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Abstract 

Background: In heart data mining and machine learning, dimension reduction is needed to remove multicollinear‑
ity. Meanwhile, it has been proven to improve the interpretation of the parameter model. In addition, dimension 
reduction can also increase the time of computing in high dimensional data.

Methods: In this paper, we perform high dimensional ordination towards event counts in intensive care hospital for 
Emergency Department (ED 1), First Intensive Care Unit (ICU1), Second Intensive Care Unit (ICU2), Respiratory Care 
Intensive Care Unit (RICU), Surgical Intensive Care Unit (SICU), Subacute Respiratory Care Unit (RCC), Trauma and Neu‑
rosurgery Intensive Care Unit (TNCU), Neonatal Intensive Care Unit (NICU) which use the Generalized Linear Latent 
Variable Models (GLLVM’s).

Results: During the analysis, we measure the performance and calculate the time computing of GLLVM by employ‑
ing variational approximation and Laplace approximation, and compare the different distributions, including Nega‑
tive Binomial, Poisson, Gaussian, ZIP, and Tweedie, respectively. GLLVMs (Generalized Linear Latent Variable Models), 
an extended version of GLMs (Generalized Linear Models) with latent variables, have fast computing time. The major 
challenge in latent variable modelling is that the function f (Θ) =

∫
f (uΘ)h(u)du is not trivial to solve since the mar‑

ginal likelihood involves integration over the latent variable u.

Conclusions: In a nutshell, GLLVMs lead as the best performance reaching the variance of 98% comparing other 
methods. We get the best model negative binomial and Variational approximation, which provides the best accuracy 
by accuracy value of AIC, AICc, and BIC. In a nutshell, our best model is GLLVM‑VA Negative Binomial with AIC 7144.07 
and GLLVM‑LA Negative Binomial with AIC 6955.922.
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Background
Big data is collecting massive data and is more complex, 
especially from new data sources [1]. The data set is large 
enough, so that software for traditional data processors is 
not good enough to manage it. Still, this massive amount 
of data can be used to overcome a variety of business 
problems that previously could not be solved for the 

decision-making [2]. The most straightforward and obvi-
ous explanation is that Big Data collects and uses various 
sources to provide important information. Big Data is 
also a concept of collecting, analysing, and understand-
ing many data on a comprehensive range of activities. Big 
Data is profitable for the hospital service system. One of 
the classic problems is that there are excessively many 
staff or too few staff, so the hospital will risk incurring 
additional costs than they should. Not mainly that, hospi-
tals that lose staff will also expose the quality and perfor-
mance of the performed services.
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If a few teams handle many patients, this will directly 
impact the services. These patients will be of poor qual-
ity and unsatisfactory. The primary key to implementing 
hospital orientation is the patient. Then, patient satisfac-
tion is the success of a hospital in managing health care 
services. Customer satisfaction is an abstract thing, and 
the results are very varied.

However, perceptions depend on each person and tend 
to be different. The availability of medical personnel with 
high knowledge and skills is essential for patients choos-
ing a health service to help them recover from the dis-
ease. The core business of the hospital is to provide health 
services. A good hospital can offer professional medical 
personnel and provide the best facilities and an excellent 
patient-care system [3]. At the same time, monitoring 
patient clinical status is essential, particularly in inten-
sive care units (ICUs) [4]. During that time, the teleporter 
plays the role of “facilitator” and “supporter”. It is one of 
the medical team’s valuable members and the connection 
window between the unit and the department.

The transmission staff is responsible for assisting the 
patient’s medical treatment or acting as a helper for the 
family to care for the patient. It must have sufficient resil-
ience to respond to the emergency that may occur, and 
the transmission process must strictly follow the actual 
transfer and relevant safety rules. The mastery, accuracy, 
and completeness of the delivery service time relate to 
the smooth connection of medical services, so it must 
have a certain degree of job sensitivity and excellent com-
munication skills. Furthermore, with patients’ increasing 
needs and desires in obtaining the best services, it is nec-
essary to do the proper planning, especially in the inten-
sive care centre room.

The most crucial point is to place appropriate medical 
personnel in the intensive care centre. If the placement 
of medical staff is proper, hospital services will be better, 
and patients will be treated faster. Then another thing is 
to provide training to improve the work of medical per-
sonnel. If the human resources are of high quality and in 
line with company expectations, the company has high 
competitiveness. Therefore, the products and services 
produced high quality.

Intensive care units (ICUs) of university hospitals and 
advanced medical centres are indispensable for providing 
critical and intensive care for patients who have under-
gone major surgery or have received emergency care. 
Hospitals can obtain higher revenue from national insur-
ance by a short admission in the ICU than by access to 
other hospital departments. Intensive care units are the 
foremost part and are very important in the hospital. 
Intensive care units act as the main entry gate for emer-
gency patients and patients with mild conditions. Good 

or bad service in the intensive care unit will give an over-
all impression of hospital services. Analysing the number 
of events in the ICU is also essential to study. The cost 
estimation and a profit and loss analysis are necessary for 
the health care field [5].

A significant part of this work is to decide whether ICU 
care procedures can improve results for those identified 
as frailty. The instances of processes that may differ in the 
little incorporate wholesome help and sedation rehearse 
the force of assembly/restoration. In other words, an 
analysis of the number of medical personnel needs is 
essential in the ICU room; a first aid kit is needed quickly 
and temporarily to give a person suffering from an injury 
or sudden illness. First aid’s fundamental objective is to 
provide care and health services that benefit these people 
in preparation for further treatments.

An emergency is a condition related to a disease or 
other life-threatening illnesses. In contrast, a crisis is a 
sudden and unforeseen condition with an immediate 
or urgent need [6]. The emergency room’s operational 
nature must be fast, precise, and not limited by the time 
[7]. At the same time, we need to be concerned that 
the ideal performance of the emergency room is highly 
dependent on human resources and proper work proce-
dures. Moreover, the supporting examination facilities 
can support the diagnostic process. The adequate drug 
support and medical consumables clear patients in and 
out, ready the operating room, and ambulance transport 
support that focuses on patient safety.

Big Data Analysis offers an excellent opportunity to 
improve strategic unit management and handle con-
crete clinical cases [8–10]. Moreover, different biomedi-
cal and medicinal services devices produce a primary 
information field measure [11]. We must think about 
and evaluate what can be accomplished by utilising this 
information field [12]. The problem is hard to select 
large-dimensional data; many attributes and causing 
some algorithms to be complex to get good performance. 
Therefore, the solution offered is to do feature selection 
or dimension reduction by using PCA [13–15], K-means 
[2], CCA [16], Factor analysis [17–19], eXtreme Gradient 
Boosting (XGBoost) [20–22] Bayesian [23–25].

