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In vivo quantitative assessment of skin lesions is an important step in the evaluation of skin condition. An objective measurement
device can help as a valuable tool for skin analysis. We propose an explorative new multispectral camera specifically developed
for dermatology/cosmetology applications. The multispectral imaging system provides images of skin reflectance at different
wavebands covering visible and near-infrared domain. It is coupled with a neural network-based algorithm for the reconstruction
of reflectance cube of cutaneous data. This cube contains only skin optical reflectance spectrum in each pixel of the bidimensional
spatial information.The reflectance cube is analyzed by an algorithm based on a Kubelka-Munkmodel combinedwith evolutionary
algorithm. The technique allows quantitative measure of cutaneous tissue and retrieves five skin parameter maps: melanin
concentration, epidermis/dermis thickness, haemoglobin concentration, and the oxygenated hemoglobin. The results retrieved
on healthy participants by the algorithm are in good accordance with the data from the literature. The usefulness of the developed
technique was proved during two experiments: a clinical study based on vitiligo and melasma skin lesions and a skin oxygenation
experiment (induced ischemia) with healthy participant where normal tissues are recorded at normal state and when temporary
ischemia is induced.

1. Introduction

Visual assessment of different skin pathologies is a result of
ambient light that enters the skin and is scattered and diffused
within it. The reemitted light carries important information
about the physical and optical tissue parameters. It is a com-
bination of selective absorption and scattering of specific light
wavelengths due to the physical properties of chromophores
composing the skin [1]. Well-trained dermatologists analyze
the skin color and interpret the clinical pathologies based
on their knowledge and experience. Dermatologists evaluate
lesion conditions based on the distribution, size, shape, bor-
der, and symmetry but mostly on the color aspect. Diagnoses
based on colour are subjective as colour perception depends
on human visual response to light. The human eye does not
have the same sensitivity for all wavelengths [2] and between
individuals. Colour is sensed by the human eye over the

visible wave range and is subjectively interpreted as a unique
sensation while it is a combination of wavelengths. This lack
of spectral discrimination means that the eye can be affected
by metamerism which potentially affects the analysis.

Imaging systems for skin analysis often try to mimic the
eye analysis. Nowadays, digital imaging systems aremore and
more available to clinicians, but imaging systems are mostly
restricted to colour cameras. Such systems are limited in
terms of spectral information as it is based on the trichro-
matic model [3]. It acquires spatially distributed information
which is useful for skin lesion followup [4]. However, it does
not take advantage of the skin/light interaction which occurs
over the whole spectrum range.

There is a growing awareness of skin disease condition
worldwide [5]. To improve the subjective assessmentmade on
colour information, several optical acquisition systems have
been developed to study the skin more objectively.
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Several studies [6–8] point out the possible differentia-
tion of skin variegation above specific wavelength values as
compared to healthy skin, meaning that spectral information
is an important tool of assessment. A reflectance spectrum
provides precise objective physical information compared to
subjective colour measurement. In vivo optical spectroscopy
is based on the study of light interaction of molecules with
electromagnetic radiation.

Spectroscopy measures the light intensity as a function of
wavelength in form of a spectrum.This type of measurement
is linked to the optical property of the skin and is a result
of the absorption, scattering, and emission properties of the
skin. Spectral acquisition from skin tissues returns quan-
titative information about its biochemical properties. This
technique is proved to be potentially useful to acquire skin
information [9].

Currently, there is no system that can replace the diag-
nosis abilities of experienced clinicians. However, the use of
optical instruments increases the amount of complementary
information to the dermatologist. It can potentially provide
information not detectable by the human eye and can lead
to objective skin chromophore quantification. This can be
obtained by combining advantages of both spectrophotome-
ter (spectral resolution) and digital camera (spatial resolu-
tion). multispectral imaging (MSI) systems overcome their
respective limitations (lack of spatial variation and lack of
spectral resolution).

The development of methods to assist diagnosis of skin
pathology is based on objective assessment of skin char-
acteristics. The study of skin reflectance can be correlated
with its biochemical and morphological composition to
reveal information about its condition. There exist two main
categories to analyze human skin reflectance spectrum.

One category is based on statistical analysis. Several
researches base their skin parameters retrieval bymultivariate
methods such as partial least squares regressions [10], support
vector machine (SVM) [11], or blind source separation (BSS)
[12] such as independent component analysis (ICA) [13]
or principal component analysis (PCA) [14] to determine
the concentration of skin chromophores. These techniques
assumed that skin reflectance is a linear combination of
different source component spectra weighed by their mixing
quantities.The techniques are based on composition assump-
tion. Generally, melanin and haemoglobin are assumed to
be the two main components of the skin. The techniques do
not have a priori information about the skin concentration
and scattering. This category of analysis can be affected
when the skin composition is different from the assumption.
These methods are based on strong hypothesis of the skin
composition and the results might be influenced when one
or more hypotheses are not satisfied.

Another category refers to the analysis of reflectance
spectra by means of physical models of light transportation
that are based on optical skin properties. Different light
propagation models have been developed such as model
based on Monte Carlo simulations [15, 16], Kubelka-Munk
[17, 18], and the modified Beer-Lambert law [19]. The
main motivation is to retrieve skin parameters by invers-
ing the model to match a measured reflectance spectrum.

This category of analysis is based on a priori physical
knowledge of skin absorption and scattering properties and
thickness. These methods tend to be more flexible regarding
the skin composition and are less likely to be affected by
unexpected data and to output incoherent results. A research
by Shi and Dimarzio [20] presents a hyperspectral imaging
system applied to foot wound care and analyzed datawith two
methods (Beer-Lambert law and two-layer optical model);
however, the system is limited to the visible range and only
three parameters (oxy/deoxyhaemoglobin concentration and
epidermis thickness) are retrieved. Moncrie et al. [21] have
developed a multispectral imaging system covering visible
and near-infrared light combine with an algorithm retrieving
five parameters (total melanin content of the epidermis and
papillary dermis, collagen and haemoglobin content, and the
presence of melanin in the papillary dermis) but does not
consider skin layer thickness.

As a result, our development focuses on a technology
combining a large amount of skin information (both spec-
trally and spatially) and analysis of the skin parameters
quantification. We address this problem by developing an
exploratory imaging system retrieving skin parameter maps
dedicated to dermatology/cosmetology.

