
Frontiers in Immunology | www.frontiersin.

Edited by:
Karl Kuchler,

Medical University of Vienna, Austria

Reviewed by:
Zhengkai Wei,

Foshan University, China
Shahzad Ali,

University of Veterinary and Animal
Sciences, Pakistan

*Correspondence:
Shuai Chen

chenshuai@mail.com
Yuanyi Peng

pyy2002@sina.com
Yaoyao Xia

yaoyaoxia2018@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 22 March 2021
Accepted: 13 May 2021
Published: 31 May 2021

Citation:
He F, Wu X, Zhang Q, Li Y, Ye Y, Li P,

Chen S, Peng Y, Hardeland R and
Xia Y (2021) Bacteriostatic Potential of

Melatonin: Therapeutic Standing
and Mechanistic Insights.

Front. Immunol. 12:683879.
doi: 10.3389/fimmu.2021.683879

REVIEW
published: 31 May 2021

doi: 10.3389/fimmu.2021.683879
Bacteriostatic Potential
of Melatonin: Therapeutic Standing
and Mechanistic Insights
Fang He1,2†, Xiaoyan Wu2†, Qingzhuo Zhang2, Yikun Li2, Yuyi Ye2, Pan Li1, Shuai Chen3*,
Yuanyi Peng1*, Rüdiger Hardeland4 and Yaoyao Xia2*

1 College of Veterinary Medicine, Southwest University, Chongqing, China, 2 Guangdong Laboratory of Lingnan Modern
Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and
Feed, College of Animal Science, South China Agricultural University, Guangzhou, China, 3 Institute of Subtropical Agriculture,
Chinese Academy of Sciences, Changsha, China, 4 Johann Friedrich Blumenbach Institute of Zoology and Anthropology,
University of Göttingen, Göttingen, Germany

Diseases caused by pathogenic bacteria in animals (e.g., bacterial pneumonia, meningitis
and sepsis) and plants (e.g., bacterial wilt, angular spot and canker) lead to high
prevalence and mortality, and decomposition of plant leaves, respectively. Melatonin,
an endogenous molecule, is highly pleiotropic, and accumulating evidence supports the
notion that melatonin’s actions in bacterial infection deserve particular attention. Here, we
summarize the antibacterial effects of melatonin in vitro, in animals as well as plants, and
discuss the potential mechanisms. Melatonin exerts antibacterial activities not only on
classic gram-negative and -positive bacteria, but also on members of other bacterial
groups, such as Mycobacterium tuberculosis. Protective actions against bacterial
infections can occur at different levels. Direct actions of melatonin may occur only at
very high concentrations, which is at the borderline of practical applicability. However,
various indirect functions comprise activation of hosts’ defense mechanisms or, in sepsis,
attenuation of bacterially induced inflammation. In plants, its antibacterial functions involve
the mitogen-activated protein kinase (MAPK) pathway; in animals, protection by melatonin
against bacterially induced damage is associated with inhibition or activation of various
signaling pathways, including key regulators such as NF-kB, STAT-1, Nrf2, NLRP3
inflammasome, MAPK and TLR-2/4. Moreover, melatonin can reduce formation of
reactive oxygen and nitrogen species (ROS, RNS), promote detoxification and protect
mitochondrial damage. Altogether, we propose that melatonin could be an effective
approach against various pathogenic bacterial infections.

Keywords: melatonin, bacteriostasis, MAPKs, NF-kB, ROS, inflammasome, sepsis
INTRODUCTION

Bacteria include both pathogenic and beneficial species and are universally present in all ecosystems
as colonizers of hosts (1). Bacteria can be beneficial in multiple ways, for example, Lactobacillus and
Bifidobacterium species are used for yoghurt production (2, 3), Lactococcus species and others in
cheese production (4, 5), methane producing bacteria for methane production (6), Corynebacteria
org May 2021 | Volume 12 | Article 6838791
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for monosodium glutamate formation (7) and Acetobacter for
vinegar generation (8). Bacteria, being a normal flora can also
benefit hosts, such as, Lactobacillus species can inhibit
inflammation by competing with pathogens or stimulating skin
barrier recovery (9). Most, but not all bacteria present in the gut
microbiome, which contains slightly more cells than a human
body, can be also classified as being beneficial and relevant to
health, as far as it possesses a favorable compostion (10).
Pathogenic bacteria may cause mild, severe and even life-
threatening diseases [e.g., septicemia (11), pneumonia (12) and
meningitis (13)]. In terms of accessibility to treatments, the
bacterial surface structures are of great importance. These are
partially detectable by gram staining (14), according to which
they are categorized as gram positive bacteria (GPB), gram
negative bacteria (GNB), and others (15, 16). Examples of
pathogenic GPB (PGPB) comprise Staphylococcus aureus (S.
aureus) (17), Streptococcus pneumoniae (S. pneumoniae) (18)
and Bacillus anthracis (B. anthracis) (19). Pathogenic GNB
(PGNB) include Escherichia coli (E. coli) (20), Helicobacter
pylori (H. pylori) (21), Pseudomonas aeruginosa (P. aeruginosa)
(22), Acinetobacter baumannii (A. baumannii) (23), and
Klebsiella pneumoniae (K. pneumoniae) (24). Another
important pathogen, Mycobacterium tuberculosis (M.
tuberculosis) (25) possesses a special waxy coating of its cell
wall by mycolic acid, which largely prevents gram staining,
although the cell wall structure resembles that of other GPBs
and is, thus, devoid of an outer membrane (26). Also in genetic
terms, Mycobacterium species are GPB-like, but the different
surface has consequences to treatment.