Nowadays, there is challenging to measure statistical 
parameters in vast data sets, and most traditional sta-
tistical methods cannot handle high dimensional data 
and large numbers of parameters [24, 26–29]. This situ-
ation additionally typically mirrored the contemporary 
impediments of computing. In short, this research will 
get an ordinance of intensive care hospital rooms so that 
we can use it to calculate and predict how many patients 
are expected to be in the room daily and hourly. The 
remainder of the paper is organised as follows. Section 2 
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explains the methods. Section 3 presents the application 
of a high dimension. Section  4 presents the results and 
analysis. Finally, conclusions and future research direc-
tions are indicated in Sect. 4.

Methods
Generalized Linear Models
In its development, the modelling of count data led 
to Generalized Linear Models (GLMs) [8]. GLMs are 
generalisations of classical regression models or OLS 
regression. Analytical methods for data do not meet the 
assumption of a normal distribution [30]. The classical 
linear model is widely used in statistics or straight-line 
equation [31]. The traditional linear models were com-
monly used in statistics, especially for modelling field 
environmental problems [32]. The simplest classical non-
linear model is defined in Eq. (1).

Where y is the dependent variable whose value depends 
on the independent variable x, β which are unknown 
parameters in the model. At the same time, ε is a ran-
dom variable that differs from the actual value of y with 
its estimated value. The random variable ε is assumed to 
follow the Normal distribution 

(
0, σ 2

)
 . The development 

of the linear model was very rapid after discovering the 
normal distribution until the beginning of the 19th cen-
tury that [33] published his research in agriculture using 
an experimental design. Simple GLMs are developing 
a classic linear model with many predictors or multiple 
linear regression [34]. The least-square method by Gauss 
remains the basis for estimating model parameters. The 
assumptions on LMs also carry over to GLMs isǫ follows 
the Normal distribution 

(
0, σ 2

)
 . The predictor does not 

need continuous. Category predictors also underlie Fish-
er’s research in experimental design. Under the auspices 
of the normal distribution assumption, linear models can 
be written in general, or the general term defines GLM as 
in Eq. (2).

The model in Eq.  (2) represents the GLMs for vari-
ous linear models. They are linear regression (simple or 
multiple), multivariate regression, analysis of variance 
(ANOVA), multivariate analysis of variance (MANOVA), 
linear mixed models, analysis of variance-covariance 
(ANCOVA), multivariate analysis of covariance (MAN-
COVA), response surface, or growth curve model. In 
addition to the least square, parameter estimation can be 
obtained using the maximum likelihood, shrinkage esti-
mation, stein-rule estimation method up to Bayes esti-
mation approach. Operationalism means that scientific 

(1)y = f (x,β)+ ǫ

(2)YnGn = XnBHn + Zn\varThetaQn + En

theories should be defined observably, namely observa-
tion or observational or experimental procedures.

In early 20th century, there have been many books pub-
lished like “foundation of Statistics, the foundation of 
Ethics, foundation of justice, foundation of fairness” All 
of these books are studying foundational principles for 
their subjects, to enable deductive logic to justify neces-
sary propositions of these areas [35–37]. Thus, in deduc-
tive logic if the general propositions are true, their logical 
statements also true, so that it would be called tautol-
ogy, no error in their statements. However, how can we 
justify the truthfulness of claimed general propositions. 
The regression and generalized linear models (GLMs) 
describe the causal relationship between observed vari-
ables. X1, . . . ,Xp is regarded as covariates, which cause 
the observed response to Y  . Fisher’s classical likelihood 
applies to this kind of model with observables only, 
where fixed parameters represent causal effects of covari-
ates. Via likelihood, the estimation of effects, prediction, 
various hypotheses testing, and including the absence of 
effects, have been developed [38–41].

Generalized Linear Latent Variable Models
Consider that 

(
x1, y1

)
,
(
x2, y2

)
, . . . , (xn, yn) are independ-

ent observations. Each yi represents response variable 
and each xi represents a p× 1 vector of covariates, that is 
xi = (xi1, xi2, . . . , xip) and i = 1,2, . . . , n to represent sub-
jects. The joint distribution of 

(
xi, yi

)
 can be written as the 

conditional distribution of xi given yi and the marginal 
distribution of xi. We use the notation p(xi|yi,ψ) for the 
conditional distribution of yi given xi and p(xi|α) for the 
marginal distribution of xi . The complete data density of 
(yi, xi) for the subject i can be written as:

In the conditional distribution p(xi,ψ) , ψ is the k × 1 
vector of parameters. In our model, this parameter vec-
tor ψ considers regression parameter β through θ , zero 
inflation parameter ω or δ and over/under dispersion 
parameter τ , that is ψ = (θ ,ω, τ ) . In the marginal distri-
butionp(α) , α indicates the parameter of covariate dis-
tribution. We consider the natural exponential family 
distribution for the conditional distribution p(xi,ψ) . For 
the following exponential family distribution, we con-
sider parameter θ.

Where y represents the response variable, a(θi) is the 
function of mean parameter θ , and di(φ) is the function 
of scale parameter φ . The parameter θ is used to link 
the model to the covariates x. Let θi be a function of the 

(3)p(ψ ,α) = p(xi,ψ) ∗ p(α).

(4)p(xi, θ ,φ) = exp[
yiα(θi)− b(θi)

di(φ)
+ c

(
yi,φ

)
]
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linear predictor ηi , that is θi = f (ηi) , where f is a mono-
tone differentiable function, known to be the link func-
tion and ηi = x’iβ . In ηi, x’i = (xi1, xi2, . . . , xip) is the p× 1 
vector of covariates and β = (β1,β2, . . . ,βp)

’ is the p× 1 
vector of regression coefficients. If θi = ηi = x’iβ , then 
the link function f is said to be a canonical link function. 
We consider di(φ) = 1 throughout our study, and hence 
p
(
yi
∣
∣xi, θ ,φ) would be written as p

(
yi
∣
∣xi, θ) or p

(
yi
∣
∣xi,β) . 

The generalised linear model can be meaningless if many 
zeros in the information or over/under scattering high-
light the information.

In the generalised linear model, covariates can be dis-
crete, ceaseless, or both. We will portray the element 
in the next barely passages. This paper aims to develop 
GLLVMs with Laplace approximation and variational 
approximation based on the above analysis. The GLLVMs 
are the extended version of GLMs with latent variables. 
Suppose Yij is the multivariate responses across species 
with i = 1,2, . . . , n being the observational units, and 
j = 1,2, . . . , p is the number of species. The expectation 
of Yij is modelled through the following relationship.

The ηij is the linear predictor and g(.) is a link function. 
The common link function is given in Table 1.