In this contribution, the development of an integrated
MSI system which acquires spectral images is described. The
MSI reconstructs reflectance cubes which contain only the
spectral reflectance of cutaneous data bymeans of an artificial
neural-network algorithm.Hypercubes are analyzed by using
an inverse model of light propagation which retrieves skin
parameter maps based on the analysis of reflectance spectra
by means of a physical model of light transportation in skin.
Finally, the overall system is validated onhealthy anddiseased
skin lesions.

2. Materials and Methods

Our motivation is to provide a system for prospective study
of different skin lesions.The developedmultispectral imaging
(MSI) system covers visible and near-infraredwave range and
is suitable for dermatological and cosmetological constraints
(ergonomics and fast acquisition time). The overall system is
described in Figure 1.

2.1. ASCLEPIOS Multispectral Imaging System. The system
presented is called ASCLEPIOS, standing for analysis of skin
characteristics by light emission and processing of images
of spectrum. It is an extended version of a previous multis-
pectral camera limited to the visible [22]. AnMSI is generally
composed of elements similar to colour acquisition system
[23]; themain difference is the increased number of channels.

2.1.1. Setup. For ergonomic purpose, the system is separated
into two parts, an illumination system and a hand-held acqui-
sition device (see Figure 2). This setting has the advantage
of reducing the weight and size of the hand-held device and
minimizes the number of calibration steps.

The illumination system is composed of a light source
and a spectral selective device which is positioned in front
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Figure 1: Asclepios full system: from acquisition to skin parameter map retrieval.The system is defined in three steps: (1) the acquisition of a
multispectral image, (2) the reconstruction of a reflectance cube containing only skin reflectance information and finally, and (3) the retrieval
of skin parameters from the analyzed reflectance cube.
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Figure 2: Description of the multispectral imaging system.The sys-
tem is divided into two main parts: illumination device comprising
of light source and filterwheel and a hand-held devicewith a camera.
The system is controlled by a laptop and output reflectance cubes.

of the illumination. The light source is Lambda LS Xenon
Arc (Sutter Instrument, USA). It is a 175-watts light bulb with
spectral range from 380 to 1000 nm. The spectral selective
device is a filter wheel (Lambda 10-3, model LB10-NW, Sutter
Instrument, USA) holding a set of ten interference filters
(25mm diameter) which is placed in front of the light source
in the light compartment. Unlike Moncrieff et al. [24] who
studied the optimal selection of spectral filters to recover
human skin information in the visible range, we consider
equally divided filter in both the visible and near-infrared
range. The ten medium bandpass interference filters (CVI
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Figure 3: Spectral responses of the set of ten CVI Melles Griot
interference filters used in the system.

Melles Griot, USA) have been chosen from 420 to 960 nm.
The full width at half maximum of each filter is 80 nm;
there are overlays between the filters to compensate the
central wavelength tolerance guarantees by the manufacturer
(±16 nm) (see Figure 3). The choice of interference filters
for the spectral decomposition is motivated by the large
commercial offer available in terms of spectral band and
transmittance. The filter wheel controller is commanded by
a laptop connected via a USB interface.

Light at specific waveband is transmitted from the illumi-
nation system to the back of the hand-held device by a liquid
light guide.
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The hand-held device is a light opaque device which
protects the acquisition from external light; thus, the skin
is only illuminated with light at specific wavebands. The
device is composed of a wireless trigger, a camera, a lens, and
liquid light guide. The extremity of the hand-held device is
composed of a nozzle which sets a constant focus distance
of 10 cm between the skin area and the camera. The selected
camera consists of a 12 bits CMOSdigital sensor (ModelMV1-
D1312l-160-CL, Photonfocus, Switzerland) with a resolution
of 1312 × 1082 pixels and extended sensitivity in the visible
and near-infrared (370 to 1100 nm). A C-mount magnifying
lens (model MeVis-C, Linos, Germany) provides a useful
area of 32 × 38mm with a depth of field of 5mm, yielding
a spatial resolution of 33 pixels⋅mm−1. After positioning the
hand-held device extremity on the skin area under study,
the practitioner presses a wireless remote control located in
the handle. The pressure triggers the acquisition which is
performed in less than two seconds. If the patient is properly
installed during the acquisition process, we consider the
scene completely static. The system yields ten monoband
images which compose one multispectral image. The system
is operated using a personal computer running on Windows
XP operating system (Microsoft, Seattle, WA, USA). An
in-house software, developed using Visual C++ (Microsoft,
Seattle, Washington), controls the filter wheel rotation, the
image acquisitions, the reflectance cube reconstruction, and
the database.

2.1.2. Reflectance Reconstruction. The interest of ASCLEPIOS
system is its capacity to reconstruct reflectance cubes from
acquired multispectral images. To ensure reproducibility of
the reconstruction, a normalization is performed on each
multispectral image [25] before the reconstruction process.

The calibration removes systematic noise introduced
through the acquisition chain. Noise might cause distortion
to the real reflectance property of skin. The calibration is
applied to each monoband image. This specificity is linked
to the different exposure time of each monoband image but
also because dust or scratch might affect each filter. The
corrections assume that the sensor has a linear response.

A raw monoband image can be modelled as follows:

[𝑅] = [𝑂] + [𝑈 × 𝑆] , (1)

where [𝑅] is the raw image, [𝑂] is the offset, [𝑈] is the useful
signalwewant to extract, and [𝑆] is the sensor response.Using
the cited modelled, it is necessary to calibrate first the offset
noise and then pixel gain.

The offset corresponds to the intensity values that the
camera acquires when observing a black target. The offset
frame is obtained by averaging multispectral images of a
Spectralon gray-scale standard target with 2% reflectance and
is denoted [𝑂] in (1) (it is noted 𝑂 which stands for offset
frame). This process sets the zero level of the camera sensor
for every monoband image.

The [𝑆] is in most cases characterized by uneven intensi-
ties in an image of a uniform surface. This effect is generally
caused by nonuniform illumination, blemish on optical
elements, difference of sensitivity within the sensor, and

vignetting. Flat-field correction is the technique that removes
this effect. Its goal is to compensate any variation within
the detector for a given amount of light. The acquisition
of flat-field multispectral image is obtained by averaging
multispectral image of a spectralon gray-scale standard target
with 99% reflectance across the visible and is denoted 𝐹 and
stands for the flat-field image.