Bacterial infections caused by pathogenic bacteria severely
threaten public health worldwide (27, 28). Historically, the
various antibiotics (e.g., penicillin, tetracycline and their
derivatives as well as numerous other similarly acting
compounds) usually represent the preferred armory for
fighting bacterial infections (29). However, new problems (i.e.,
antibiotic resistance and residues) occur since the overuse and
misuse of antibiotics (30–32); therefore, the development of new
antibiotics that can effectively kill pathogenic bacteria and do not
give rise to problematic metabolites is a matter of highest
urgency. Given that very few compounds are currently under
Abbreviations: GPB, gram positive bacteria; GNB, gram negative bacteria; PGPB,
pathogenic gram positive bacteria; PGNB, Pathogenic gram negative bacteria; S.
aureus, Staphylococcus aureus; S. pneumoniae, Streptococcus pneumoniae; B.
anthracis, Bacillus anthracis; E. coli, Escherichia coli; H. pylori, Helicobacter
pylori; P. aeruginosa, Pseudomonas aeruginosa; A. baumannii, Acinetobacter
baumannii; K. pneumoniae, Klebsiella pneumoniae ; M. tuberculosis ,
Mycobacterium tuberculosis; C. albicans, Candida albicans; B. subtilis, Bacillus
subtilis; P. vulgaris, Proteus vulgaris; MRSA, methicillin-resistant S. aureus; ALS,
Amyotrophic lateral sclerosis; 5-MT, 5-methoxytryptamine; 6-MBOA, 6-
methoxy-2-benzoxazolinone; ETEC, enterotoxigenic Escherichia coli; EHEC,
enterohemorrhagic E. coli; EPEC, enteropathogenic E. coli; Xoo: Xanthomonas
oryzae pv. Oryzae; AANAT, arylalkylamine-N-acetyltransferase; ASMT, N-
acetylserotonin O-methyltransferase; PmCQ2, Pasteurella multocida serotype A
strain CQ2; TB, tuberculosis; LA, Linoleic acid; LPO, peroxidation; CAT, catalase;
CRP, C-reactive protein; SOD, superoxide dismutase; GSH, glutathione; NET,
neutrophil extracellular trap; GM-CSF, granulocyte-monocyte colony-stimulating
factor; OXI 1, oxidative signal-inducible.
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development or approval in the clinical setting, hence,
repurposing compounds for novel application may become a
productive alternate strategy for the combat against
bacterial pathogens.

Melatonin, which shows a wide distribution within
phylogenetically distant organisms from bacteria to humans
(33), is synthesized from tryptophan and produced in pineal
gland and in numerous other organs of vertebrates (e.g., gut, skin
and bone marrow) (34–36). Melatonin is involved in many
physiological processes, as summarized comprehensively (37,
38). In particular, this includes growth modulation and
reproduction (39), immune regulation (40–43), anti-
inflammation (44–47), antioxidative protection (48–51) and
antioncogenic action (52, 53). Meanwhile, increasing evidence
has accumulated for remarkable antibacterial actions of
melatonin, including protection against damage by bacterial
infections. For instance, melatonin has been reported to exert
antibacterial effects in PGPB and PGNB in vitro, concerning P.
aeruginosa, A. baumannii and S. aureus (54). Melatonin has also
been shown to protect Arabidopsis and tobacco against
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) (55),
suggesting that melatonin reduces biotic stress by bacterial
infection in plants. Also in mammals, several reports have
demonstrated substantial effects of melatonin in protecting
against or alleviating bacterial infections. In mice infected with
S. aureus and E. coli, symptoms were strongly attenuated by
melatonin (56). More impressive evidence has been obtained in
septic mice treated with cecal ligation and puncture, in which the
decisive effects of melatonin were related to inhibition of NO-
mediated inflammation in connection with mitochondrial
protection (57–59). Efficacy of melatonin was also multiply
demonstrated in human sepsis, including that of neonates,
which again underlines the excellent tolerability of this agent
(60–62). Despite the emerging role of melatonin in fighting
against bacterial infections, the protection mechanisms are
only evident in the above-mentioned murine studies, plus
additional anti-inflammatory effects that have been recently
summarized (46, 63). Concerning protection against bacterial
infections in plants, promising data have been obtained on the
effects of stress-related genes and phytohormones, but still
require further elucidation. Of note, with regard to these
numerous highly valuable and beneficial organisms, which also
represent an immunological quasi-self, one should melatonin not
expect to generally act as an anti-bacterial agent. Moreover,
various bacteria tested in this regard have been shown to
synthesize themselves melatonin, sometimes in relevant
quantities (64, 65). Among intestinal bacteria, the formation of
melatonin was first described in Escherichia coli (66). Bacteria are
even regarded as the evolutionary source of melatonin in
eukaryotes, in connection with the uptake of a-proteobacteria
and cyanobacteria as ancestors of mitochondria and plastids,
respectively (67, 68). This has an important consequence for the
consideration of melatonin as a bacteria-controlling agent. As
many bacteria synthesize this compound or live, at least, in close
community with melatonin-producing microbes, one cannot
expect anti-bacterial effects at low doses of melatonin to which
May 2021 | Volume 12 | Article 683879
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these organisms are exposed anyway under physiological
conditions. However, this does not hinder bacteriostatic
actions at elevated concentrations and protection of hosts from
damage by bacteria or by inflammatory responses induced by
bacterial challenges.