The linear components of the predictor are similar to 
that of GLM has the inclusion of random effects listed as 
follows:

The αi represents the row effect, andβ j contains a 
matrix of the regression coefficient to corresponding 
independent variables.x’i and �j are the loading factors or 
quantities describing the interactions across observation 
and connecting the unobserved variables to responses 

(5)E
(
Yij

)
= µij = g−1

(
ηij

)

(6)ηij = αi + β0j + x’iβj + u’i�j

[43]. In many papers, the distributional choice of latent 
variables, ui is a normal distribution with mean zero and 
constant [44–46]. The optimisation in GLLVMs repre-
sents in Fig. 1.

The selection of the distribution is another important 
point in GLM. The distribution preference is depend-
ent on the type of response variable. The mechanism 
can produce the response and the form of the empiri-
cal distribution. For instance, the Bernoulli distribution 
is the obvious solution for binary responses, whereas 
the Poisson distribution is also preferred to match the 
model for counts. The intercept and the slope are also 
the key parameters to interpret in the standard multi-
variate regression. The interception is the outcome vari-
able expectation unless the covariates remain zero. The 
regression coefficients reflect the anticipated variability 
in the dependent component variables for just a one-unit 
transition, with the remaining factor being consistent. 
The parameters may then be represented in Poisson and 
Negative Binomial methods as in Gaussian because of the 
log linking function that places variables in the normal 
log scale [47]. The result is exponential with the param-
eter through its main sample. This would not resolve the 
perception problem entirely, as represented in Fig. 2.

Model Selection
The model selection criteria are statistical tools that iden-
tify an “optimal” statistical model from among a set of 
models. Meanwhile, the set is usually called a set of can-
didate models. A model is considered [48–50] that is the 
principle of generalizability to fit the model to describe 
or predict new data. The purpose of statistical modelling 
should be to predict new data instead of precisely charac-
terising the actual model that generated the data. On the 
other hand, the candidate models are significant in ana-
lysing the selection criteria.

Table 1 The Link function [42]

Link Name Link Inverse 1st Derivative

Gaussian/Normal µ η 1

Binomial (Bernoulli: m=1) ln(µ/(m− µ)) m/(1+ exp(−η)) m/(µ(m− µ))

Logit Probit �−1(µ/m) m�(η) m/ϕ
{
�−1(µ/m)

}

Log‑log ln(−ln(1− µ/m)) m(1− exp(−exp(η))) (m(1− µ/m)ln(1− µ/m)−1

Poisson
*Log

ln(µ) exp(η) 1/µ

Negatif Binomial *NB‑C ln(µ/(µ+ 1/α)) exp(η)/(α(1− exp(η))) 1/(µ+ αµ2)

Negatif Binomial *log ln(µ) exp(η) 1/µ

Gamma
*Inverse

1/µ 1/η −1/µ2

Inverse Gaussian
*Inv Quad

1/µ2 1/
√
η −1/µ3
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The criteria can be used Akaike Information Crite-
rion (AIC), Akaike Information Criterion Correction 
(AICc), and Bayesian Information Criterion (BIC) [51]. 
Lastly, the selection of models should take generaliz-
ability, parsimony, and goodness-of-fit into account. 
The motivation behind measurable demonstrat-
ing ought to anticipate new information rather than 

unequivocally describe the genuine model that created 
the information. In Equation (7), f as the function of 
regression, k is the dimension of the parameter θ , and 
n is the sample size.

(7)AIC = −2lnf (y, θ̂ )+ 2k .

Fig. 1 GLLVMs Optimization

Fig. 2 The concept for Choosing Latent GLMs and GLMs Family
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However, the researcher leans toward BIC to AIC 
since BIC may prompt choosing a more closefisted fitted 
model than AIC. It demonstrates that BIC is steady, yet 
it is not asymptotically productive. In addition, AICc is 
helpful in the small dataset.

High dimension data
In this paper, we use the event count data that occur in 
the intensive care centre to meet the needs of medical 
operations. The operations include pushing hospitalised 
patients for hemodialysis treatment, receiving emergency 
treatment drugs, transferring specimens, and collecting 
blood and related services such as respirators, oxygen 
cylinders, and other equipment or items required for the 
treatment.

The data used in this research contains the number 
of events in the intensive care centre to meet the needs 
of medical operations in Taichung Veterans General 

(8)BIC = −2lnf (y, θ̂ )+ kln(n)

(9)AICc = −2k

[
n

n− k − 1

]

.

Hospital. The specifications are as follows: Emergency 
Department (ED 1), First Intensive Care Unit (ICU1), 
Second Intensive Care Unit (ICU2), Respiratory Care 
Intensive Care Unit (RICU), Surgical Intensive Care 
Unit (SICU), Subacute Respiratory Care Unit (RCC), 
Trauma and Neurosurgery Intensive Care Unit (TNCU), 
Neonatal Intensive Care Unit (NICU). The data are col-
lected from June (33,561 cases), July (31,557 cases), 
August (35,689 cases), September (34,293 cases), and 
October (35,310 cases). In total, the matrix dimension 
is (170,410 × 7). This paper only used eight types of ICU 
rooms. To get the ICU ordination per room will be trans-
posed to (7 × 170,410). Then the dimension matrix is   
reduced again to retrieve the total daily occurrence data 
to get 153 × 7 a matrix. We estimate the latent space’s 
dimension from the data by using regularised generalised 
matrix factorisation [52].

Since the dataset is a large size matrix with an obser-
vation sufficiently large, the approach would occur error. 
In the comparison, the method may be unreliable due to 
round-off errors for too short a break. We placed Newton 
Raphson (NR) in this analysis to solve these issues. The 
NR is not intermediate-based and approximates the Hes-
sian matrix-vector product. The pseudo-Hessian matri-
ces have been popularly used [53]. In this study, Fig.  3 

Fig. 3 The Example of Projection
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represents that the pseudo-Hessian is applied because 
it has proven to be effective for 

[
Hdiagonalpseudo

]
k
= vtkv

∗
k , 

more instance see: [54].

Results and discussion
As explained in the previous section, we use the daily 
data of the number of cases of incentive care rooms. 
Then, the matrix dimension is quite large. So computa-
tion [55] will be calculated on selected distributions 
such as negative binomials, Poisson, Gaussian, ZIP, and 
Tweedie. We successfully compared two types of optimi-
sation, including variational approximation and Laplace 
approximation. Also, we make a comparison with the 
number of latent variables. Table 2 explains that the best 
model is the smallest AIC, AICc, and BIC values   for the 
negative distribution of GLLVM-VA and GLLVM-LA 
binomials. Figure 2a and b have explained that informa-
tion. In general, VA (1) promises to complete computing 
time compared to LA (2).