The gain correction image is composed of specific coeffi-
cient for each pixel of eachmonoband image.The coefficients
are obtained using the following formula:

[𝑆] =
[𝐹] − [𝑂]

DR
, (2)

where 𝐹 is the flat-field monoband image and DR is the
dynamic range of the camera. In the case of ASCLEPIOS, DR
is equal to 4.096, corresponding to 12 bits images.

The final correction of the raw image is applied using (2):

[𝑈] =
[𝑅] − [𝑂]

[𝑆]
. (3)

The cube reconstruction aims to extract only the skin
reflectance spectra in each pixel of the data acquired. In order
to reconstruct spectra linked to the physical properties of
the skin element, the proposed method takes into account
a model of light propagation in which the spectral response
of all the elements involved in the acquisition process is
employed (Figure 4) where 𝐼(𝜆) is the spectral radiance of
the illuminant, Φ

𝑘

(𝜆) is the spectral transmittance of the
𝑘th filter, 𝑟(𝜆) is the spectral reflectance of the surface, 𝑜(𝜆)
is the spectral transmittance of the optical system, 𝛼(𝜆) is
the spectral sensitivity of the camera and 𝑑

𝑘

is the acquired
image by the 𝑘th filter. Such model aims at separating each
element of the acquisition chain to only keep the reflectance
information 𝑟(𝜆).

There exist differentmethods to solve the inverse problem
of spectral reflectance estimation of an object from the
camera response. There are pseudoinverse calculus methods
and least-squares ones; however, these methods are affected
by noise amplification which is the major drawback. Another
method is based on the a priori spectral reflectance infor-
mation from the surface to be imaged. It is this method that
we select to perform the reconstruction of reflectance cubes
because this technique is robust to noise and moreover it has
generalization capabilities, meaning that it can reconstruct a
wide range of reflectance spectrum, even ones that it has not
learnt.

The reconstruction of reflectance cube is based on an
artificial neural network- (ANN) based algorithm proposed
byMansouri et al. [26]. ANN technique is a two-step process,
a learning and a reconstruction part. The neural network,
employed in the reflectance cube reconstruction, uses het-
eroassociative memories due to its modularity with regard to
the different size of the input and output vectors.The learning
step is based on the GretagMacBeth ColorChecker. It is made
of 24 patches representing spectra of different colours. The
learning step requires the acquisition of amultispectral image
for the 24 patches. The ANN generates a coefficient matrix
which is obtained upon association of themultispectral image
of the patches with their respective known spectral values.
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Figure 4: Synopsis of the spectral model of the acquisition process
in a multispectral imaging system. The decomposition of the
spectral model aims to retrieve only the skin reflectance spectrum
𝑟(𝜆).

From Figure 4, the reflectance spectra 𝑟(𝜆) of each pixel
is reconstructed using the camera response 𝑑(𝜆) and the
result obtained from theANN learning step (called coefficient
matrix). The reconstruction requires a multispectral image
as input in order to output a reflectance cube of cutaneous
data. The reconstruction provides a 3-dimensional volume
(𝑥, 𝑦, 𝜆) called a reflectance cube of cutaneous data where
𝑥 and 𝑦 represent the spatial dimensions and 𝜆 the spectral
one [22]. The reconstruction of a reflectance cube is fast and
simple as the operation is a product between the coefficient
matrix and the camera response.The use of heteroassociative
memory allows reconstruction with different wave ranges
within the capability (420 to 780 nm) with a current step
equal to ten nanometers. The limitation of the 420–780 nm
window is a result of the learning protocol which is based on
the Gretag MacBeth colorchart. This chart is made for visible
light calibration, hence the restriction.

A study involving 150 healthy participants covering
five of the six Skin PhotoTypes (SPT) (according to the
Fitzpatrick scale) was performed using ASCLEPIOS [27].
Three acquisitions are performed at three different body
locations, two facultative skin colour areas and a constitutive
skin colour one. Constitutive skin colour is the natural,
genetically determined colour of the skin whereas facultative
skin colour is skin area affected by the environment (sun,
hormones, etc.) resulting in modification of its original
appearances over time. The reconstruction validation is
performed by comparing data acquired using a commercial
spectrophotometer with reflectance cube reconstructed by
ASCLEPIOS. The ASCLEPIOS data used for comparison is
of the same size and at similar location to that the data
acquired by the spectrophotometer. The results reveal that
our system reconstructs reflectance cube with an average
goodness of fit coefficient (GFC) greater than of 0.997 which,
according to Hernández-Andrés et al. [28], considers that the
reconstruction is good if the GFC is above 0.99.

2.1.3. Data Acquisition. The clinical data were acquired at
the Department of Dermatology of Hospital Kuala Lumpur
under the supervision of Dr. R. Baba (Head of Derma-
tology Department) and Hospital Serdang (Malaysia) with
the collaboration of Dr. N. Shamsudin during the “Skin
Pigmentation Study.”The data collection was performed with

the collaboration of the Department of Electrical and Elec-
tronic Engineering of the University Teknologi Petronas
(Malaysia). The research study was registered to the National
Medical Research Register which supports the implementa-
tion of the National Institute of Health NIH guideline on
the conduct of research in the Ministry of Health Malaysia
(MOH). We acquired a total of 22 melasma data from 10
patients and a total of 110 vitiligo data from 32 patients.

All skin lesions were assessed by dermatologists. The
acquisition process required the patient consent and all pro-
cedures were performed following the dermatology guide-
line.

2.2. Skin Parameter Map Retrieval. The interest of the previ-
ously reconstructed reflectance cube is the retrieval of skin
component parameters from each spatial area by mean of
spectral analysis. Analysis of reflectance cubes can provide
noninvasive evaluation of skin condition through the 2D
mapping of relative meaningful skin chromophore concen-
trations [29].

As previously mentioned, we propose to extract skin
parameter maps by using spectral analysis based on a light
propagationmodel in skin.The presentation of the method is
divided into two sections, light propagation model descrip-
tion and genetic algorithm inversion method.