In this review, we summarize the findings related to the
antibacterial actions of melatonin in vitro and in vivo.
Thereafter, we detailedly discuss the potential mechanisms
whereby melatonin influences pathogenic bacteria as well as
their deleterious effects on hosts. These concern: 1) in vitro:
formation and detoxification of free radicals; regulation of
bacterial replication by interference with the cell wall and
exhaustion of intracellular substrates and micronutrients (e.g.,
iron); blockade of bacterial glucose and glutamate metabolism as
related to bacterial cell division; 2) in plants: upregulation of
genes related to phytohormone-dependent defense signaling as
well as MAPK signaling; 3) in animals: involvement of multiple
signaling pathways (e.g., NF-kB, STAT1 and Nrf2) related to
anti-inflammatory and antioxidant control and mitochondrial
protection. The review highlights the huge potential of melatonin
in counteracting the growing threat of bacterial infections.
THE BASIC PHYSIOLOGY,
PATHOPHYSIOLOGY AND CLINICAL
SAFETY OF MELATONIN

Melatonin is a methoxyindole, mainly synthesized and secreted
by the pineal gland at night under normal light and dark
conditions, the main physiological functions of melatonin are
related to hormonal properties (69). Melatonin transmits the
information "darkness" and contributes to the synchronization of
circadian oscillators (70), which is an important physiological
sleep regulator in diurnal species including humans (71). In
addition, melatonin is involved in numerous other physiological
processes, such as regulation of blood pressure (72), glucose (73),
and body temperature (74), suppression of oncogenesis (75),
immune function (41), oxidative stress and inflammation (76). It
is recognized that the "physiological" dose is the same as the peak
plasma melatonin level at night, and the difference between the
physiological and pharmacological effects of melatonin is not
always clear, but is based on the consideration of the dosage
rather than the duration of the hormone message (77). Indeed,
the secretion of melatonin can be disturbed in the context of
many pathophysiological conditions, which may increase the
susceptibilities of the diseases (including infectious diseases) as
well as increase the severity of symptoms or change the courses
and outcomes of the diseases (78).

Of note, safety is important when melatonin is considered for
clinical treatment. Clinically, 3mg, 6 mg and 10 mg melatonin
showed satisfactory safety in patients (79–81). Moreover, there
was no side effect of 1g/d melatonin for a month in humans (82).
It has been shown that melatonin doses up to 800 mg/kg failed to
cause any death in mice and it was impossible to obtain its LD50
(median lethal dose) in rats (83, 84). In study on Amyotrophic
lateral sclerosis (ALS) patients, melatonin 300 mg/day was
Frontiers in Immunology | www.frontiersin.org 3
applied for 2 years and found to be safe (85). However, a trial
of long-term controlled melatonin release for the treatment of
sleep disorders in children with neurodevelopmental disabilities
reported mild adverse effects, including seizures, cold/flu/
infection, gastro-intestinal illness, agitation, anxiety and
headache (86). In addition, the short- and intermediate-term
administration of melatonin produced only minor adverse effects
such as agitation, dizziness, headache, nausea and sleepiness in
clinical studies on children; in clinical studies on adults,
dizziness, paresthesias in the mouth, arms or legs, mild
headaches, numbness and dyspnea aggravated; psychomotor
impairment, sedation, disorientation, and amnesia in surgical
patients; mild headache, increased sleepiness and skin rash in
critically ill patients; daytime sleepiness in elderly (87, 88).
Moreover, a recent systematic review showed that the most
frequently reported melatonin adverse effects were daytime
sleepiness (1.66%), dizziness (0.74%), headache (0.74%), other
sleep-related adverse events (0.74%), and hypothermia (0.62%);
but serious or clinical significance adverse events, including
agitation, palpitations, nightmares, mood swings, fatigue, and
skin irritation, were very few (89). Therefore, compared to other
antibiotics, as a natural small molecule, melatonin is relatively
safe with a low risk of side effects. However, the effect and safety
of melatonin should be carefully monitored when melatonin is
used clinically.
BACTERIOSTATIC ACTIONS OF
MELATONIN IN VITRO AND THEIR
UNDERLYING MECHANISMS

Historically, a great diversity of studies aimed to investigate
whether melatonin does possess bacteriostatic actions. Initially,
melatonin has only been shown to strongly reduce the lipid levels
of the yeast Candida albicans (C. albicans) (90). Subsequently,
one comparative study found that some pineal indoles that share
a similar structure with melatonin possess antibacterial activities.
For instance, 5-methoxytryptamine (5-MT), which is both a
metabolite and precursor of melatonin (65), exhibits
antibacterial actions against S. aureus and Bacillus subtilis (B.
subtilis), and 6-methoxy-2-benzoxazolinone (6-MBOA) against
Proteus vulgaris (P. vulgaris). However, no corresponding
antibacterial effect was observed in the case of melatonin (91).
Later, it has been reported that melatonin (31.25~125 mg/mL:
0.13-0.53 mM) is able to suppress the growth of PGPB (e.g., S.
aureus) and PGNB (e.g., P. aeruginosa and A. baumannii) by
reducing key intracellular substrates in vitro (54). Intriguingly,
melatonin could also inhibit the growth of the atypical GPB M.
tuberculosis, while the exact mechanism has not yet been
identified (92). In this section, we present further evidence for
antibacterial activities of melatonin against PGPBs and PGNBs
in vitro, and we also discuss the potential mechanisms.

The antimicrobial resistance among GPBs (chiefly S. aureus,
Enterococcus faecium, Enterococcus faecalis and Streptococcus
pneumoniae) has become a serious threat to public health,
spurring the development of new compounds against
May 2021 | Volume 12 | Article 683879
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infections (93, 94). In an early study, melatonin had been shown
to moderately inhibit the growth of S. aureus (95). This was later
also reported for the methicillin-resistant S. aureus (MRSA), but
this required concentrations in the millimolar range (54).
However, another investigation showed that the antibacterial
action against S. aureus and/or MRSA of flouroquinolones was
substantially diminished by melatonin via reduction of oxidative
stress in the bacterial cells (96). Additional bacteria had been also
tested in some studies (54, 95, 96), but melatonin’s efficiency
against other important PGPBs, such as Enterococcus faecium,
Enterococcus faecalis and Streptococcus pneumoniae remains to
be demonstrated.