Based on this simulation, we understand that the 
difference in latent variables does not affect the 
accuracy results. Besides, the recognisable proof of 
the estimation model is that it is sufficient for each 
latent variable. The decision of connection capac-
ity ought to be founded on hypothetical contempla-
tions and model fit. The scope of qualities it creates 

for the mean µi = g−1 vi, can be contemplated when 
picking the link function. For example, the logit and 
probit interface capacities are regular when the reac-
tion variable is two-fold. They limit the likelihood µi 
within the interval [0,1] . The other factors consider 
identifying with the understanding of the relapse 
parameters [55].

However, utilises an identity link function relates to 
addictive impacts of the covariates on the mean, and a log 
link compares to multiplicative effects. Another signifi-
cant thing in GLLVMs is the decision of the dissemina-
tion. The decision of dissemination depends on the kind 
of reaction variable. The procedure produces the reaction 
and the state of experimental dispersion. For instance, 
the undeniable decision is the Bernoulli dissemination 
for parallel reactions while for counts. In line with this, 
the Poisson dispersion is regularly picked for fitting the 
model.

We use different distributions such as Negative Bino-
mial (1), Poisson (2), Gaussian (3), ZIP (4), and Tweedie 
(5). As shown in Fig.  4, running a Tweedie distribution 
will take a very long time. The power parameters are 
vital to discuss. In tweedy probability density, it cannot 
be closed form so it is slow to finish computing. To solve 
this problem, quasi and pseudo-likelihood can be used 
for Tweedie.

Table 2 GLLVMs Performance

Model LV Family Selection Criteria DF log-likelihood: Time Computing

AIC AICc BIC

GLLVM‑ VA 1 Negative Binomial 7144.07 7151.123 7207.709 21 ‑3551.035 00.13,23

2 Negative Binomial 7309.096 7321.192 7390.918 27 ‑3627.548 00.05,85

3 Negative Binomial 7472.096 7489.696 7569.07 32 ‑3704.048 00.06,11

1 Poisson 7693.37 7699.733 7753.978 20 ‑3826.685 00.01,22

2 Poisson 7693.37 7699.733 7753.978 20 ‑3826.685 00.03,60

3 Poisson 7685.202 7695.439 7760.963 25 ‑3817.601 00.12,20

1 Gaussian 7260.324 7267.378 7323.964 21 ‑3609.162 00.01,32

2 Gaussian 7409.686 7421.782 7491.508 27 ‑3677.843 00.03,42

3 Gaussian 7570.224 7587.824 7667.198 32 ‑3753.112 00.09,10

GLLVM‑ LA 1 Negative Binomial 6955.922 6962.976 7019.562 21 ‑3456.961 00.41,30

2 Negative Binomial ‑67622.6 ‑67622.6 ‑67622.6 27 3381132785 00.47,11

1 Poisson 7736.851 7739.895 7779.277 14 ‑3854.426 00.05,32

2 Poisson 7387.098 7393.462 7447.707 20 ‑3673.549 00.44,47

3 Poisson 7227.31 7237.546 7303.07 25 ‑3588.655 01.17,90

1 Gaussian 7107.34 7114.393 7170.979 21 ‑3532.67 00.01,72

2 Gaussian 7103.672 7115.768 7185.494 27 ‑3524.836 00.02,22

3 Gaussian 7110.665 7128.265 7207.639 32 ‑3523.333 00.01,88

1 ZIP 7637.484 7644.538 7701.123 21 ‑3797.742 00.31.38

2 ZIP 7326.899 7338.995 7408.721 27 ‑3636.449 00.59.18

1 Tweedie 7010.549 7022.645 7092.371 27 ‑3478.275 45.11,33
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The Tweedie distribution can only be analysed using 
the Laplace approximation GLLVM. Indeed, a Vari-
ational approximation is a Bayesian inference to solve 
complex statistics. Ormerod [56] gave a more precise 
explanation about the Variational approximation. On 
the other hand, Bayesian, along these lines [57] relies 
upon the researcher’s capacity to compute integrals 
concerning the posterior distribution. This is a trouble-
some issue and separated from the conjugate models. 
The explicit type of the thickness posterior is regularly 
accessible just to a factor.

During the experiment, we compare GLVVMs to 
PCA, Factor Analysis Extraction Maximum Likelihood, 
K-Means, Canonical Correlation Analysis, and Global 
Multidimensional Scaling. However, using K-means 

π(x|y1, . . . , yN ) ∝ p0(x)p(y1, . . . , yN |x)

only uses two groups following the number of groups 
that have been previously determined. To determine 
the group members can be done by calculating the min-
imum distance of the object.

The value obtained in the membership of data at the 
distance matrix is   0 or 1. The value 1 is for data allocated 

Fig. 4 TimeComputing Optimization (A) and Type of Distribution (B)

Table 3 The Variance

Methods Variance (%)

PCA 78.5%

Factor Analysis Extraction Maximum Likelihood 75.2%

K‑Means 2 cluster 51.070%

*Ours (GLLVM) 98%

Canonical Correlation Analysis 70.2%

Global Multidimensional Scaling 68.5%
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to group A while the value 0 is for data allocated to 
group B. In this simulation, we obtained distance cen-
troid (Cluster 1 to Cluster 2 = 24.6436). Table 3 provides 
variance information (%) of each method. During the 
experimental studies and the simulation results, GLL-
VMs promise high variance compared to the other tech-
niques. In line with this, the number of variances can be 
explained with the latent variable as 98%. Yet, PCA and 
CCA perform variable reduction via justification and 
construct a scree plot variance explained (or eigenvalues).

Meanwhile, two significant methodologies have shown 
up in measurements, such as approaches dependent on 
the characterisation of the posterior and approxima-
tion. For a differential condition, whose arrangement is 
not easy work at any rate. The Laplace approximation 
can tell the arrangement is the inverse Laplace likewise. 
The underlying conditions are folded into the strategy 
for the arrangement from the beginning. Nevertheless, 
with Bayes, we do not have the entirety of the underly-
ing derivatives, so we need to keep some of them around 
as free parameters. The Laplace, for the most part, is not 
in nonlinear issues because we do not receive a decent 
arithmetical condition in return [,  58, 59]. One excep-
tion is that the Laplace change of a convolution is only 
an item helpful [60]. The data matrix is   usually a proxim-
ity matrix (a matrix with a distance between objects) and 
includes ordinal data types. This result is robust because 
the configuration results are obtained from its iteration. 
However, the process will lose some information due to 
the reduction in dimensions. The ordination is also help-
ful in reducing the dimensions of data from several vari-
ables. New variables are no longer correlated and have as 
much information as possible from the original data after 
getting the best negative binomial model on two differ-
ent optimisations, Variational approximation and Laplace 
approximation. It is necessary to find linear predictors 
with residuals in both models. Figure 5a and b represent 
scale location. At the beginning of our predictor range, 
the line starts off horizontal, slopes up to around 2, and 
then slopes down around 3. In the beginning, contrast 
with the Laplace approximation, the line is flattened 
around 2.5 because the residuals for those predictor val-
ues are not more spread out. The development of the 
GLLVM ordination will continue by using a Variational 
approximation. Assume that it provides speed in com-
puting with accuracy differences that are not significant 
as the Laplace approximation. Figure  6a and b explain 
how linear these predictors are at residuals. Then, the 
normal Quantile-Quantile plot describes the theoreti-
cal quantiles following the normal distribution and the 
points forming a roughly straight line.