2.2.1. Light Propagation Model Description. The developed
method for skin parameter maps by spectral analysis is based
on a skin model. The structure of human skin can be seen as
a three-layer medium: epidermis, dermis, and subcutaneous
fat [1]. Several skin models have been developed with various
number of skin parameters and different numbers of layers
(2 [30], 3 [31], 5 [32], 7 [33], and even 22 layers [34]).
However, regardless of the sophistication of the models, the
numerous chromophores, and layers composing the skin, it is
accepted that the human skin appearance, in terms of colour
and reflectance spectrum in the visible domain, is mostly a
result of melanin and haemoglobin concentration. Following
this assessment, we selected a skin model with two layers,
epidermis and dermis. The epidermis layer main component
is the melanin [35] while the dermis main component is the
haemoglobin. We consider the epidermal thickness to be the
effective melanin layer thickness and the dermal thickness
as the effective haemoglobin layer thickness. This hypothesis
is considered for the entire paper. The physical and optical
properties of the epidermis and dermis have been selected
from the literature [1, 30, 36–39] and are summarized in
Table 1. The lower value of the epidermis thickness aims to
take into account the epidermis thinning related to melasma
disease [39].

The light propagationmodel selected in this study is based
on Kubelka-Munk (K-M) [40] model. It is originally based
on a simple relationship between scattering and absorption
coefficient of layers paint and its overall reflectance.The K-M
theory describes the radiation transfer in diffuse scattering
media by applying energy transport equations. It is a special
case of the radiative transfer equation. K-M equations allow



6 International Journal of Biomedical Imaging

Table 1: Five skin parameters used in the retrieval algorithm. The
range of each parameter is selected from the literature. The retrieval
parameters are bounded to these limits.

Skin parameter Symbol Range
Melanin concentration 𝑓mel 1.3 to 45%
Epidermis thickness 𝐷epi 0.01–0.15mm
Volume fraction of haemoglobin 𝑓blood 0.2–7%
Oxygenated haemoglobin 𝐶oxy 25–90%
Dermis thickness 𝐷dermis 0.6–3mm

quantitative studies of absorption, scattering, and lumines-
cence in diffuse scattering media. K-M model has been
extended to skin analysis by different groups [1, 17, 18, 41].

K-Mmodel has an analytical form and it offers rapid skin
optical parameters determination using inversion procedure.

We detail the principle of the Kubelka-Munk model in
terms of reflectance and transmittance for a single layer. It is
based on the thickness of the layer 𝑑layer, the layer absorption
coefficient 𝜇

𝑎.layer, and the layer scattering coefficient 𝜇
𝑠.layer.

Both absorption and scattering coefficients are functions of
the wavelength.

The equations related the melanin and haemoglobin
absorption with the layer absorption coefficient 𝜇

𝑎.layer and
the layer scattering coefficient𝜇

𝑠.layer are detailed, respectively,
for the epidermis and the dermis.

The epidermis absorption property is mostly due to the
melanin and lightly by the baseline absorption coefficient.
The melanin spectral absorption coefficient [42] is approxi-
mated by

𝜇
𝑎.melanin (𝜆) = 6.6 × 10

11

𝜆
−3.33

[cm−1] . (4)

The combined absorption of the different negligible skin
components (carotene, keratin, and collagen) is taken into
account by Jacques which defines an equation for the baseline
absorption coefficient free of the major chromophores which
is similar for these two layers [42]:

𝜇
𝑎.baseline (𝜆) = 0.244 + 85.3 exp − (𝜆 − 164)

66.2
[cm−1] . (5)

For simplification purpose, epidermis and stratum
corneum are regarded as a single layer because the stratum
corneum light absorption is low and transmits light uni-
formly in the visible wave range [43].

The optical absorption coefficient of the epidermis
𝜇
𝑎.epidermis is expressed as a function of the wavelength and

depends mostly on the volume fraction of melanosome and
lightly on the baseline skin absorption coefficient:

𝜇
𝑎.epidermis (𝜆) = 𝑓mel𝜇𝑎.melanin (𝜆)

+ (1 − 𝑓mel) 𝜇𝑎.baseline (𝜆) [cm
−1

] ,
(6)

where 𝜆 is the wavelength in nanometres and 𝜇
𝑎.melanin is in

cm−1. The 𝑓mel refers to the concentration of melanin in %
and 𝜇

𝑎.baseline is the baseline absorption in cm−1.

In the dermis, the absorption is performed by the main
chromophore, the blood [42]. Within the red blood cell,
the haemoglobin is a major absorber and it is decomposed
into oxyhaemoglobin (HbO

2

) and deoxyhaemoglobin (Hb)
components. The values of absorption coefficient for the
deoxy- and oxyhaemoglobin were obtained from the Ore-
gon Medical Laser Centre website [44]. Oxyhaemoglobin
absorption spectra have two absorption peaks at around 542
and 578 nm, revealing the characteristic “W” shape. For this
study, blood is considered evenly distributedwithin thewhole
dermis layer.

The total haemoglobin absorption spectrum is defined as

𝜇
𝑎.blood (𝜆) = 𝜇

𝑎.oxy (𝜆) + 𝜇
𝑎.deoxy (𝜆) [cm

−1

] . (7)

The oxygenated haemoglobin can be estimated using
the concentration of oxy- and deoxyhaemoglobin by the
following equation:

𝑅SO
2

=
𝐶HbO

2

𝐶HbO
2

+ 𝐶Hb
[%] . (8)

The dermal absorption coefficient 𝜇
𝑎.dermis is expressed by

𝜇
𝑎.dermis (𝜆) = 𝑓blood (𝐶HbO

2

𝜇
𝑎.oxy (𝜆))

+ 𝑓blood (1 − 𝐶HbO
2

) 𝜇
𝑎.deoxy (𝜆)

+ (1 − 𝑓blood) 𝜇𝑎.baseline (𝜆) [cm−1] ,

(9)

where 𝜆 is the wavelength in nanometres. 𝑓blood is the con-
centration of haemoglobin in %. 𝐶HbO

2

is the concentration
of oxyhaemoglobin in blood. 𝜇

𝑎.oxy and 𝜇
𝑎.deoxy refer, respec-

tively, to the absorption coefficient of the oxyhaemoglobin
and deoxyhaemoglobin in cm−1. 𝜇

𝑎.baseline is the absorption
coefficient of the skin baseline in cm−1.