PGNBs are also a major challenge in public health, such as P.
aeruginosa (97) and A. baumannii (98). P. aeruginosa is one of
the main opportunistic pathogenic bacteria in hospitals (99, 100),
which often results in post-operative (101) or post-burn wound
infections (102), bacteremia (103) and sepsis (104).
Antimicrobial resistance also exists in P. aeruginosa, it has
been discovered that melatonin has a direct suppressive role in
carbapenem-resistant P. aeruginosa (54). CBR-4830 (a tricyclic
indole analog which shows chemical similarity to melatonin),
was supposed to suppress the growth of P. aeruginosa (105). A.
baumannii, is a conditional pathogen (106), which often leads to
pneumonia (107), meningitis (108) and bacteremia (109). It
causes hospital infection frequently (110) and is often resistant
to a variety of antimicrobial agents (111), bringing great
difficulties to the clinical treatment. Fortunately, melatonin
effectively inhibits the growth of A. baumannii (54), suggesting
it may be suitable as adjunctive therapy in hospital infection.
Similarly, we also found that melatonin could inhibit the growth
of enterotoxigenic Escherichia coli (ETEC) and Pasteurella
multocida serotype A strain CQ2 (PmCQ2) (unpublished
data). Of note, melatonin was reported to moderately reduce
surface hydrophobicity, a characteristic associated with the
colonization of mammalian epithelia, inhibiting the adherence
of E.coli; however, the reduction of surface hydrophobicity in E.
coli remained at borderline and was only observed at high
concentrations (0.2 mM) (112). In contrast, another study by
the same group reported that melatonin instead increased cell
surface hydrophobicity of Neisseria meningitidis (113). Thus, the
influence of melatonin on surface hydrophobicity is obviously
variable, which would require a convincing explanation,
especially as the authors had tried to relate these effects to
melatonin’s antioxidant properties (112).

M. tuberculosis, an atypical PGPB whose cell wall is coated by
mycolic acid (26), is the main pathogen of tuberculosis (TB) in
humans (25, 114) and various mammals (115, 116). In addition
to dormancy and persistence, drug resistance is a major obstacle
in the treatment of TB (117). Therefore, it is urgent to seek for
sensitive anti-TB drugs or methods to enhance the sensibility of
existing antimicrobial agents. In the earlier literatures, the
protective function of melatonin against M. tuberculosis was
evaluated with isoniazid in vitro, experiments that did not reveal
significant growth inhibitions by either isoniazid (0.005 to 0.01
mg/mL) or melatonin (0.26 nM to 2.6 nM) alone, but by a
combination of isoniazid (0.005 mg/mL) and melatonin (0.01
Frontiers in Immunology | www.frontiersin.org 4
mg/mL) (61, 92). Furthermore, the bacteriostatic capacity of
melatonin was also reported forM. tuberculosis (3×107 CFU/mL,
3×105 CFU/mL, 3×103 CFU/mL) treated with different
concentrations of melatonin (0.05, 0.1, 0.2 and 0.4 mg/mL) in
vitro (118). However, the extent of inhibition was not quantified
in that study. Collectively, melatonin can affect pathogenic
bacteria in some cases directly (e.g., inhibition of growth and
adherence), which has been summarized in Table 1. It is likely
concluded that the effectiveness of melatonin on pathogenic
bacteria is obvioulsy variable, and may depend largely on its
working concentrations. Current studies have centered on
melatonin’s antibacterial activities on GNB, while the
bacteriostatic capability of melatonin against other specific
bacteria (especially antimicrobial resistant-GNB) is still
poorly characterized.

As mentioned above, melatonin could exhibit bacteriostatic
action against pathogenic bacteria; however, the potential
mechanisms are not fully understood. Actually, there are two
main hypotheses about bacteriostatic mechanisms of melatonin
in vitro. It has been well documented that the growth of bacteria
urgently requires metals, particularly free iron (121).
Considering that melatonin has a high metal binding capacity,
including iron, copper and zinc (122), thus, the addition of
melatonin may reduce cytoplasmic availability of metal ions in
bacteria to achieve the bacteriostatic effects (Figure 1A).
Moreover, the membrane of bacteria is imbued with
phospholipids (123, 124), and study has shown that melatonin
can restrict the absorb of Linoleic acid (LA) used for facilitating
cell proliferation (125). Therefore, melatonin may inhibit
proliferation of bacteria by blocking the getting of bacterial
growth factors (Figure 1B). These convincing findings indicate
that melatonin inhibits the bacterial growth may through
reducing intracellular substrates (54). Interestingly, a recent
study declared that melatonin inhibits bacterial growth and
proliferation by regulating the expression of genes associated
with cell division (Figure 1C) and suppressing contents as well as
activities of metabolism-related enzymes (Figure 1D) (119).
These interesting results imply that melatonin could affect
bacteria physiological condition by intrinsic molecular
mechanisms; however, the experimental validation is still
needed. Of note, our recent findings also demonstrated that
melatonin exerts antibacterial activity against GNB (e.g.,
Klebsiella, Pasteurella multocida and Pseudomonas aeruginosa)
through specifically inhibiting the activity of bacterial citrate
synthase (Figure 1E), and the combination of colistin with
melatonin enhances bacterial outer membrane permeability,
oxidative damage and inhibits the effect of efflux pumps
(Figure 1F) (126).
BACTERIOSTATIC ACTIONS OF
MELATONIN IN VIVO AND THEIR
UNDERLYING MECHANISMS