However, Fig.  7a explains the ordination in seven dif-
ferent room types. It seems so clear that each room has 

a different ordination. In addition, Fig. 7b represents the 
number of manpower based on the best model. The type 
of ICU room requires more manpower than other rooms. 
Nevertheless, visually ICU and RICU rooms have the 
same characteristics compared to the others. Overall, the 
different ordinance is ICU2 room, and separate ordina-
tions are in the RICU room.

At the same time, the ordinations look similar in ED1 
and TNCU rooms, respectively. Figure  8 explains the 
distribution of frequency of events data in intensive care 
Units’ rooms if there are several similarities between one 
day and another. The highest number of cases occurred 
on Monday and Saturday, and Sunday decreased quite 
far. If the hospital wants to focus on full service, it might 
be better to consider the appropriate number of medical 
staff on a specific day.

The content of the hospital’s transfer staff is to trans-
fer patients to outpatients, wards, inspections, and other 
units. The transfer methods include leadership, bed and 
wheelchair push, and the receipt and transfer of medi-
cines, blood, specimens, articles, instruments, and sta-
tionery to other units. The outsourcing business of the 
hospital’s labour service is also to maintain the business 
activity. The staff is responsible for it, including the ward, 
medical department, or particular operation unit’s inter-
nal labour service. It is fixedly dispatched to the demand 
unit. Non-medical care services, such as ward replen-
ishment, hand sanitiser, and redemption of infectious 
devices, medicine ladders, cleaning of dirty clothes, extra 
isolation clothes, etc., work items will follow the general 
ward. Moreover, the emergency characteristics of inten-
sive or special controls and departmental treatment units 
may be different.

Still, their work is non-medical affairs, and responsible 
for such work belongs to internal staff. This mode’s trans-
mission requirement is mainly related to the relevant 
operational processes required to treat inpatients. The 
examinations are X-rays, ultrasound, electrocardiograms, 
computed tomography (CT) tests or anesthesia visits 
before the operation of the patient; or pushing inpatients 
for blood Dialysis treatment, receiving emergency treat-
ment medicines, transferring specimens, and related 
operations such as respirators, oxygen cylinders, and 
other equipment or items required for treatments.

Figure  9 represents the application of the “Hospital 
Transfer Operating System” by the ward nursing station 
and the dispatching method which is based on the deliv-
ery center. The cases are general, urgent, or scheduled 
categories. The application event is transmitted to the 
service center to print the document. The service center 
dispatches personnel to perform the transmission opera-
tion and builds upon the priority of the event transmis-
sion or the application sequence. When the transmission 
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staff completes the task, they return to the service center 
to wait for the next job assignment.

An ICU is an Intensive Care Unit, and CCU, for the 
most part, represents the Cardiac Care Unit. An emer-
gency is a basic consideration unit that concedes ther-
apeutic and careful patients who are fundamentally 

sick or harmed. While a Cardiac Care Unit concedes 
patients with heart issues, it is generally medicinal 
cardiovascular issues. The respiratory intermediate 
care unit (RICU) should be practically incorporated 
with the intensive care hospital room, the general 
ICU, and the restorative or different wards. These 

Fig. 5 ScaleLocation GLLVM Negative Binomial with 1 Latent Variable VariationalApproximation (A) Scale Location GLLVM Negative Binomial with 1 
Latent VariableLaplace Approximation (B)



Page 11 of 17Caraka et al. BMC Medical Research Methodology           (2022) 22:77  

Fig. 6 (A) GLLVMNegative Binomial with 1 Latent Variable Variational Approximation Residual VSPredictor (B) GLLVM Negative Binomialwith 1 
Latent Variable Laplace Approximation Residual VS Predictor
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Fig. 7 GLLVMOrdination (A) and Prediction manpower (B)
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Fig. 8 Heatmapevent counts
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units should be described by higher self-sufficiency 
than the checking units because of the more elevated 
level of care [61].

Subsequently, while patients have the intense, the 
incessant respiratory disappointment of any level of 
seriousness ought to admit these units for the intubated 
individuals. Moreover, fundamentally sick patients with 
weaning issues could be admitted to the RICU. On the 
other hand, the Surgical Intensive Care Unit provides 
care for patients who have undergone many critical sur-
gical procedures. SICU will cover Pediatric Vascular, 
Gastrointestinal Liver, Renal, Renal-Pancreas Trans-
plantation, Orthopedics, Plastics, Otolaryngology, Urol-
ogy, Thoracic, Surgical Oncology, Oral Maxillo-Facial 
Obstetrics, and Gynecological Surgery. Management of 
patient trauma is essential, and this treatment is carried 
out at the trauma care centre plus (TNCU).

Traumatic patients need airway evaluation and man-
agement, respiratory support, bleeding cases, rapid, 
swift. Patients who come to the emergency unit must go 
through triage, which evaluates the patient’s condition to 
determine the emergency level. Patients will be treated 
according to the category of triage, videlicet, triage one, 
patients with life-threatening conditions or loss of limb 
function and require immediate action or intervention 
with a waiting time of 0 min.

Then, triage two is a patient with a non-life-threaten-
ing condition but has a potential threat to limb func-
tion and requires prompt medical intervention or action 
with a waiting time of 0-5 min. Triage three are patients 
with acute conditions but not urgent (primarily stable). 
There is no potential to experience worsening and do 
not require immediate medical intervention or interven-
tion with a waiting time of 5 to 15 min. NICU stands for 
neonatal intensive care unit, is an intensive care room in 
the hospital that is explicitly provided for newborns who 
experience health problems [62].