Subcutaneous layer is ignored because its main function
is light absorption and mostly contains fat [45] and limited
visible light reaches this layer.

The equations to calculate the reflectance𝑅 and transmit-
tance𝑇 for one layer defined by Kubelka-Munk are expressed
by

𝑅layer (𝜆) = (1 − 𝛽(𝜆)
2

) (exp (𝐾 (𝜆) 𝑑layer)

− exp (−𝐾 (𝜆) 𝑑layer))

× ((1 + 𝛽 (𝜆))
2 exp (𝐾 (𝜆) 𝑑layer)

−(1 − 𝛽 (𝜆))
2 exp (−𝐾 (𝜆) 𝑑layer))

−1

,

𝑇layer (𝜆) = 4𝛽 × ((1 + 𝛽)
2 exp (𝐾𝑑layer)

−(1 − 𝛽)
2 exp (−𝐾𝑑layer))

−1

,

(10)

where 𝐾 is the backward flux variable of one layer expressed
by

𝐾layer = √𝑘layer (𝑘layer + 2 × 𝑠layer), (11)
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and 𝛽 is the forward flux variable of one layer expressed by

𝛽layer = √
𝑘layer

𝑘layer + 2𝑠layer
, (12)

where 𝑘 and 𝑠 are expressed by

𝑘layer = 2 × 𝜇
𝑎layer

,

𝑠layer = 2 × 𝜇
𝑠layer

.
(13)

The total reflection of a two-layer medium is defined by
the following equation:

𝑅total = 𝑅L1L2 = 𝑅
1

+
𝑇2L1𝑅L2

1 − 𝑅L1𝑅L2
,

𝑇total = 𝑇L1L2 =
𝑇L1𝑇L2

1 − 𝑅L1𝑅L2
,

(14)

where L1 and L2, respectively, refer to the epidermis layer and
the dermis layer.

Themodel allows fast computation of the total reflectance
and transmittance of a medium based on the absorption and
scattering coefficient and thickness of each layer.

The five biological parameters used to simulate a
reflectance spectra can be represented by an input function
denoted by

𝑝 = (𝑓mel, 𝐷epi, 𝑓blood, 𝐶oxy, 𝐷dermis) . (15)

We presented a model of light propagation based on a
two-layer skin medium using the Kubelka-Munk theory.The
model generates reflectance spectra using five physiological
parameters that can vary.

2.2.2. Genetic Algorithm Inversion Method. From our re-
search, the ASCLEPIOS system provides reflectance spectra.
We need to extract information from these spectra. It requires
solving an inverse problem to obtain skin parameter concen-
trations.This inverse problem is nonlinear due to the complex
structure, in terms of scattering and absorption properties, of
the two-layer skin model.

Inversion procedure aims to retrieve biochemical and
optical skin properties from noninvasive measurement. The
inversion means to reverse the model of light propagation
in which parameters are input to generate a reflectance
spectrum. The inversion of our model retrieves the five
parameters by matching simulated spectra generated by the
model with measured one.

Among the different existing techniques of search and
optimization, our interest focused on genetic algorithm (GA)
[46]. GA is a metaheuristic method that optimizes a problem
through iterative improvement of a candidate solution with
a quality measurement. The search of a global solution using
GA is done on a population of candidates rather than a single
candidate. The strengths of GA are its capacity to explore
large search space (through mimic of natural evolution), and

most importantly, its strength against becoming trapped into
a local minimum (by introduction of random search).

GA requires a representation of the solution space and a
fitness function to evaluate the population of individuals.One
individual is defined in real value of the five skin parameters
of the K-Mmodel and is bounded by its physical limit defined
in Table 1 from the literature. Attempt using GA to retrieve
skin parameters of a Monte Carlo for multilayered (MCML)
media has been tested by Zhang et al. [47] and a hybrid
version of it was developed by Choi [48]. Both prove the
usefulness of the GA, but these techniques also retrieve unre-
alistic values mainly due to the nonconstraint of the search
space. In our version, the boundary condition of each element
(minimum and maximum parameter values) is restricted to
their physical limit. This restriction limits the search space to
realistic values. The values are not body-location-dependent
to avoid user interaction. This nonrestriction aims to be
applied on any data taken wherever on the body, however;
this might potentially influence the results. The evolution of
the population is roughly based on an iterative three-step
process: selection, crossover, and mutation (see Figure 5).

The selection process is determined by a fitness function.
It is probably the most important aspect of the genetic
algorithm as it requires classifying the best individual which
is the most similar to the measured spectrum.

Figure 6 represents the process of the fitness function.
The fitness function is applied to every chromosome of the
population. The genes of a chromosome are input into the
forward KM model to generate a simulated spectrum. The
fitness function calculates the similarity between a measured
spectrum and a simulated one (using the forward KM
model). The calculated fitness value is used to classify the
population from the best to worst one for the selection
process.

In the search of an optimal fitness function for our
GA application, the following five different metric scales
have been tested: the root mean squared error (RMSE),
the goodness of fit coefficient (GFC), the reconstruction
percentage (RecP), the modified spectral angle similarity
(MSAS), and the spectral similarity value (SSV).

The first stage of the evolution process is to apply
genetic operation to the population 𝑡 which will generate
an intermediate population 𝑡

 (called mating pool). For the
evolution, the population undergoes selection, crossover, and
random operations. Then, most of the individuals from the
intermediate population will be kept as part of the new
population for the next generation.Only few individuals from
the intermediate populationmutate before being added to the
new population.

During the next step of the evolution, the random
operator selects individuals from the population and places
them in the 𝑡

 population. The aim of maintaining random
individuals is to conserve diversity in the population.

Crossover operation consists of swapping one randomly
selected parameter between two randomly chosen parents to
generate two offsprings.

The mutation is applied to a low random number of
children. The mutation alters randomly one parameter of
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the child chromosome by generating a new random value for
the parameter.

There are different criteria to stop the evolution of the
algorithm. Due to the difficulty to reach a specific fitness
function value for different spectra, the termination criterion
is chosen as a number of iterations. This technique has
the advantage of setting a finite computation time for the
algorithm and, if properly selected, one can reach optimum
result. However, at the final iteration, the algorithm may not
have yet converged.