Melatonin not only has antibacterial effect in vitro, but also plays
a significant role in the clinical prevention and treatment of
May 2021 | Volume 12 | Article 683879
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bacterial infections in vivo (61). The inhibitory effects of
melatonin in vivo includes both on PGPB [e.g., S. aureus (56)
and S. pneumoniae (127)] and PGNB [e.g., E.coli (128), H. Pylori
(129) and K. pneumonia (130)]. For example, in many GNB-
infected animal models (e.g., sepsis), melatonin has a favorable
effect in improving survival rates, ameliorating tissue damage
and reducing levels of pro-inflammation mediators (e.g., TNF-a
Frontiers in Immunology | www.frontiersin.org 5
and IFN-g), and increasing levels of anti-inflammation mediators
(e.g., IL-10) (131, 132). Notably, various signaling have been
described to shape bacterial infection in vivo by melatonin,
including NF-kB, Nrf2, NLRP3 and ROS pathways. In this
section, firstly, we present the evidence from studies that have
used melatonin to resist bacterial infections in vivo.
Subsequently, we illustrate the possible mechanisms.
FIGURE 1 | The possible bacteriostatic mechanisms of melatonin in vitro. Melatonin inhibits the growth of bacteria through these avenues: reducing cytoplasmic
availability of metal ion (A); interfering cell wall formation, for example, melatonin restricts the absorb of Linoleic acid (LA), which makes up the cell wall, thus limiting
cell proliferation (B); melatonin can also regulate the expressions of genes associated with cell division (C) or suppress the content and activity of metabolism-related
enzymes (D) to inhibit bacterial growth and proliferation; melatonin resists against Gram-negative bacteria through inhibiting bacterial citrate synthase and reducing
the synthesis of citric acid (E), besides, when melatonin is combination with colistin, bacterial outer membrane permeability and oxidative damage are enhanced, and
the effect of efflux pumps is inhibited (F), leading to increased bacteria damage. Note: minus in parentheses represents decrease; plus in parentheses represents
increase; and the red line represents inhibition; the black arrow indicates activation.
TABLE 1 | The antibacterial action of melatonin in vitro on different bacteria.

Bacteria Dosage Time Effects Ref.

Carbapenem-resistant P. aeruginosa 31.25 or 125 mg/mL
(0.13 or 0.53 mM)

24 or 48
h

Inhibition of carbapenem-resistant P. aeruginosa growth (54)

Carbapenem-resistant A. baumannii 31.25 or125 mg/mL
(0.13 or 0.53 mM)

24 or 48h Inhibition of crbapenem-resistant A. baumannii growth (54)

Methicillin-resistant S. aureus 125 or 250 mg/mL
(0.53 or 1.07 mM)

24 or 48h Inhibition of methicillin-resistant S. aureus growth (54)

S. aureus
ATCC 29123

125 or 250 mg/mL
(0.53 or 1.07 mM)

24 or 48h Inhibition of S. aureus (ATCC 29123) growth (54)

P. aeruginosa
ATCC 27853

125 or 250 mg/mL
(0.53 or 1.07 mM)

24 or 48h Inhibition of P.aeruginosa (ATCC 27853) growth (54)

M. tuberculosis H37Rv 26.0 nM
0.01 to 10 mM

unknown Inhibition of M. tuberculosis H37Rv growth
The antibacterial efficacy of melatonin with isoniazid increased at least a
threefold

(92)

M. tuberculosis bovis BCG 0.13 to 10 mM unknown Inhibitin of M. bovis BCG growth (92)
Multidrug-resistant M. tuberculosis (TBRI
40 and TBRI 204)

0.01 to 10 mM unknown Inhibition of multidrug-resistant M. tuberculosis (TBRI 40 and TBRI 204) growth (92)

Xanthomonas oryzae pv. Oryzae (Xoo) 200 mg/mL 12, 21 or
24 h

Inhibition of Xoo proliferation, motility and biofilm formation
Alteration of Xoo cells length
Downregulation of mRNA expression of genes involved in cell division,
carbohydrate metabolism and amino acid metabolism

(119)

Xanthomonas oryzae pv. Oryzicola Xoc) 200 mg/mL 24 h Inhibition of Xoc growth, the motility and biofilm formation
Reduction of mRNA expression of genes related to toxin and cell division (120)
May 2021 | Volume 12 | Article 68
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S. aureus always causes many serious infections in human
(133, 134). Virtually, melatonin not only inhibits the growth of S.
aureus in vitro, but also has significant defensive effects against S.
aureus-induced infection in vivo. For example, melatonin
reduces lipid peroxidation (LPO), catalase (CAT), neutrophil
recruitment, and TNF-a, IFN-g, IL-6, iNOS, COX-2 and C-
reactive protein (CRP), while increases superoxide dismutase
(SOD) and glutathione (GSH) in animals infected by S. aureus
(5 × 106 CFU/mL) (56). The pathogenicity of S. pneumoniae is
second only to S. aureus in pyogenic cocci (135), which triggers
major lobe pneumonia (136), meningitis (137), bronchitis (138).
Fortunately, it has found that melatonin has a certain inhibitory
effect on the infection of S. pneumonia (95). These
aforementioned findings indicate that melatonin can target
GPB to alleviate infections in vivo. However, it has been shown
that melatonin therapy fails to reduce neuronal injury in S.
pneumoniae-infected rabbit model, the possible reason may due
to the 12 h delay in the administration of melatonin after the
infection (139).