Generally, babies are placed into the NICU room in 
the first 24 h after birth. The length of stay in the NICU 
room varies, depending on each baby’s condition. The 
more serious the health problem is experienced, the 
longer they will be in the NICU room. There are many 
reasons why babies need to be cared for in the NICU 
room, but they aim to get the child under intensive 
supervision and care. The NICU room is a sterile area 
that just no one can enter. Each hospital has a differ-
ent blueprint regarding the number and hours of par-
ents visiting the NICU room. However, all hospitals 
must provide soap or hand sanitisers to ensure that 
visitors are sterile. In general, NICU room conditions 
are tranquil because they are susceptible to sound and 
light. The babies in the NICU room are usually in the 
incubator to keep their body temperature stable. The 
hospital delivery business is roughly divided into first, 
patient escort: during the patient’s medical treatment 
process. The patient is pushed for examination, sur-
gery, kidney dialysis, or related treatment. Additionally, 
Non-patient is transmission: similar transmission of 
specimens, drugs, blood, documents, medical records, 
or medical supplies.

This research transmission business is aimed at front-
open patient escort and non-patient transmission. 
According to the different work attributes of each ward, 
medical department, or operating unit, the required 
human resources are divided into four categories, and 
various types of human resources are ordered according 
to their complexity or danger.

Conclusions
This paper successfully performs the simulation of the 
huge dimensional dataset. The best distribution used is a 
negative binomial and variational approximation. Inter-
estingly, the choice of the number of latent variables has 
a significant effect on computational time but not on 

Fig. 9 Hospitaltransfer operation flow
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the model’s accuracy. In general, the more latent used, 
it will slow down the computing time. The instrument 
involved the distribution of Tweedie was proven that 
Tweedie required a very long time compared to other 
distributions.

Future studies will use different types of distributions, 
such as extended negative binomials and hurdle distri-
butions. We will compare the distribution zero-inflated 
Poisson, zero-inflated negative-binomial, beta-binomial, 
extended Poisson and Tweedie, hurdle, and extended hur-
dle for further research negative. In many situations, we 
cannot obtain information about which classes of some 
observations belong to which group. In this case, we need 
adaptations to the Variational Approximation and Laplace 
Approximation.

Posterior probabilities for labeled data do not need to 
be updated. The other probabilities corresponding to 
unlabeled data are computed as usual. Discussion, so far, 
assume that all the classes in the entire data sets are rep-
resented in the classes represented in labeled data so that 
GLLVM is known and model selection is not an issue. 
However, if the assumption does not hold, several prob-
lems arise with initialization on the optimization. One 
option is to consider only unlabeled information, ignoring 
the labeled observation. But, by considering and separat-
ing the dataset as training and testing, we can check our 
model is appropriate or not. In many multivariate data 
sets, some of the variables are highly correlated with oth-
ers, so that they do not carry much additional informa-
tion. The elimination of such variables can improve model 
performance. In Additional file 1: Appendix, We already 
explain how to calculate a computation of Variational 
Approximation and Laplace approximation. Otherwise, 
we may use the regularized log-likelihood function penal-
ized by concern via −�

∑K
k=1

∑p
j=1

∣
∣µkj

∣
∣ where µkj is the 

j − th coordinate of the k − thmean vector. Assume the 
independence of multinomial variables is the response to 
each spicy, with a p-response observed from each individ-
ual which can be modeled as a finite products-of-multi-
nomials mixture model.

Future work should extend the basic concept of GLL-
VMs to Structural Equation Modelling (SEMs) or 
employ hierarchical likelihood. A frequentist alterna-
tive approach is proposed by Lee et al. [42], who termed 
it as the hierarchical likelihood approach. Hereafter, we 
use the term h-likelihood. Also, it provides a new way of 
statistical inferences in entire fields of statistical science. 

g
(
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Recently, h-Likelihood is also commonly used for infer-
ences and the application in big data and machine learn-
ing [63]. Therefore, we address the likelihood for fitting 
SEMs that supports various combinations of different 
distributions for response variables [48, 64–70]. h-likeli-
hood can be defined by the logarithm of the joint density 
of the response y and the unobserved vectors of random 
effects v,p, and q given by

For estimation, we use h for v, pv(h) for β , pv,β(h) for 
(γ , δ, p, q), pb,β ,γ ,p(h) for α and pv,β ,δ,q(h) for ξ [71].

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874‑ 022‑ 01538‑4.

Additional file 1. 

Acknowledgements
The authors would like to thank the participants and staff of the Hospital 
Health Study for their valuable contributions.

Authors’ contributions
Conceptualization: REC,RCC Methodology: REC,RCC Project Administration: 
RCC,SWH,SYC,BP Software: REC Validation: REC Visualization: REC Writing – 
original draft, review and editing: REC,RCC Writing – original draft, review and 
editing: REC,RCC,SWH,SYC,PUG, and BP. The author(s) read and approved the 
final manuscript.

Funding
This work is part of the Ministry of Science and Technology, Taiwan, under 
Grant MOST 109‑2622‑E‑324‑004 and fully supported by Taichung Veterans 
General Hospital.

Availability of data and materials
The data that support the findings of this study are available from the cor‑
responding author upon reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Executive Secretariat, National Research and Innovation Agency (BRIN), DKI 
Jakarta 10340, Indonesia. 2 Department of Information Management, College 
of Informatics, Chaoyang University of Technology, Taichung City 41349, 
Taiwan. 3 Taichung Veterans General Hospital, Taichung City 40705, Taiwan. 
4 Department of Mathematics, Universitas Sumatera Utara, Medan 20155, 
Indonesia. 5 Bioinformatics and Data Science Research Center, Bina Nusantara 
University, DKI Jakarta 11480, Indonesia. 6 Computer Science Department, Bina 
Nusantara University, DKI Jakarta 11480, Indonesia. 

h = h
(
β , γ , δ, v, p, q; y

)

h = logf β ,γ ,δ
(
y|v, p, q

)
+ logf δ(v|q)+ logfα(p)+ logfξ (q)

https://doi.org/10.1186/s12874-022-01538-4
https://doi.org/10.1186/s12874-022-01538-4


Page 16 of 17Caraka et al. BMC Medical Research Methodology           (2022) 22:77 

Received: 26 February 2021   Accepted: 4 February 2022

References
 1. Li Q, Lan L, Zeng N, You L, Yin J, Zhou X, et al. A Framework for Big Data 

Governance to Advance RHINs: A Case Study of China. IEEE Access. 
2019;7.

 2. Wang XD, Chen RC, Yan F, Zeng ZQ, Hong CQ. Fast Adaptive K‑Means 
Subspace Clustering for High‑Dimensional Data. IEEE Access. 
2019;7:42639–51.

 3. Raheja JL, Dhiraj, Gopinath D, Chaudhary A. GUI system for elders/
patients in intensive care. In: 2014 IEEE International Technology Manage‑
ment Conference, ITMC 2014. 2014.