As there is no golden rule to define the value of the
different parameters of the GA, the selection was performed
empirically through series of tests. The final parameters
of our proposed genetic algorithm are detailed in Table 2.
RMSE was selected because it performed better than four
other metrics (reconstruction percentage, goodness of fit
coefficient, modified spectral angle similarity, and spectral
similarity value) tested in the optimization process of the GA.

The proposed method of combining Kubelka-Munk
model (with a layered skin structure) with GA optimiza-
tion can retrieve accurately simulated skin parameters as
suggested by the results. The accuracy is defined by the
retrieval error of two characteristic sets of parameters (one
lightly and one darkly pigmented skin) with a white Gaus-
sian noise with amplitude of ±0.1 added to the simulated
spectra. The accuracy test was performed ten times and
averaged. The average root mean squared error of the fitness
function is 0.25 × 10

−5 with an average error of less than
1.5 percent for each parameter. This algorithm outputs the
concentration of melanin, the concentration of haemoglobin,
the thickness of both epidermis (considered as the melanin

Table 2: GA parameters for Kubelka-Munk inversion model.

Fitness function RMSE
Population size 100
Termination operator 25 iterations
Best selection nb 5
Random selection nb 25
Crossing nb 30
Mutation nb 2

layer) and dermis (considered as the haemoglobin layer),
and the oxygenated haemoglobin. The genetic algorithm
routine and the Kubelka-Munk model have been developed
on Matlab (The MathWorks, Inc., MA, USA) running on
a personal computer running on Windows XP operating
system (Microsoft, Seattle, WA, USA).

3. Results and Discussion

Quantitative and objective assessment of skin lesions is
critical in the detection of variety of skin conditions. In order
to use our method for clinically relevant skin analysis, we
first validated our technique using a population of healthy
participants and then applied our method to the measure-
ment of parameters from patients with vitiligo or melasma
skin lesions. The choice to study these diseases is based on
the generic target of the system. These diseases are easily
visually assessed by dermatologist with known parameter
variation (melanin). Another experiment to validate the
oxygenated haemoglobin percentage is performed on healthy
participants using images of normal tissue and tissue with
temporary induced ischemia.

3.1. Healthy Data Analysis. We present the results of our
method based on participants from a healthy population and
compare the results obtained with data from the literature.

The volume fraction of melanosome increases with the
SPT type which is in accordance with the literature [33, 45,
49]. Currently, the only method to classify and compare our
system is the relation between SPT and melanin concentra-
tion in skin and relation between healthy skin and skin with
temporary induced ischemia.

The data for our method of skin parameters retrieval are
the same as the data used for the validation of the reflectance
cube reconstruction [27].

For each reflectance cube, the distribution of the skin is
fairly uniform as the data were taken fromhealthy patient and
care was taken to acquire with no visible lesions or nevus.The
parameter estimation was performed on every reflectance
cube. The average value of each parameter was calculated
for each entire retrieved map because of low disparity within
values of each map.

The aim of this test is to corroborate the skin parameter
values/concentration from the literature with the parameters
retrieved using ourmethod on skin sample from various SPT.

Our results, presented by body location, show the differ-
ent retrieved parameters for different SPT inTables 3, 4, and 5.
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The results are fairly consistent with the finding of Robertson
and Rees [50] which reveal a thicker epidermis layer for the
back of the hand which agrees with our retrieved param-
eters. We considered their upper back values to compare
to our lower back measurement. The decrease of thickness
measured by reflectance confocal microscopy (RCM) again
matches the decrease of thickness calculated by our method.
The major difference between the body locations is found
for the melanin content of the back of the hand which is
twice the one of face and lower back for SPT II, III, but the
trends, while slightly lower, are similar for the remaining
SPT. The oxygenated haemoglobin variation between skin
types II and IV can be mostly noticed for the face and back
location. This effect may be linked to the increase of melanin
concentration. As the melanin concentration increases, the
characteristic “W” shape of the oxygenated haemoglobin is
more difficult to notice on the skin reflectance spectrum.
The oxygenated haemoglobin algorithm estimation might
be affected when there is a high concentration of melanin,
hence the difference in the results. Also the overall values
of oxygenated haemoglobin are on average 20% lower than
the one reported by Zonios et al. [10] but similar to the
one from Tseng et al. [51]. The difference may be a result
of the interrogation depth limit of our system and requires
further investigations. The volume fraction of haemoglobin
is very low for SPT VI compared to other skin types; this
might be a limitation of the system. It seems to be affected
by the low variation of the reflectance spectrum for SPT
VI. The accuracy of the method may need to be improved
for this specific phototype. A possible solution to overcome
this limitation is to select specific spectrum range (possibly
around the characteristic “W” shape) to increase its accuracy.
Further investigation is required to analyze the variation of
the volume fraction of haemoglobin for the back site.

Other parameters are not significantly different between
the different body locations. The model seems to be affected
by the relative flat spectrum of SPT VI, especially with regard
to the dermis thickness and volume fraction of haemoglobin.
Further validations of the model are required. First, using
ultrasound technology, the determination of the accuracy of
the layer thicknesses may be verified.

3.2. Melasma and Vitiligo Data Analysis. We applied our
method to quantify and compare data acquired from two
populations with skin diseases that have characteristic effect
on the melanin composition.

Melasma (also called chloasma) is a hyperpigmenta-
tion skin disease that is characterized by an increase level
of melanin concentration released by melanocytes. The
symptoms are characterized by dark, irregular, and well-
demarcated skin lesions.

Vitiligo (also called leukoderma) is a common genetic
autoimmune skin disease caused by the disappearance of
melanocytes in the epidermis resulting in hypopigmentation.
The symptom of vitiligo is the depigmentation of patches of
skin with irregular shape.

All multispectral images acquired contain both healthy
and hypo/hyperpigmented skin area. Every reflectance cube
was analyzed using our method, generating five skin parame-
ter maps.The average parameter values are obtained from the
two different areas (healthy and diseased) which aremanually
selected on eachmap.The relative difference between healthy
and hypo/hyperpigmented skin area is calculated by the
following formula:

𝑅diff =
Valref

Valmeasured
, (16)
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Table 3: Hand parameters estimation for SPT II, III, IV, V, and VI.