Historically, E. coli has been regarded as an integral part of
the normal intestinal flora (140), and was considered to be non-
pathogenic bacteria (141). Nevertheless, as the research moves
along, some special serotypes of E. coli [e.g., ETEC (142),
enterohemorrhagic E. coli (EHEC) (143) and enteropathogenic
E. coli (EPEC) (144)] are shown to be pathogenic to humans
and animals (especially infants and young animals) (145),
causing severe diarrhea (146) and sepsis (147). Some studies
have found that melatonin has a bacteriostatic effect in the
animals infected by E. coli, for instance, melatonin reduces LPO,
CAT, neutrophil recruitment, and TNF-a, IFN-g, IL-6, iNOS,
COX-2 and CRP, while increases SOD and GSH in animals
infected by E. coli (2.5 × 107 CFU/mL) (56, 148). H. Pylori is the
only microbial species known to survive in the human stomach
(149) to induce gastritis (150), gastrointestinal hemorrhage
(151) and gastric lymphoma (152). It has been revealed that
H. Pylori infection inhibits gastric mucosal melatonin
synthesizing enzymes [e.g., arylalkylamine-N-acetyltransferase
(AANAT) and N-acetylserotonin O-methyltransferase
(ASMT)] expression (153). Interestingly, melatonin facilitates
H. pylori eradication in patients with gastroduodenal ulcer by
omeprazole treatment (154–156), indicating melatonin can be
used as an adjuvant clinical drug against H. Pylori infection.
Furthermore, K. pneumonia is also a member of PGNB, isolated
from the sputum of patients with pneumonia (157), mainly
leads to pneumonia (158), septicemia (159) or bacteremia (160),
meningitis (161) and peritonitis (162). An experimental study
showed that the supply of 100 mg/kg of melatonin can reduce
pro-inflammatory cytokines, inhibit microglial activation, and
counteract neurocognitive damage in K. pneumoniae-infected
rats (130). Likewise, we also found that melatonin can inhibit
macrophage-mediated excessive inflammatory responses in
Pasteurella multocida (PmCQ2)-infected mice (unpublished
data). Of note, like GPB S. pneumoniae, the effect of
melatonin on inactivated Pasteurella multocida (P52 strain)
vaccine-mediated immune responses is time-dependent
evidenced by exogenous melatonin administration at 4 h post
Frontiers in Immunology | www.frontiersin.org 6
vaccination augments immune responses in rats in comparison
to 16 h post vaccination (163, 164).

Notably, melatonin has been demonstrated to increase survival
rates and improve organ function in several sepsis models (165,
166). The oxidative imbalance is one of the characteristics of sepsis
(167), and mitochondria play key roles in regulating sepsis-related
redox dysregulation (168).Mechanistically, melatonin can alleviate
sepsis symptoms by preventing mitochondria dysfunction via
ROS/RNS scavenging (169) and many other pathways (e.g.,
intra-mitochondrial SIRT3 and MAPK/ERK pathway) (170–
176). Inflammation is essential for the host to resist infection by
pathogenic bacteria, however, excessive inflammation is another
characteristic of the initial stage of sepsis, leading to organ
dysfunction and eventually death (177, 178).

Melatonin as a signal molecule of stress can be induced by the
pathogenic (but not the beneficial) bacteria invasion and the
increased melatonin level in hosts can improve the protective
effects or tolerance to the bacteria (179). In addition to inhibiting
pathogenic bacteria, melatonin has a beneficial effect on intestinal
flora (180, 181). For example, melatonin reprogramming of gut
microbiota improves lipid dysmetabolism to prevent obesity in
mice (182–185). Moreover, melatonin contributes to reshape gut
microbiota to alleviate neuroinflammation and metabolic disorder
in DSS-induced depression rats (186). Furthermore, melatonin
ameliorates ochratoxin A-induced liver inflammation, oxidative
stress and mitophagy involving in intestinal microbiota in mice
(187). Altogether, as summarize in Table 2, melatonin
may function as a novel compound to resist pathogenic
bacterial infections in vivo. However, the defensive effects of
melatonin against pathogenic bacteria are likely dose- and/or
time-dependent.