 4. Hever G, Cohen L, O’Connor MF, Matot I, Lerner B, Bitan Y. Machine learn‑
ing applied to multi‑sensor information to reduce false alarm rate in the 
ICU. J Clin Monit Comput. 2020;34:339–52.

 5. Cao P, Toyabe S ichi, Abe T, Akazawa K. Profit and loss analysis for an 
intensive care unit (ICU) in Japan: a tool for strategic management. BMC 
Health Serv Res. 2006;6:1.

 6. Agresti A. An Introduction to Categorical Data Analysis. 2007. doi:https:// 
doi. org/ 10. 1002/ 04712 49688.

 7. Capuzzo M, Moreno RP, Alvisi R. Admission and discharge of critically ill 
patients. Curr Opin Crit Care. 2010;16:499–504.

 8. Ha I., Lee Y. Estimating Frailty Models via Poisson Hierarchical Generalized 
Linear Models. Journal of Computational and Graphical Statistics. 2003.

 9. Ha I., Noh M, Lee Y. FrailtyHL: A package for fitting frailty models with 
h‑likelihood. R J. 2012;4:28–37.

 10. Dash S, Shakyawar SK, Sharma M, Kaushik S. Big data in healthcare: man‑
agement, analysis and future prospects. J Big Data. 2019;6. doi:https:// doi. 
org/ 10. 1186/ s40537‑ 019‑ 0217‑0.

 11. Dimitrov D V. Medical internet of things and big data in healthcare. 
Healthc Inform Res. 2016;22:156–63.

 12. Viceconti M, Hunter P, Hose R. Big Data, Big Knowledge : Big Data for Per‑
sonalized Healthcare. IEEE J Biomed Heal Informatics. 2015;19:1209–15.

 13. Gower J, Lubbe S, Roux N le. Principal Component Analysis Biplots. In: 
Understanding Biplots. 2011.

 14. Principal component analysis and redundancy analysis. In: Analysing 
Ecological Data. 2007.

 15. Abdi H, Williams LJ. Principal component analysis. Wiley Interdisciplinary 
Reviews: Computational Statistics. 2010;2:433–59.

 16. ter Braak CJF, Verdonschot PFM. Canonical correspondence analysis and 
related multivariate methods in aquatic ecology. Aquat Sci. 1995.

 17. Noh M, Lee Y, Oud JHL, Toharudin T. Hierarchical likelihood approach to 
non‑Gaussian factor analysis. J Stat Comput Simul. 2019;89:1555–73.

 18. Jin S, Noh M, Lee Y. H‑Likelihood Approach to Factor Analysis for Ordinal 
Data. Struct Equ Model. 2018;25:530–40.

 19. Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c‑means clustering algorithm. 
Comput Geosci. 1984.

 20. Mitchell R, Adinets A, Rao T, Frank E. XGBoost: Scalable GPU Accelerated 
Learning. 2018. http:// arxiv. org/ abs/ 1806. 11248.

 21. Chen RC, Caraka RE, Arnita, Goldameir NE, Pomalingo S, Rachman A, et al. 
An End to End of Scalable Tree Boosting System. Sylwan. 2020;165:1–11.

 22. Nielsen D. Tree Boosting With XGBoost. 2016.
 23. Caraka RE, Nugroho NT, Tai S‑K, Chen RC, Toharudin T, Pardamean B. 

Feature Importance of The Aortic Anatomy on Endovascular Aneurysm 
Repair (EVAR) using Boruta and Bayesian MCMC. Commun Math Biol 
Neurosci. 2020;2020.

 24. Johnstone IM, Titterington DM. Statistical challenges of high‑dimensional 
data. Philosophical Transactions of the Royal Society A: Mathematical, 
Physical and Engineering Sciences. 2009.

 25. Koch KR. Monte Carlo methods. GEM ‑ Int J Geomathematics. 2018.
 26. Choiruddin A, Coeurjolly JF, Letué F. Convex and non‑convex regulariza‑

tion methods for spatial point processes intensity estimation. Electron J 
Stat. 2018;12:1210–55.

 27. Choiruddin A, Cuevas‑Pacheco F, Coeurjolly JF, Waagepetersen R. Regular‑
ized estimation for highly multivariate log Gaussian Cox processes. Stat 
Comput. 2019;:1–14.

 28. Niku J, Hui FKC, Taskinen S, Warton DI. gllvm: Fast analysis of multivari‑
ate abundance data with generalized linear latent variable models in r. 
Methods Ecol Evol. 2019;:1–10.

 29. Hao L, Kim J, Kwon S, Ha I Do. Deep learning‑based survival analysis for 
high‑dimensional survival data. Mathematics. 2021;9:1–18.

 30. Cox DD, John S. A statistical method for global optimization. In: Confer‑
ence Proceedings ‑ IEEE International Conference on Systems, Man and 
Cybernetics. 1992. p. 1–15.

 31. Bates DM, Watts DG. Review of Linear Regression. Nonlinear Regres 
Anal Its Appl. 1988;:1–31. doi:https:// doi. org/ 10. 1002/ 97804 70316 757. 
ch1.

 32. Militino AF. Mixed Effects Models and Extensions in Ecology with R. J R 
Stat Soc Ser A (Statistics Soc. 2010.

 33. Lury DA, Fisher RA. Statistical Methods for Research Workers. Stat. 1972.
 34. Goldstein H, Cohen J, Cohen P. Applied Multiple Regression/Correla‑

tion Analysis for the Behavioural Sciences. J R Stat Soc Ser A. 1976.
 35. Freedman D. Some issues in the foundation of statistics. Dordrecht: 

Springer; 1997.
 36. Savage LJ. The foundations of statistics. Courier; 1972.
 37. Čencov NN. Algebraic foundation of mathematical statistics. Ser Stat. 

1978;9:267–76.
 38. Hall DB. Zero‑inflated poisson and binomial regression with random 

effects: A case study. Biometrics. 2000.
 39. Ha ID, Lee Y. Multilevel mixed linear models for survival data. Lifetime 

Data Anal. 2005;11:131–42.
 40. Ha I., Jeong J‑H, Lee Y. Statistical Modelling of Survival Data with Ran‑

dom Effects H‑Likelihood Approach. Springer; 2017.
 41. Lee Y, Nelder JA. Hierarchical Generalized Linear Models. J R Stat Soc 

Ser B. 1996.
 42. Lee Y, Rönnegård L, Noh M. Data analysis using hierarchical generalized 

linear models with R. 1st edition. Florida: Routledge; 2017.
 43. Caraka RE, Chen RC, Lee Y, Toharudin T, Rahmadi C, Tahmid M, et al. 

Using multivariate generalized linear latent variable models to meas‑
ure the difference in event count for stranded marine animals. Glob J 
Environ Sci Manag. 2021;7:117–30.