Hand 𝑓mel STD 𝐷epi STD 𝑓blood STD 𝐶oxy STD 𝐷dermis STD
SPT II 10.1 0.66 0.0133 0.0002 1.1 0.04 30.2 0.17 1.06 0.018
SPT III 18.7 1.17 0.0139 0.0002 1.2 0.044 29.7 0.227 1.10 0.018
SPT IV 26.5 1.15 0.0158 0.0003 1.1 0.032 28.9 0.218 1.26 0.025
SPT V 35.8 0.98 0.0176 0.0002 1.1 0.035 28.7 0.120 1.35 0.023
SPT VI 44.7 0.26 0.0202 0.0001 0.6 0.026 31.3 0.571 2.22 0.058
STD: standard deviation. 𝑓mel is the volume fraction of melanosome in %,𝐷epi is the epidermis thickness in mm, 𝑓blood is the volume fraction of hemoglobin
in %, 𝐶oxy is the oxygenated haemoglobin in %, and𝐷dermis is the dermis thickness in mm.

Table 4: Face parameters estimation for SPT II, III, IV, V, and VI.

Face 𝑓mel STD 𝐷epi STD 𝑓blood STD 𝐶oxy STD 𝐷dermis (mm) STD
SPT II 5.8 0.53 0.0116 0.0003 1.2 0.04 49.1 0.20 0.91 0.011
SPT III 7.5 0.52 0.0121 0.0001 1.3 0.046 40.9 0.167 0.10 0.002
SPT IV 15.5 0.95 0.0140 0.0002 1.4 0.054 31.1 0.689 1.08 0.029
SPT V 29.1 0.11 0.0159 0.0003 1.4 0.049 29.1 0.178 1.15 0.025
SPT VI 41.1 0.55 0.0199 0.0002 0.7 0.035 31.0 0.582 1.91 0.057
STD: standard deviation. 𝑓mel is the volume fraction of melanosome in %,𝐷epi is the epidermis thickness in mm, 𝑓blood is the volume fraction of haemoglobin
in %, 𝐶oxy is the oxygenated haemoglobin in %, and𝐷dermis is the dermis thickness in mm.

Table 5: Back parameters estimation for SPT II, III, IV, V, and VI.

Back 𝑓mel STD 𝐷epi STD 𝑓blood STD 𝐶oxy STD 𝐷dermis STD
SPT II 5.3 0.06 0.0115 0.0002 0.5 0.03 46.9 0.15 0.90 0.008
SPT III 5.2 0.44 0.0118 0.0002 0.9 0.057 44.8 0.194 0.91 0.009
SPT IV 15.5 0.93 0.0138 0.0003 1.2 0.039 32.3 0.836 1.02 0.021
SPT V 33.9 0.94 0.0164 0.0003 1.2 0.046 29.6 0.269 1.13 0.022
SPT VI 43.4 0.18 0.0209 0.0001 0.7 0.031 31.0 0.430 1.87 0.058
STD: standard deviation. 𝑓mel is the volume fraction of melanosome in %,𝐷epi is the epidermis thickness in mm, 𝑓blood is the volume fraction of haemoglobin
in %, 𝐶oxy is the oxygenated haemoglobin in %, and𝐷dermis is the dermis thickness in mm.

where Valref is the retrieved healthy skin parameter value
and Valmeasured is the retrieved hypo/hyperpigmented skin
parameter value. The 𝑅diff represents the relative change
between two values. This measure is unitless.

Tables 6 and 7 summarize the difference of parameters
between healthy and disease affected reflectance spectra.
Melasma lesions show that the melanin volume is 2.05 higher
than the healthy skin. Vitiligo lesions reveal a decrease by
around four of the melanin concentration. The variation
of the other parameters (epidermis and dermis thickness,
haemoglobin concentration, and oxygenated haemoglobin)
is not significant.

The standard deviations of the averagemelanin difference
for both melasma and vitiligo are high. This is a result of the
inclusion of all types of vitiligo (mild to severe) and all SPT
types. For SPT II and III, the difference betweenmelasma and
healthy skin is very high, sometimes with a relative difference
of 4, whereas for SPT V and VI, the relative difference is
around 1.3 to 1.5 as the original melanin concentration is
already high.

Figure 7 presents the results of the five parameters
retrieved using our method on a vitiligo lesion. The melanin
map is clearly affected in the area of vitiligo lesions (fair

Table 6: Average difference between melasma and healthy skin.

Parameter Relative difference STD
Melanin 2.06 0.097
Epidermis thickness 1.12 0.016
Haemoglobin concentration 1.18 0.037
Oxygenated haemoglobin 0.92 0.012
Dermis thickness 1.09 0.041
STD: standard deviation.

Table 7: Average difference between vitiligo and healthy skin.

Parameter Relative difference STD
Melanin 0.27 0.026
Epidermis thickness 0.95 0.043
Haemoglobin concentration 1.05 0.109
Oxygenated haemoglobin 1.07 0.030
Dermis thickness 1.06 0.062
STD: standard deviation.

patch on the subfigure (a)). In order to highlight the interest
of the result obtained by the proposed method, the image
size has been reduced to speed up the computation time.
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Table 8: Mean parameters estimation for the data acquired on 4 healthy volunteers.

Mean 4 volunteers 𝑓mel STD 𝐷epi STD 𝑓blood STD 𝐶oxy STD 𝐷dermis STD
Acquisition 1 13.3 0.08 0.0149 0.0001 1.6 0.004 71.9 0.15 1.02 0.018
Acquisition 2 14.2 0.08 0.0145 0.0002 2.8 0.008 55.4 0.194 1.01 0.013
Acquisition 3 13.5 0.05 0.0143 0.0002 1.7 0.005 76.7 0.836 1.01 0.022
SD: standard deviation. 𝑓mel is the volume fraction of melanosome in %,𝐷epi is the epidermis thickness in mm, 𝑓blood is the volume fraction of haemoglobin
in %, 𝐶oxy is the oxygenated hemoglobin in %, and𝐷dermis is the dermis thickness in mm.

Table 9: Percentage of difference between baseline acquisition (Acq1) and before occlusion release (Acq2) and one minute after release for
the 5 parameters (Acq3) for the average data acquired on 4 healthy volunteers.