Notably, the mechanisms whereby melatonin exerts
bacteriostatic action in vivo are tightly associated with the
immune responses, for example, during polymicrobial
infection, melatonin treatment could promote the development
of the neutrophil extracellular trap (NET), whereas inhibits the
phagocytic activities of neutrophils (188). Indeed, mounting
evidences suggest that melatonin always exerts its physiological
effects via its receptors (e.g., MT1 and MT2). It has been
discovered that melatonin is able to improve the survival rate
of polymicrobial sepsis of mice through MT1 and MT2 receptor
(Figure 2A) (189). Melatonin also alleviates acute lung injury
induced by LPS via inhibiting the activation of NLRP3
inflammasome (Figure 2B) (190). Melatonin could dose-
dependently reduce pro-inflammatory cytokine TNF-a, IL-6
and IL-8, increase anti-inflammatory cytokine IL-10 and
improve survival, which are associated with p38MAPK and
NF-kB signaling pathway (173, 191–195) (Figure 2C).
Moreover, melatonin could block LPS (which is from P.
intermedia)- induced activation of NF-kB signal ing
(Figure 2D) and STAT1 pathway (Figure 2E), thereby
inhibiting the production of inflammatory mediators (e.g., NO
and IL-6) (196, 197). Likewise, it has found that melatonin can
reduce pro-inflammatory mediators [e.g., IL-1b, IL-6, NO and
granulocyte-monocyte colony-stimulating factor (GM-CSF)],
while increase anti-inflammatory cytokine (e.g., IL-10) by
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activating Nrf2 pathway (Figure 2F) (198). Actually, melatonin
treatment can also alleviate H. pylori-induced gastritis through
regulating TGF-b1 and Foxp3 expression via the suppression of
TLR2 and activation of TLR4 (Figure 2G) (129), although the
molecular target of melatonin in the TLR signaling warrants
further investigation.
Frontiers in Immunology | www.frontiersin.org 7
Moreover, it should be noted that melatonin could be a
therapeutic alternative agent to fight bacterial infections due to
its antioxidant function. Intriguingly, melatonin inhibits
apoptotic cell dealth in colonic epithelial cells induced by
Vibrio vulnificus VvhA via MT2 (199). Mechanistically,
melatonin signaling via MT2 stimulates NCF-1 recruitment
FIGURE 2 | The bacteriostatic mechanisms of melatonin in animals. Melatonin receptors (e.g., MT1 and MT2) play a great role in mediating the functions of
melatonin. Melatonin reduces polymicrobial sepsis through MT1 and MT2, thus improving the survival rate of mice (A); notably, the mechanisms whereby melatonin
exerts bacteriostatic action in vivo are tightly associated with the immune responses, for instance, melatonin inhibits NLRP3 inflammasome to alleviate acute lung
injury (B); melatonin reduces pro-inflammatory cytokines, increases anti-inflammatory cytokines and improves survival through p38MAPK signaling pathway (C);
melatonin blocks LPS-induced activation of NF-kB (D) and STAT1 (E), thus inhibiting the production of inflammatory factors to modulate inflammation. Likewise,
suppression of inflammation also occurs when melatonin activates Nrf2, evidenced by reduced pro-inflammatory mediators (e.g., IL-1b, IL-6, NO and GM-CSF) and
increased anti-inflammatory cytokine (e.g., IL-10) (F); melatonin treatment can target TLR to alleviate H. pylori-induced gastritis by promoting TLR4 and inhibiting
TLR2 to regulate TGF-b1 and Foxp3 expression (G); of note, melatonin could be a therapeutic alternative agent to fight bacterial infections due to its antioxidant
function. For example, melatonin signaling via MT2 promotes NCF-1 recruitment from lipid rafts to non-lipid rafts to block the ROS-mediated JNK pathway,
preventing autophagic intestinal cell death (H); moreover, MT2 signaling inhibits the ROS-mediated phosphorylation of PKCd and ERK to reduce region-specific
hypermethylation in the Muc2 promoter, combating V. vulnificus infection (I). Note: plus in parentheses represents increase; and the red line represents inhibition; the
black arrow indicates activation.
TABLE 2 | The antibacterial action of melatonin in vivo infected with different bacteria.

Bacteria Dosage Time Effects Ref.

S. aureus 10 mg/
kg

At 17:00, 17:30,
18:00

Reducing expression of LPO, CAT, iNOS, COX-2 and production of TNF-a, IFN-g, IL-6, CRP,
increasing the production SOD and GSH

(56)

S. pneumoniae 2 mg/
mL

40 h Suppressing bacterial growth at a high concentration (95)

E. coli 10 mg/
kg

or 1nM

At 17:00, 17:30 and
18:00 or 70 s

Reducing expression of LPO, CAT, iNOS, COX-2 and production of TNF-a, IFN-g, IL-6, CRP,
increasing the production SOD and GSH

(56, 148)

H. Pylori 5 mg or
3 mg

21 days Increasing efficacy of H. pylori elimination,
Accelerating duodenal ulcer recovery

(154–156)

K. pneumonia 100
mg/kg

24 h Counteracting neurocognitive damage inhibiting microglial activation, and reducing pro-
inflammatory cytokine levels

(130)

Pasteurella multocida
(P52)

100mg/
kg

4 h Exogenous melatonin at 4 h post vaccination augments immune responses in rats. (163)

Pasteurella multocida
(PmCQ2)

30 mg/
kg,

60 mg/
kg,

120mg/
kg

12 h, 16 h, 24 h, 32 h Inhibiting macrophage-mediated excessive inflammatory responses Unpublished
May 2021 | Volume 12 | A
S. aureus, Staphylococcus aureus; S. pneumonia, Streptococcus pneumonia; E. coli, Escherichia coli; H. Pylori, Helicobacter Pylori; K. pneumonia, Klebsiella pneumonia; LPO, lipid
peroxidation; CAT, catalase; iNOS, inducible nitric oxide synthase, CRP, C-reactive protein; SOD, superoxide dismutase; GSH, glutathione.
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into non-lipid rafts from lipid rafts to block the ROS-mediated
JNK pathway, preventing rVvhA-induced apoptosis and
autophagic intestinal cell death (Figure 2H). Similarly,
melatonin treatment maintains the expression level of Muc2 in
the intestine of V. vulnificus-infected mouse. Mechanistically,
melatonin inhibits the ROS-mediated phosphorylation of PKCd
and ERK responsible for region-specific hypermethylation in the
Muc2 promoter via MT2 receptor, restoring the level of Muc2
production in intestinal epithelial cells to resist V. vulnificus
infection (Figure 2I) (200).

Collectively, melatonin could exert its bacteriostatic action in
vivo by various potential mechanisms, including NF-kB, STAT1,
Nrf2, TLR2/4, and ROS signaling (Figure 2). These
aforementioned findings may provide promising strategies for
controlling many diseases of public health importance. It should
not be neglected that melatonin has a significant antibacterial
effect in vitro; thus, whether the powerful effect of melatonin in
vivo is also directly inhibiting bacterial growth remains
further exploration.
BACTERIOSTATIC ACTIONS OF
MELATONIN IN PLANTS AND THEIR
UNDERLYING MECHANISMS