 44. Warton DI. Many zeros does not mean zero inflation: Comparing the 
goodness‑of‑fit of parametric models to multivariate abundance data. 
Environmetrics. 2005;16:275–89.

 45. Warton DI, Foster SD, De’ath G, Stoklosa J, Dunstan PK. Model‑based 
thinking for community ecology. Plant Ecol. 2015.

 46. Niku J, Brooks W, Herliansyah R, Hui FKC, Taskinen S, Warton DI. Efficient 
estimation of generalized linear latent variable models. PLoS One. 
2019;14:1–20.

 47. del Castillo J, Lee Y. GLM‑methods for volatility models. Stat Modelling. 
2008;8:263–83.

 48. Jin S, Ankargren S. Frequentist Model Averaging in Structural Equation 
Modelling. Psychometrika. 2019;84:84–104. doi:https:// doi. org/ 10. 
1007/ s11336‑ 018‑ 9624‑y.

 49. Bartholomew D, Knott M, Moustaki I. Latent Variable Models and Factor 
Analysis: A Unified Approach: 3rd Edition. 2011.

 50. Myers RH, Montgomery DC, Vining GG, Robinson TJ. Generalized Linear 
Models: With Applications in Engineering and the Sciences: Second 
Edition. 2012.

 51. Lee D, Kang H, Kim E, Lee H, Kim H, Kim YK, et al. Optimal likelihood‑
ratio multiple testing with application to Alzheimer’s disease and 
questionable dementia Data analysis, statistics and modelling. BMC 
Med Res Methodol. 2015;15:1–11.

 52. Kidziński L, Hui FKC, Warton DI, Hastie T. Generalized Matrix Factoriza‑
tion. arXiv Prepr. 2020. http:// arxiv. org/ abs/ 2010. 02469.

 53. Sum J, Leung CS, Young GH, Kan WK. On the Kalman filtering method 
in neural‑network training and pruning. IEEE Trans Neural Networks. 
1999;10:161–6.

 54. Lue HH. On principal Hessian directions for multivariate response 
regressions. Comput Stat. 2010;25:619–32.

 55. Herliansyah R, Fitria I. Latent variable models for multi‑species counts 
modeling in ecology. Biodiversitas. 2018.

 56. Ormerod JT, Wand MP. Explaining variational approximations. Am Stat. 
2010;64:140–53.

 57. Tzikas DG, Likas AC, Galatsanos NP. The variational approximation for 
Bayesian inference. IEEE Signal Process Mag. 2009.

https://doi.org/10.1002/0471249688
https://doi.org/10.1002/0471249688
https://doi.org/10.1186/s40537-019-0217-0
https://doi.org/10.1186/s40537-019-0217-0
http://arxiv.org/abs/1806.11248
https://doi.org/10.1002/9780470316757.ch1
https://doi.org/10.1002/9780470316757.ch1
https://doi.org/10.1007/s11336-018-9624-y
https://doi.org/10.1007/s11336-018-9624-y
http://arxiv.org/abs/2010.02469


Page 17 of 17Caraka et al. BMC Medical Research Methodology           (2022) 22:77  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 58. Shun Z, McCullagh P. Laplace Approximation of High Dimensional Inte‑
grals. J R Stat Soc Ser B. 1995.

 59. Adibi A, SHARIFI M. Semiconductor Device Simulation by a New Method 
of Solving Poisson, Laplace and Schrodinger Equations. Int J Eng. 
2000;13:89–94.

 60. Mohammadpoory Z, Haddadnia J. Speech Enhancement Using Laplacian 
Mixture Model under Signal Presence Uncertainty. Int J Eng. 2014;27 9 
(C):1367–76.

 61. Corrado A, Roussos C, Ambrosino N, Confalonieri M, Cuvelier A, Elliott M, 
et al. Respiratory intermediate care units: A European survey. Eur Respir J. 
2002;20:1343–50.

 62. Losiouk E, Lanzola G, Galderisi A, Trevisanuto D, Steil GM, Facchinetti A, 
et al. A telemonitoring service supporting preterm newborns care in a 
neonatal intensive care unit. In: RTSI 2017 ‑ IEEE 3rd International Forum 
on Research and Technologies for Society and Industry, Conference 
Proceedings. 2017.

 63. Caraka RE, Noh M, Chen RC, Lee Y, Gio PU, Pardamean B. Connecting Cli‑
mate and Communicable Disease to Penta Helix Using Hierarchical Likeli‑
hood Structural Equation Modelling. Symmetry (Basel). 2021;13:1–21.

 64. Jin S. Essays on Estimation Methods for Factor Models and Structural 
Equation Models. Uppsala: Acta Universitatis Upsaliensis; 2015.

 65. Jin S, Lee Y. A review of h‑likelihood and hierarchical generalized linear 
model. WIREs Comput Stat. 2020; July:1–23. doi:https:// doi. org/ 10. 1002/ 
wics. 1527.

 66. Jin S, Vegelius J, Yang‑Wallentin F. A Marginal Maximum Likelihood 
Approach for Extended Quadratic Structural Equation Modeling with 
Ordinal Data. Struct Equ Model. 2020;27:864–73. doi:https:// doi. org/ 10. 
1080/ 10705 511. 2020. 17125 52.

 67. Jin S, Noh M, Yang‑Wallentin F, Lee Y. Robust nonlinear structural equa‑
tion modeling with interaction between exogenous and endogenous 
latent variables. Struct Equ Model. 2021;:1–10.

 68. Felleki M, Lee D, Lee Y, Gilmour AR, Rönnegård L. Estimation of breeding 
values for mean and dispersion, their variance and correlation using 
double hierarchical generalized linear models. Genet Res (Camb). 
2012;94:307–17.

 69. Lee Y, Noh M. Modelling random effect variance with double hierarchical 
generalized linear models. Stat Modelling. 2012;12:487–502.

 70. Lee Y, Rönnegård L, Noh M, Lee Y, Rönnegård L, Noh M. Double HGLMs 
‑ Using the dhglm Package. In: Data Analysis Using Hierarchical General‑
ized Linear Models With R. 2017.

 71. Caraka RE, Lee Y, Chen RC, Toharudin T. Using Hierarchical Likelihood 
towards Support Vector Machine: Theory and Its Application. IEEE Access. 
2020;8:194795–807.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1002/wics.1527
https://doi.org/10.1002/wics.1527
https://doi.org/10.1080/10705511.2020.1712552
https://doi.org/10.1080/10705511.2020.1712552

	Big data ordination towards intensive care event count cases using fast computing GLLVMS
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Generalized Linear Models
	Generalized Linear Latent Variable Models
	Model Selection

	High dimension data
	Results and discussion
	Conclusions
	Acknowledgements
	References


