhanced efficacy
via the inhibition of STAT5 phosphorylation and in vivo apoptosis
induction.48 Likewise, in chronic myeloid leukemia, Pimozide
showed the same effect when combined with tyrosine kinase
inhibitors. 

Valproate (Valproic acid) 
Is an anti-epileptic drug acting by blocking Na+ channels,

GABA transaminase, and Ca+2 channels. It is widely used in
different kinds of epilepsy, migraine seizures and acute manic
episodes.49 Many studies were introduced for the beneficial role of
Valproate in fighting cancer.

Lymphoma
A study elicited the depletion of Ca+2 into mitochondria in

lymphoma via cellular inositol 1,4,5 trisphosphate (IP3) reduction and
PRKAA1/2-mTOR cascade activation. This results in cancer cell
retardation.50 The safety, effectiveness, and good overall response rate
of the Valproate and Hydralazine combination in cutaneous T-cell
lymphoma has been evaluated in phase II clinical trial.52

Prostate cancer
Valproate limited prostatic tumor growth through enhancing

androgen sensitivity and elevating cellular prostatic acid
phosphatase via its histone acetylation action, hence
dephosphorylating ErbB-2.52 Furthermore, studies showed that
Valproate causes the re-expression of cyclin D2, a crucial cell
cycle-regulatory gene, that is frequently absent in prostate
cancer.53 Studies involving Valproate combined with Metformin
demonstrated the synergistic anti-cancer effect, with no effect on
the prostatic normal epithelium. This effective action can be due to
p53 signaling pathway which surges cancer cell apoptosis.54

Head and neck squamous cell carcinoma
Valproate has been also tested in HNSCC where it proved to

up-regulate p21, thus affecting cancer cell viability, differentiation
markers and proliferation cessation.55 Caponigro F. et al.
developed phase II clinical trials on the use of Valproate in the
recurrent and metastatic forms of the HNSCC. Its efficacy was
enhanced when combined with both Cisplatin and Cetuximab.56 A
recent clinical trial is studying the chemo-preventive effect of
using Valproate in HNSCC, however, the results are not dispatched
yet.57

Glioblastoma
Another controversial evidence showed Valproate-induced

autophagy through the ERK1/2 pathway leading to the death of
glioma cells. Autophagy was also enhanced when Valproate was
combined with Rapamycin or Temozolomide both in vivo and in
vitro.58 Additionally, cell cycle arrest at G2/M, ROS production,
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down-regulation of paraoxonase 2, cyclin B1, cdc2 with Bcl-xL
and up-regulating p27, p21 with Bim were also elicited as anti-
cancer effects of Valproate in glioblastoma.59 Valproate is currently
being tested in a phase IV trial against glioma.60

Acute myeloid leukemia (AML)
It was found that patients suffering from AML, specially

AML1/ETO-positive patients, would greatly benefit from the
apoptotic induction in cancer cells using Valproate.61 A new
synergetic combination of both Valproate and Ellipticine, a
topoisomerase II inhibitor, exhibited an apoptotic activity in vitro,
due to improving histones H3 and H4 acetylation caused by this
combination.62 A phase I trial is studying the side effects and the
best dose of Decitabine and Valproate in treating patients with
refractory or relapsed AML or previously treated chronic
lymphocytic leukemia or small lymphocytic leukemia. Decitabine
works against cancer cells by stopping its division, whereas
Valproate may stop the growth of cancer cells by hampering
enzymes essential for cellular growth. Combining Decitabine with
Valproate may kill more cancer cells.63 It is reported that treatment
of AML with continuous Valproate and low-dose Cytarabine plus
intermittent Tretinoin, a well-known anticancer drug also known as
all-trans retinoic acid, has a complete hematological remission
with low-frequency side effects.64

Chronic lymphocytic leukemia
A phase I trial shows the role of Valproate in increasing the

cluster of differentiation antigen 20 (CD20) expression., The basis
in this study is that an increase of CD20 would render treatment
with monoclonal antibodies (e.g. Rituximab) in patients with
chronic lymphocytic leukemia more effective.65

Neuroendocrine carcinoma
Valproate increased Notch signaling pathway signaling, known

for its tumor suppression effect on the neuroendocrine tumors
(NETs). This indicates the possibility for an anti-cancer effect in
such carcinoma.66

Bladder cancer and Hepatocellular carcinoma (HCC)
Valproate has also exhibited its anti-cancer effects on bladder

cancer and HCC. In the case of bladder cancer, it was combined
with Melatonin, which showed a synergetic effect through
activating apoptotic, necrotic and autophagy genes. The
combination increased E-cadherin, a tumor suppressor gene, and
suppressed N-cadherin, which potentiate cancer formation.
Moreover, it initiated Wnt and Raf/MEK/ERK pathway.67 In the
event of HCC, the activation of caspase-3, ROS, and autophagy
were introduced by Valproate/Doxorubicin combination.68

Breast cancer
A study has shown that Valproate can increase thymidine

phosphorylase levels in breast cancer cells leading to synergizing
the effect of Capecitabine through the histone deacetylase
HDAC3.69 A phase I trials is carried out to confirm if the
hypothesis of giving Valproate before surgery for newly diagnosed
breast cancer will increase breast tumor histone acetylation,
leading to the inhibition of tumor growth.70

Pancreatic and cervical cancers
Pancreatic cancer and colon cancer responded to the histone

deacetylase inhibitory effect of Valproate by decreasing the
Amyloid Precursor Protein (APP). Lowering the levels of APP was
associated with activating the endoplasmic reticulum chaperone,
GRP78 in cancer cells.71 Another mechanism of Valproate in
pancreatic cancer and cervical cancer as an anti-cancer drug is

DNA damage and apoptosis through ROS production. This effect
was demonstrated in vivo when Parvovirus H-1PV synergistically
added to Valproate.72

Conclusions
Drug repurposing is a promising path for fighting cancer in the

existence of many challenges against the development of new anti-
cancer drugs. CNS drugs showed a great potential for killing
cancer cells in vitro, in vivo and as shown by few clinical trials.
Imipramine, Phenothiazines, Trifluoperazine, Pimozide, and
Valproate were proven as having an anti-cancer effect via several
mechanisms of action and pathways in different types of cancer.
Valproate, in particular, has a growing evidence as a potential
therapeutic option against many types of cancer.
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