Percentage of difference 𝑓mel 𝐷epi 𝑓blood 𝐶oxy 𝐷dermis

Between Acq1 and Acq2 6.7 −2.6 75 −22.9 0.98
Between Acq1 and Acq3 1.5 −4.0 6.25 6.6 0.98
𝑓mel is the volume fraction of melanosome,𝐷epi is the epidermis thickness, 𝑓blood is the volume fraction of haemoglobin,𝐶oxy is the oxygenated haemoglobin,
and𝐷dermis is the dermis thickness.

It is to be noted that the code has not been optimized
as the aim is to show the relevance of the method for
skin analysis. The variation of epidermis/dermis thickness,
haemoglobin concentration, and oxygenated haemoglobin
parameters is only of around 10% which we do not consider
to be characteristic for melasma and vitiligo diseases. This
finding is consistent with the medical expectation which
states that vitiligo only modifies the melanin content of the
skin. As previously noted for healthy data, a difference of
dermis thickness is observed between the different SPTs
which does not correspond to a histological characteristic as
SPT difference is due to a change of melanin concentration.
The algorithm seems to retrieve dermis thickness closely
related to the melanin concentration. This is particularly
noticeable for a specific lesion (Figure 7) where the cross-
correlation between the melanin concentration map and the
dermis thicknessmap is 0.41.The algorithmmight be affected
by the limited information in the NIR to accurately retrieve
dermis thickness in some case meaning a possible crosstalk
in themodel.This will be investigated further by adding layer
to the model to try to decorrelate these parameters.

3.3. Temporary Induced Ischemia Data Analysis. The experi-
ment aims to induce temporary ischemia to the lower arms
part of healthy volunteers. Ischemia is defined as a restriction
in blood supply to tissues, leading to a decrease of oxygen
(and glucose).

The protocol for this experiment involves three acquisi-
tions and is performed as followed. The first acquisition is a
baseline data acquired with the subject at rest for 5 minutes.
Temporary induced ischemia is simulated by inflating a
pressure cuff to the participant left upper arm. The pressure
cuff blocks the blood flow and is maintained for two minutes
before performing the second acquisition.This aims to record
ischemia. Finally, the third acquisition is taken one minute
after reperfusion (release of the cuff pressure).

The three multispectral images of the lower inner arm,
acquired during the experiment, are reconstructed into
reflectance cube and analyzed by the previously defined
algorithm.

The data were acquired on four healthy volunteers.
The data are processed by the algorithm and the average
parameter values are obtained from identical areas manually
selected on each map.

Table 8 presents the average retrieved skin parameters for
the four healthy volunteers. The values of melanin concen-
tration, epidermis thickness, and dermis thickness do not
show significant variation between the three acquisitions.The
occlusion does not have effect on these parameters, which is
the result expected.

The percentage of difference between the baseline and
acquisition 2 and acquisition 3 is calculated by the following
formula:

𝑃diff =
(ValAcq − ValBaseline)

ValBaseline
, (17)

where ValAcq is the retrieved skin parameter value for
acquisition (either number 2 or 3) and ValBaseline is the
retrieved baseline skin parameter value. The 𝑃diff represents
the percentage change between two values. This measure is
in percentage. It aims to facilitate comparison with data from
the literature.

The occlusion effect (see Table 9) shows an increase in
volume fraction of haemoglobin and a decrease in oxy-
genated haemoglobin concentration compared to baseline.
It is consistent with finding by Vogel et al. [29] and the
decreased value of oxygenated haemoglobin of 22.7% is
similar to the decrease reported by Zuzak et al. [52] (20.3%).

The retrieve values of both oxygenated blood concentra-
tion and volume of blood fraction for the third acquisition
compared to baseline reveal only a slight increase (+6%).
This potentially means that one minute after the release of
the pressure cuff, the hyperemia (increase of blood flow and
oxygenated haemoglobin) is nearly over and that the tissues
are returning to homeostasis.

The temporary induced ischemia experiment demon-
strates the potential of our system to record oxygenated
haemoglobin and volume fraction of haemoglobin. Further
studies might be required to fully assess the applicability
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Figure 7: A set of six subfigures composed of one reflectance image of vitiligo at 510 nm from the back of the left hand (a), volume fraction of
melanosome map (b), volume fraction of haemoglobin map (c), oxygenated hemoglobin map (d), epidermis thickness map (e) and dermis
thickness map (f). The subfigure (a) has been contrast enhanced for better viewing purpose only.
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and accuracy of our system for both dermatological and
cosmetological applications.

4. Conclusion

We presented a multispectral camera which has the capacity
to reconstruct reflectance cubes only linked to the skin
characteristics.The reflectance cube allows quantitative mea-
sure of cutaneous tissue based on a Kubelka-Munk model
combined with evolutionary algorithm. Using this approach,
quantificationmaps of five skin parameters (melanin concen-
tration, epidermis/dermis thickness, haemoglobin concen-
tration, and the oxygenated haemoglobin) are obtained for
each multispectral image acquired.

The developed algorithm was tested on a set of healthy
skin data acquired using our system. The results retrieved
by the algorithm are in good agreement with the data
from the literature. Finally, the usefulness of the developed
technique was tested during a clinical study based on healthy
skin, vitiligo, and melasma skin lesions. The results show
that our research method can retrieve skin parameters in
accordance with the expected skin composition for each
lesion. For example, with regard to the vitiligo, where the
main characteristic is a lack of melanin, the method clearly
shows a decrease in melanin concentration. In the case of the
melasma, some promising results are also obtained.

The first step consisting in developing a generic system
for the multispectral analysis of skin data has been achieved.
Because the first tests give promising results, our in vivo
imaging system may be useful for prospective study for a
use in dermatological and cosmetological studies. Specific
pathologies with strong socioeconomic impacts could be
chosen to reveal possible lesion spectral signature. The work
perspectives involve modifying the system to be disease-
specific (in terms of wavelength selection, field of view,
contact/noncontact . . .) and to further validate the system
for these specific purposes. To that regard, the perspective
of validation for all parameters includes the use of histology
(although it is difficult to set up) or measurements of skin
layer depth by ultrasound imaging system.
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