In addition to the significant bacteriostatic functions of
melatonin in vitro and in animals, melatonin also exerts
Frontiers in Immunology | www.frontiersin.org 8
similar function against pathogenic bacterial infections in
plants (201, 202). It has found that melatonin treatment
inhibits the growth, motility and capsule formation of the
bacterium Xanthomonas oryzae pv. oryzae (Xoo) (119), which
leads to bacterial blight in rice (203, 204). Melatonin increases
the resistance to Verticillium dahlia in cotton by regulating lignin
and gossypol biosynthesis (205), although the molecular
mechanisms are still not available. Authentically, it has been
demonstrated that Serotonin N-acetyltransferase (SNAT)-
deficient Arabidopsis shows lower melatonin levels and exhibits
susceptibility to pathogen infection (206). Conformably,
melatonin can trigger defense responses against Pst DC3000
infection in Arabidopsis and/or tobacco (55, 207, 208).
Mechanistically, melatonin-induced rise of NO that favors in
the expression of salicylic acid (SA)-related genes (e.g., AtEDS1,
AtPAD4, AtPR1, AtPR2 and AtPR5), conferring improved
disease resistance against Pst DC3000 infection in Arabidopsis
(Figure 3); however, the beneficial effects of melatonin could be
jeopardized by using a NO scavenger (cPTIO) and/or lost in NO-
deficient mutants of Arabidopsis (209). Furthermore, it has been
discovered that melatonin can active MPK3 and MPK6 signaling
(members of MAPKs), which are independent of G-protein and
Ca2+ signaling, and the inhibition of MPK3 and/or MPK6
induces reduced expression of defense and pathogen
resistance-related genes (e.g. PR1, PR2, and PR5) (55). Indeed,
melatonin activates MPK3 and MPK6 via four MKKs (i.e.,
MKK4/5/7/9) (210), and MAPKKK 3 and OXI 1 (oxidative
signal-inducible 1) kinases are responsible for triggering
FIGURE 3 | The bacteriostatic mechanisms of melatonin in plants. Antibacterial mechanisms against plant pathogenic bacteria are characterized by up-regulation of
defense genes such as plant defensin1.2 (PDF1.2), plant resistance 1/2/5 (PR1/2/5), and 1-aminocyclopropane-1-carboxylate synthase 6 (ACS6) through several
signal transduction pathways, including augmentation of NO levels in plants, which collaborates with melatonin in up-regulating SA. Moreover, melatonin can
stimulate mitogen-activated protein kinases (MAPKs) cascades, which in turn up-regulate SA biosynthesis gene isochorismate synthase 1 (ICS1). Additionally, high
cell wall invertase (CWI) activity within melatonin-treated Arabidopsis leads to improved cell wall strengthening and callose-depositing factors (cellulose, xylose, and
galactose).
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melatonin-induced defense signaling pathways (211). Therefore,
melatonin could mediate pathogen resistance in Arabidopsis and
tobacco by activating MAPKs signaling viaMKK4/5/7/9-MPK3/
6 cascades through the activation of MAPKKK 3 and OXI 1
(Figure 3). In conclusion, melatonin plays a critical bacteriostatic
role in Pst DC3000-infected Arabidopsis by MAPKs pathway.
Moreover, melatonin could improve cell wall strengthening and
callose-depositing factors (cellulose, xylose, and galactose) by
increasing cell wall invertase (CWI) activity in Arabidopsis
infected with Pst. DC3000 (Figure 3) (207). However, whether
melatonin could function as a signaling molecule in modulating
defense responses of other plants infected by various pathogenic
bacteria are still poorly defined.
CONCLUDING REMARKS

Melatonin has multifarious functions, like circadian rhythm
regulation (212, 213); anti-inflammatory/anti-tumor effects
(214, 215); and, with particular relevance to this article, anti-
bacterial function. Here, we summarize melatonin can directly
influence bacteria in vitro (e.g., inhibition of growth) by reducing
intracellular substrates. Considering that intestinal bacteria,
Enterobacter aerogenes, responds to the melatonin by an
increase in swarming activity, which is expressed rhythmically
(216); thus, it is meaningful to further investigate the potential
effects of melatonin in synchronizing bacterial rhythms in vitro.
Notably, melatonin resists pathogenic bacterial infections in vivo
by various pathways, such as NF-kB, TLR2/4, and ROS. Other
pathways seem to get involved as well, but further experimental
validation is needed. Furthermore, intestinal microbiota play a
crucial role in the progress of different diseases, including
bacterial infections in vivo (183, 217); therefore, it is necessary
to further investigate the intestinal microbiota-mediated
defensive roles of melatonin in attenuating bacterial infections
in vivo. Melatonin serves as a signaling molecule to resist
bacterial infections in Arabidopsis mainly through MAPK
pathway, whether other specific pathways connecting to the
bacteriostatic actions of melatonin in other plants or even
other specific bacteria also remain an open question.

In addition to its significant antibacterial effect, it is thought
that melatonin plays crucial roles in the fighting viral infections
(61). Melatonin was found to effective against Ebola hemorrhagic
Frontiers in Immunology | www.frontiersin.org 9
shock syndrome by inhibiting Rho/ROCK signaling (218).
Melatonin was also shown to protect mice infected with the
Venezuelan equine encephalitis virus (VEEV) by reducing viral
loads, brain apoptosis and oxidative stress (219, 220).
Additionally, melatonin also was reported to exert protective
and therapeutic effects against hemorrhagic disease virus (221),
respiratory syncytial virus (RSV) (222), aleutian disease virus
(223) and influenza virus (224). Recently, melatonin was
proposed to be a potential candidate drug as an adjuvant
treatment for patients with COVID-19 based on its
antioxidant, anti-inflammatory and immunomodulatory
properties (81, 225–227).

Overall, this review highlights melatonin as a novel and
feasible preventive and therapy to tackle the increasing threat
by bacterial infections. Based on the various physiological/
pharmacological functions of melatonin and its significant
anti-pathogenic effects, melatonin can be possibly used as
clinical agent against pathogens and even viruses in the future.
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